首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
目的观察ROP11核酸疫苗对BALB/c小鼠的免疫保护作用。方法 40只BALB/c小鼠随机分为实验组、空质粒对照组、PBS对照组和空白对照组,每组10只,均通过股四头肌注射免疫小鼠。其中实验组每鼠注射pcDNA3.1(+)-ROP11重组质粒100μg(1μg/μl),空质粒对照组注射pcDNA3.1(+)质粒100μg(1μg/μl),PBS对照组注射无菌PBS缓冲液100μl,空白对照组不注射。共免疫3次,每次间隔2周,末次接种量均加倍。分别于每次注射前和末次注射后第2周检测小鼠血清特异性IgG和细胞因子IFN-γ、IL-2、IL-4、IL-10。末次注射后2周各组小鼠腹腔攻击感染RH株弓形虫速殖子1×10^3个/只,观察其存活时间,评价免疫效果。结果 ROP11核酸疫苗能诱发小鼠产生细胞免疫和体液免疫反应,实验组小鼠血清特异IgG随着免疫次数的增加而显著增高(P〈0.05)。血清IFN-γ、IL-2、IL-4、IL-10均不同程度升高(P〈0.05)。重组质粒免疫组、空质粒免疫组、PBS和空白对照组小鼠经RH株弓形虫攻击感染后的平均存活时间为236.3、97.8、96.3和96.2h,差异有统计学意义(P〈0.05)。结论 ROP11核酸疫苗对BALB/c小鼠弓形虫感染有一定的免疫保护性,为进一步研究ROP11核酸疫苗的生物学功能提供了实验基础。  相似文献   

2.
目的 研究 Sj C2 3蛋白质疫苗对 Sj C2 3DNA疫苗增强小鼠的免疫保护作用的效果。方法 分别构建和制备 Sj C2 3DNA疫苗 (pc DNA3.1- Sj C2 3)和 Sj C2 3大亲水片段融合蛋白质 (GST-HD)疫苗。把 48只 BAL B/ c小鼠随机分为 A、B、C、D 4组 ,每组 12只。 A组 (DNA和蛋白质疫苗联合免疫组 )每只小鼠分别在第 0、2周经股四头肌注射 10 0μg Sj C2 3质粒 DNA,在第 4周经背部皮下多点注射 5 0 μg GST- HD+5 0 μg CFA;B组 (Sj C2 3DNA组 )每只小鼠分别在第 0、2、4周经股四头肌注射 10 0 μg Sj C2 3质粒 DNA;C组 (蛋白质疫苗组 )于第 4周每鼠经背部皮下多点注射 5 0 μgGST- HD+5 0 μg CFA1次 ;D组 (对照组 )每鼠分别在第 0、2、4周肌注 10 0 μg pc DNA3.1。各组在末次免疫后 4周每鼠以 45± 2条日本血吸虫尾蚴攻击感染 ,攻击后 45 d剖杀小鼠 ,计数成虫及肝内虫卵数。在免疫前、末次免疫后和攻击后从小鼠尾静脉采血 ,分离血清 ,用 Western- blot法检测抗体反应。结果 联合组与质粒对照组相比 ,获得了 42 .9%的减虫率和 6 0 .0 %的减卵率 ,均显著高于单独Sj C2 3DNA疫苗组 2 8.1%的减虫率和 37.9%的减卵率 ,及单独蛋白质疫苗组 (GST- HD) 2 3.8%减虫率和 39.5 %的减卵率 (P均 <0 .0 5 )。联合组抗体水平  相似文献   

3.
目的研究日本血吸虫复合表位DNA疫苗诱导BALB/c小鼠抗血吸虫感染的免疫保护作用。方法将40只雌性BALB/c小鼠随机分为4组:pcDNA3.1组(对照组),每鼠经两侧股四头肌注射100μg pcDNA3.1质粒DNA,每侧50μg;TPI组,每鼠肌注100μg pcDNA3.1-TPI质粒DNA;TP组,每鼠肌注100μg pcDNA3.1-T-linker-P质粒DNA;PT组,每鼠肌注100μg pcDNA3.1-P-linker-T质粒DNA。每隔2周加强免疫1次,剂量和方法相同,共免疫3次。末次免疫后4周每鼠经腹部皮肤攻击感染(45±1)条日本血吸虫尾蚴,45d后剖杀,计数成虫及肝脏虫卵数。首次免疫前2 d及感染前2 d尾静脉采血,间接ELISA检测特异IgG及IgG1I、gG2a水平。末次免疫后3周,每组取2只小鼠制备脾细胞,双抗体夹心法检测脾细胞经ConA和rSjCTPI刺激后培养上清中的IL-2I、L-4和IFN-γ水平。结果TP组和PT组小鼠减虫率分别为34.76%和36.14%,显著高于TPI组(P<0.05)和对照组(P<0.01);减卵率分别为51.20%和50.79%,与TPI及对照组比较差异有显著性(P<0.05)。TP组和PT组小鼠血清特异性IgG水平均升高(P<0.05),IgG2a/IgG1的比值分别为4.23和4.34。脾细胞经ConA和rSjCTPI刺激后,IL-2水平TP组和PT组较对照组均升高。结论复合表位DNA疫苗能诱导小鼠产生抗血吸虫感染的免疫保护力,效果优于rSjCTPI疫苗。  相似文献   

4.
目的构建弓形虫棒状体蛋白2(ROP2)和膜表面蛋白1(P30)融合的重组真核表达质粒,观察融合抗原ROP2-P30以DNA免疫方式在体内的免疫学效应。方法以重组质粒pET28b/ROP2-P30为模板,利用分子克隆技术构建重组真核表达质粒pcDNA3.1/ROP2-P30,经PCR和酶切鉴定正确后,体外转染COS-7细胞,Westernblot检测ROP2-P30表达。重组质粒pcDNA3.1/ROP2-P30以每鼠100μg混合透明质酸酶10U的剂量肌肉注射免疫BALB/c雌性小鼠,以弓形虫虫体裂解抗原作包被抗原,ELISA法测定免疫小鼠血清IgG抗体,免疫结束2周后,以约100个弓形虫速殖子攻击感染小鼠,观察小鼠生存状况。结果PCR和酶切鉴定表明重组质粒pcDNA3.1/ROP2-P30构建正确;Westernblot显示该重组质粒在COS-7细胞中瞬时表达的产物可被重组ROP2-P30免疫兔血清识别;ELISA检测重组质粒免疫小鼠血清特异性IgG抗体水平升高;重组质粒免疫小鼠感染弓形虫后的存活时间较对照组有所延长。结论重组真核表达质粒pcDNA3.1/ROP2-P30构建成功,用该重组质粒DNA直接免疫小鼠,能够诱导产生特异的体液免疫反应,具有一定的免疫保护性;该重组质粒表达的融合抗原分子ROP2-P30具有免疫原性,可作为疫苗候选抗原深入研究。  相似文献   

5.
目的 研究 Sj C2 3DNA疫苗和 Sj C2 3蛋白疫苗联合免疫对 C5 7BL/ 6感染小鼠的免疫保护作用。方法 分别构建和制备 Sj C2 3DNA疫苗 (pc DNA3.1- Sj C2 3)和蛋白疫苗 (Sj C2 3大亲水片段融合蛋白 GST- HD)。 4 8只 C5 7BL / 6小鼠随机分为 A、B、C、D 4组 ,每组 12只。 A组 (Sj C2 3DNA+GST- HD联合应用组 )每只小鼠分别在第 0、2周经股四头肌注射 10 0μg Sj C2 3质粒 DNA,在第 4周经背部皮下多点注射 5 0 μg GST- HD+5 0 μg CFA;B组 (Sj C2 3DNA组 )每只小鼠分别在第 0、2、4周经股四头肌注射 10 0 μg Sj C2 3质粒 DNA;C组 (蛋白疫苗组 )于第 4周每鼠经背部皮下多点注射5 0μg GST- HD+5 0μg CFA 1次 ;D组 (对照组 )每鼠分别在第 0、2、4周肌注 10 0μg pc DNA 3.1。各组在末次免疫后 30 d每鼠以 4 5± 2条 /只日本血吸虫尾蚴攻击感染 ,攻击后 4 5 d剖杀小鼠 ,计数成虫及肝内虫卵数。在免疫前、末次免疫后和攻击后从小鼠尾静脉采血 ,分离血清 ,用 Western- blot法检测抗体反应。结果 联合组与质粒对照组相比 ,获得了 36 .9%的减虫率和 30 .7%减卵率 ;而单独Sj C2 3DNA疫苗组的减虫率为 2 6 .9% ,显著低于联合组 (P<0 .0 5 )和 2 2 .2 %的减卵率 ,单独蛋白疫苗组 (GST- HD)为 15 .2 %和 12 .2 %  相似文献   

6.
目的 探讨日本血吸虫鸡尾酒式DNA疫苗与蛋白疫苗联合应用以增强免疫保护作用的效果。方法分别大量制备质粒DNA:pcDNA3.1-SjC23、pcDNA3.1-SjCTPI、pcDNA3.1-(CDR3)6和重组蛋白SjC23-HD、SjCTPI、NP30。pcDNA3.1-SjC23、pcDNA3.1-SjCTPI、pcDNA3.1-(CDR3)6等量混合后即为鸡尾酒式的混合DNA疫苗,重组蛋白SjC23-HD、SjCTPI、NP30等量混合后即为鸡尾酒式的混合蛋白疫苗。70只BALB/c小鼠随机分为A、B、C、D、E5组,每组14只。A组为自然感染组;B组(空质粒对照组)每只小鼠分别在第0、3、6周经股四头肌注射100μlpcDNA3.1;C组(空质粒+混合蛋白对照组)每只小鼠分别在第0、3、6周经股四头肌注射100μlpcDNA3.1,第9周每鼠经背部皮下多点注射100μl混合蛋白疫苗+100μl福氏完全佐剂(FCA);D组(混合DNA组)每只小鼠分别在第0、3、6周经股四头肌注射100μl混合DNA疫苗;E组(混合DNA+混合蛋白组)每只小鼠分别在第0、3、6周经股四头肌注射100μl混合DNA疫苗,第9周每鼠经背部皮下多点注射100μl混合蛋白疫苗+100μlFCA。DNA免疫组末次免疫后4周,蛋白加强组末次免疫后2周,所有小鼠同时经腹部皮肤感染(40±1)条尾蚴。攻击感染后42d剖杀小鼠,计数成虫及肝脏虫卵数。首次免疫前2d及感染前2d分别经尾静脉采血,分离血清检测IgG抗体水平、抗体亚类IgG1及IgG2a,并取小鼠脾脏制备单个脾细胞,检测细胞因子IL-2、IL-4、IFN-γ的水平。结果C、D组和E组的减虫率分别为17.70%、32.88%和45.35%,D组和E组的减虫率均显著高于C组(P均〈0.01),且E组的减虫率显著高于D组(P〈0.01);C、D组和E组的减卵率分别为9.39%、36.20%和48.54%,D组和E组的减卵率均显著高于C组(P均〈0.01),且E组的减虫率也显著高于D组(P〈0.05)。C、D、E3组小鼠血清都检测到特异性IgG抗体,?  相似文献   

7.
采用PCR法扩增日本血吸虫体表四跨膜家族蛋白2-A(SjTsp2-A)基因,构建重组质粒pcDNA3.1(+)/SjTsp2-A,将其转至大肠埃希菌DH5α制备DNA疫苗pcDNA3.1(+)/SjTsp2-A。24只BALB/c小鼠均分3组,每鼠于左股四头肌注射0.5 mg/ml盐酸布比卡因50 μl。次日,A组同法注射DNA疫苗pcDNA3.1(+)/SjTsp2-A,B组注射重组质粒pcDNA3.1(+)/SjGST,C组注射空质粒pcDNA3.1(+)。注射剂量均为100 μg/只。每隔2周注射1次,共3次,末次免疫后2周各组均经腹部皮下感染日本血吸虫尾蚴40±2条/鼠,45 d后剖杀,计数减虫率和减卵率。ELISA检测抗体效价,A组化分析股四头肌局部组织蛋白表达情况。结果A组的平均检虫数和每克肝组织虫卵数均显著低于B组和C组(P值均<0.05),A组的减虫率和减卵率分别为44.4%和28.4%。A组血清抗体效价高达1 ∶ 25 600。A、B两组局部组织均有特异性蛋白表达。DNA候选疫苗pcDNA3.1(+)/SjTsp2-A能诱导小鼠产生一定的免疫保护作用。  相似文献   

8.
弓形虫主要表面抗原p30单价及复合基因疫苗的构建   总被引:3,自引:0,他引:3  
目的 构建弓形虫单价基因疫苗 pcDNA3.1-p30及复合基因疫苗 pcDNA3.1-p30-ROP2 ,并比较两种疫苗对小鼠的免疫保护性。 方法 用聚合酶链反应 (PCR)从弓形虫RH株基因组DNA中分别扩增编码弓形虫主要表面抗原 p30和弓形虫棒状体蛋白 2 (ROP2 )的基因片段 ,经T-A克隆 ,将p30单价基因及 p30-ROP2复合基因片段分别插入真核细胞表达载体pcDNA3.1,构建重组真核表达质粒 pcDNA3.1-p30及pcDNA3.1-p30-ROP2。分别免疫BALB/c小鼠 ,设磷酸缓冲盐溶液 (PBS)组、pcDNA3.1空质粒组为对照 ;酶联免疫吸附测定 (ELISA)检测血清特异性IgG抗体 ;弓形虫速殖子腹腔攻击感染观察小鼠生存时间。  结果 获得 pcDNA3.1-p30、pcDNA3.1-p30-ROP2重组表达质粒 ,用 pcDNA3.1-p30-ROP2免疫的小鼠 ,其IgG抗体吸光度 (A490 =2.0 5 1± 0.3 3 7)高于用 pcDNA3.1-p30的吸光度 (A490 =1.892± 0.3 69) (P <0.0 5 )。攻击感染弓形虫后小鼠生存时间 ,用 pcDNA3.1-p30-ROP2免疫的小鼠 ,较用 pcDNA3.1-p30的明显延长 (P <0.0 1)。  结论 弓形虫不同生活阶段的抗原复合基因疫苗较单价基因疫苗具有更好的免疫保护性。  相似文献   

9.
目的观察日本血吸虫(大陆株)硫氧还蛋白DNA疫苗(pcDNA3-SjcTrx)在小鼠诱导抗血吸虫感染的免疫保护作用。方法制备pcDNA3-SjcTrx重组质粒,将30只雌性C57BL/6小鼠随机分为3组,每组10只:pcDNA3-SjcTrx核酸疫苗免疫组、pcDNA3空质粒对照组和攻击感染对照组。核酸疫苗免疫组每只小鼠经股四头肌注射100μg核酸疫苗,共注射3次,间隔2周。空质粒对照组每只小鼠在相应时间经股四头肌注射100μgpcDNA3空质粒,感染对照组则不注射任何质粒。于末次免疫后3周,每只小鼠经腹部感染(30±1)条日本血吸虫尾蚴。小鼠于攻击感染后42天剖杀,门脉灌注收集成虫,计数成虫数和肝内虫卵数。分别在免疫前、攻击感染前和小鼠剖杀前采血并分离血清,用ELISA检测血清中特异性IgG抗体。另取6只雌性C57BL/6小鼠经股四头肌注射核酸疫苗,分别于注射后24、48小时和72小时取肌肉注射部位局部组织制备冰冻切片,用免疫酶染色试验(IEST)检测注射局部组织抗原的表达情况,以注射pcDNA3空质粒者为对照。结果IEST结果表明该DNA疫苗在小鼠肌肉组织内表达,ELISA检测表明DNA疫苗免疫小鼠后产生明显的抗体(IgG)免疫应答,并诱导出对攻击感染的45.7%的减虫率和41.4%的肝组织减卵率(P<0.05)。结论日本血吸虫(大陆株)硫氧还蛋白DNA疫苗具有较好的免疫原性,在小鼠诱导出明显的免疫保护作用,可作为疫苗候选分子作进一步的研究。  相似文献   

10.
目的观察弓形虫新基因WX、WX2的表位疫苗对小鼠的保护作用。方法将昆明小鼠分成5组,分别用pcDNA3-W2b、pcDNA3-W4a、pcDNA3-W2b4a质粒及pcDNA3和NS,肌注3次,每次间隔2周。免疫完成后ELISA法检测血清抗体水平,取脾细胞用流式细胞仪检测CD4 与CD8 淋巴细胞比值,PCR检测肌肉组织中重组质粒。免疫后第3周,小鼠经腹腔注射弓形虫速殖子500个,观察发病情况和存活时间。30d后仍存活的小鼠,取组织匀浆后进行小鼠盲传。结果免疫后第3周,pcDNA3-W2b组小鼠血清抗体水平显著高于pcDNA3和NS对照组(P<0.05);用PCR法从pcDNA3-W2b、pcDNA3-W4a和pcDNA3-W2b4a质粒组小鼠肌肉组织中成功检测到各表位疫苗质粒,且各组小鼠脾脏CD4 与CD8 T淋巴细胞比值显著低于pcDNA3组和NS组(P<0.05)。pcDNA3-W2b、pcDNA3-W2b4a组小鼠存活时间与pcDNA3组及NS组比较明显延长(P<0.05)。结论弓形虫新基因WX、WX2表位疫苗能够诱导小鼠产生抗弓形虫感染保护性免疫,提示DNA类表位疫苗的研制可作为弓形虫疫苗研究的策略之一。  相似文献   

11.
目的探讨体内电穿孔技术增强日本血吸虫核酸疫苗的免疫保护效果。方法分别大量制备质粒pcDNA3.1-SjC23、pcDNA3.1-SjCTPI、pcDNA3.1-(CDR3)6和重组蛋白SjC23-HD、SjCT-PI与NP30。上述3种质粒DNA以等量混合后即为鸡尾酒式DNA疫苗,3种蛋白以等量混合后即为鸡尾酒式蛋白疫苗。70只BALB/c小鼠随机分为A、B、C、D、E5组,每组14只。A组为自然感染组;B组(电脉冲空质粒对照组)每只小鼠分别在第0、3、6周经股四头肌注射100μl pcDNA3.1,每次注射时辅以体内电穿孔;C组(电脉冲空质粒+混合蛋白对照组)空质粒免疫及体内电穿孔同B组,但于第9周每鼠经背部皮下多点注射100μl混合蛋白疫苗+100μl福氏完全佐剂(FCA);D组(电脉冲混合DNA组)每只小鼠分别在第0、3、6周经股四头肌注射100μl混合DNA疫苗,每次免疫时辅以体内电穿孔;E组(电脉冲混合DNA+混合蛋白组)混合DNA免疫及体内电穿孔同D组,但于第9周每鼠经背部皮下多点注射100弘1混合蛋白疫苗+100μl FCA。DNA免疫组末次免疫后4周,蛋白加强组末次免疫后2周,所有小鼠同时经腹部皮肤感染(40±1)条尾蚴。攻击感染后42d剖杀小鼠,计数成虫及肝脏虫卵数。首次免疫前2d及感染前2d分别经尾静脉采血,分离血清检测kG抗体水平、抗体亚类IgGl及IgG2a,并取小鼠脾脏制备单个脾细胞,检测细胞因子IL-2、IL-4、Ifn-y的水平。结果C、D组和E组的减虫率分别为18.09%、45.00%和57.09%,D组和E组的减虫率均显著高于C组(P均〈0.01),且E组的减虫率高于D组(P〈0.05);C、D组和E组的减卵率分别为12.49%、50.88%和59.26%,D组和E组的减卵率均显著高于C组(P均〈0.01),且E组的减卵率高于D组(P〈0.05)。C、D、E3组小鼠血清都检测到特异性IgG抗体,抗体亚类IgG2a/IgGl比值分别为0.394、3.518、0.914。D  相似文献   

12.
目的 观察日本血吸虫组织蛋白酶BDNA疫苗与IL 4真核表达质粒联合免疫小鼠的效果。 方法 将小鼠IL 4基因PCR扩增片段克隆入真核表达载体pcDNA3以构建重组表达质粒。小鼠分为 4组 ,每组 12只 ,实验组 (A)每鼠肌注组织蛋白酶BDNA疫苗和IL 4表达质粒各 10 0 μg ,同时设立组织蛋白酶BDNA疫苗对照组 (B)、IL 4表达质粒对照组 (C)和空载体对照组 (D) ,共免疫 3次。 2周后用免疫组化检测表达质粒在小鼠肌细胞的表达 ,3周后经皮肤攻击感染小鼠 40± 1条日本血吸虫尾蚴。计算减虫和减卵率 ,观察免疫保护性。 结果 重组IL 4质粒和组织蛋白酶BDNA疫苗均在小鼠肌细胞表达。用重组IL 4质粒和组织蛋白酶BDNA疫苗联合免疫诱导小鼠产生 43 .2 0 %的减虫率和 76.63 %的减卵率 ,与组织蛋白酶BDNA疫苗单独免疫比较差异均有显著性 (P <0 .0 0 1,P <0 .0 5 )。 结论 联合IL 4表达质粒免疫可能提高日本血吸虫组织蛋白酶BDNA疫苗的抗血吸虫保护性免疫。  相似文献   

13.
The development of a SjCTPI DNA vaccine for Schistosoma japonicum and the detection of the immune responses to and the protective efficacy of immunization were performed and challenged in C57BL/6 mice. According to the gene sequence of SjCTPI and murine IL-12, three pairs of primers were designed. The full length cDNA encoding SjCTPI and P35, P40 amplified from pUC19-SjCTPI and murine IL-12 by PCR were subcloned into an eukaryotic expression vector (pcDNA3.1). Forty-five female C57BL/6 mice were divided into three groups; each mouse of the control group was injected with 100 pg of pcDNA3.1 by i.m. route; the TPI group was injected with 100 microg of pcDNA3. 1-SjCTPI; the TPI+IL- 12 group was injected with 100 microg of pcDNA3.1-SjCTPI and 100 pg of mixture of pcDNA3.1-P35 and pcDNA3.1-P40. Each mouse was immunized at weeks 1 and 5 and challenged with 45 cercariae of Schistosoma japonicum Chinese strain at week 9. The mice were killed and perfused 45 days after challenge; the numbers of recovered worms and hepatic eggs were counted. The expression of SjCTPI in muscle tissue was determined by an immunohistochemical method. Culture of spleen cells showed the production of IL-2, IL-4, IL-10 and IFN-gamma with the stimulation of specific antigen before and after challenge. Sera were collected from each group before immunization, before challenge and two weeks post challenge; ELISA and Western-blot tests were performed for detection of anti-rTPI antibodies. The antigen of SjCTPI was expressed in the membrane and plasma of the muscle cells of C57BL/6 mice. The obvious rising of IL-2 in TPI group and TPI+IL-12 group before and after challenge was seen. The anti-rTPI antibody detection with Western-blot showed that ten serum samples from the control group were negative; nine of ten serum samples from the TPI group were weakly positive, eight of ten from the TPI+IL-12 group were weakly positive. The worm and egg reduction rates of TPI group and TPI+IL- 12 group were 27.9% and 13.7%, 31.9% and 18.6% respectively in comparison with the pcDNA group. pcDNA3.1-TPI DNA vaccine could confer partial protection against a subsequent challenge of Schistosoma japonicum in C57BL/6 mice and might therefore be a potential DNA vaccine.  相似文献   

14.
The development of a DNA vaccine for schistosomiasis japonica and testing the protective efficacy after challenge in BALB/c mice were performed. Thirty-nine female BALB/c mice were divided into three groups. Each mouse of the control group was injected intramuscularly with 100 microg of pcDNA3.1 DNA. In the TPI group, each mouse was injected with 100 microg of pcDNA3.1-SjCTPI DNA. The TPI+IL-12 group was injected with 100 microg of pcDNA3.1-SjCTPI DNA and 100 microg of the mixture of pcDNA3.1-P35 and pcDNA3.1-P40 DNA. Each mouse was immunized three times at two-week intervals and challenged with 45 cercariae of Schistosoma japonicum Chinese strain four weeks post-immunization. Then the mice were sacrificed and perfused at 45 days after challenge; the recovered worms and hepatic eggs were counted. Cytotoxic T lymphocyte (CTL) activity mediated by SjCTPI was detected with the 51Cr release assay. ELISA was performed for the detection of anti-rTPI antibodies. Anti-rTPI antibody detection with ELISA after immunization showed ten serum samples from the control group were negative, five of ten serum samples from the TPI group were weakly positive, six of ten from the TPI+IL-12 group were also weakly positive. The CTL activity of the control group was 9.1%, while CTL activities of the TPI group and the TPI+IL-12 group were 27.6% and 54.4%, respectively. The worm and egg reduction rates of TPI group and the TPI+IL-12 group were 30.2%, 52.9%, 32.7%, and 47.0%, respectively in comparison with the control group. This study further proved the possibility of the SjCTPI DNA vaccine as a potential DNA vaccine for schistosomiasis.  相似文献   

15.
目的观察胸腺素及干扰素基因表达对乙型肝炎基因疫苗pVAX1-S2S的免疫增强效应。方法从乙型肝炎患者血清中扩增S2S基因,构建表达质粒PVAX1—S2S。从成人外周血白细胞总RNA中,逆转录聚合酶链反应扩增干扰素α基因Ⅰ,将其与S2S相连接,构建重组表达质粒PVAX1—I/S2S;将干扰素α基因Ⅰ与人工合成的胸腺素α基因T相连接,构建重组表达质粒pVAX—T/I。将上述表达质粒分组肌肉接种BALB/c小鼠:单独免疫组接种pVAX1-S2S 100μg;联合免疫组1:接种pVAX1—I/S2S 100μg;联合免疫组2:每只小鼠同时接种pVAX1—T/I与pVAX1-S2S各50μg。上述各组于2、4周后分别加强免疫1次。然后动态检测小鼠血清抗-HBS和前S2抗体。结果接种后3、5、8周,小鼠血清抗-HBS阳转率:联合免疫组1分别为12.5%、12.5%、62.5%;联合免疫组2分别为25%、50%、50%,二者总体上均优于pVAX1—S2S单独免疫组。联合免疫组2的前S2抗体水平则高于其它两组。结论胸腺素α1和(或)干扰素α8基因的表达具有分子免疫佐剂的效应,能够增强乙型肝炎基因疫苗的特异性体液免疫诱生效力。  相似文献   

16.
A 23 kDa membrane protein DNA vaccine for Schistosoma japonicum Chinese strain was developed and tested for its protective efficacy and immune responses in infected C57BL/6 mice. The cDNA encoding SjC23 amplified from pUC19-SjC23 were subcloned into an eukaryotic expression vector (pcDNA3.1). Forty-eight female C57BL/6 mice were divided into three groups. Each mouse of group A (control group) was immunized intramuscularly (i.m.) with 100 microg of pcDNA3.1; of group B (SjC23 group) was immunized (i.m.) with 100 microg of pcDNA3.1-SjC23; of group C (SjC23+IL-12) was immunized (i.m.) with a mixture of 100 microg of pcDNA3.1-SjC23, 100 microg of pcDNA3.1-p35 and 100 microg of pcDNA-p40. These were followed by two boosts of the same DNA once every two weeks. All mice were challenged with 45 cercariae of Schistosoma japonicum Chinese strain at week 8, and were killed and perfused at week 14. The numbers of recovered worms and hepatic eggs were counted. The expression of SjC23 and p35, p40 in muscle tissue was determined by immunohistochemical method. By culture of spleen cells, the production of IL-2, IL-4, IL-10 and IFN-gamma with the stimulation of specific antigen of the recombinant hydrophilic domain of SjC23 (rSjC23-HD) was determined after the last immunization (before challenge). Sera were collected from each group before immunization and two weeks before and after challenge. Anti-SjC23 antibodies were tested by Western blot. The results showed that SjC23 and p35, p40 of mouse IL-12 were expressed on the membrane and in the plasma of the muscle cells of immunized C57BL/6 mice. A rise of IL-2 and IFN-gamma in the SjC23 group and SjC23+IL-12 group was observed; No changes were found in IL-4 and IL-10. Detection of anti-SjC23 antibody with Western blot showed that after the third immunization (before challenge) all the serum samples from the control group were negative; 8 of 10 sera from the SjC23 group and 9 of 10 sera from the SjC23+IL-12 group were positive. The worm reduction rates in the SjC23 group and SjC23+IL-12 group were 26.9% and 35.4% respectively; the liver eggs reduction rates were 22.2% and 28.4%, respectively in comparison to the control group. This indicates that the pcDNA3.1-SjC23 DNA vaccine can induce partial protection against Schistosoma japonicum infection in C57BL/6 mice.  相似文献   

17.
目的观察比较细粒棘球绦虫Eg95重组抗原和基因疫苗诱导小鼠的免疫应答状况。方法实验组和对照组小鼠分别注射Eg95重组抗原(rEg95)、费氏佐剂(FCA)、pcDNA3-Eg95基因疫苗、pcDNA3质粒和生理盐水,收集各组血清用酶联免疫吸附(ELISA法)检测抗体IgG和IgG2a亚类水平;采集脾细胞用四甲基偶氮唑盐试验(MTT法)检测免疫小鼠的脾淋巴细胞增殖反应。结果rEg95免疫组小鼠在第二次免疫后开始检测到抗Eg95抗原的IgG,并随着免疫次数的增多,血清抗体效价升高,在第1次免疫后第10周时,免疫抗体滴度可达到1∶25,600。Eg95基因疫苗免疫的小鼠产生抗体滴度随免疫次数的增加而升高,最高可达1∶3,200,但是低于Eg95重组蛋白免疫小鼠产生的抗体滴度水平。pcDNA3-Eg95免疫组产生IgG2a亚类抗体水平明显高于对照组和rEg95组。在第四次免疫后,进行淋巴细胞转化试验,MTT法检测证实rEg95和pcD-NA3-Eg95免疫的小鼠,其脾细胞均可在体外被特异性刺激增生。结论细粒棘球绦虫Eg95重组抗原和基因疫苗均可诱发小鼠产生特异性免疫应答。  相似文献   

18.
AIM: To construct the plasmid pcHEV23 containing fragments of HEV ORF2 and ORF3 chimeric gene and to assess its ability to elicit specific immunologic response in mice.METHODS: The gene encoding the structural protein of HEV ORF2 fragment and full-length ORF3 was amplified by PCR. The PCR products were cloned into an eucaryotic expression plasmid pcDNA3. The resulting plasmid pcHEV23 was used as a DNA vaccine to inoculate BALB/c mice intramuscularly thrice at a dose of 100 or 200 μg.Mice injected with empty pcDNA3 DNA or saline served as control and then specific immune responses in the mice were detected.RESULTS: After 2-3 times of inoculation, all mice injected with pcHEV23 had anti-HEV IgG seroconversion and specific T lymphocyte proliferation. The lymphocyte stimulation index in the group immunized with pcHEV23(3.1±0.49) was higher than that in the control group (0.787±0.12, P<0.01). None in the control group had a detectable level of anti-HEV IgG.CONCLUSION: DNA vaccine containing HEV ORF2 and ORF3 chimeric gene can successfully induce specific humoral and cellular immune response in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号