首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NADPH-diaphorase, an enzyme catalyzed reaction thought to reflect the activity of nitric oxide synthase in the mammalian nervous system, was mapped in the brain of the chicken. Intensely stained neurons and fibers were found in most parts of the telencephalon, in particular in the neostriatum, paleostriatum augmentatum, olfactory tubercle, lobus parolfactorius, hyperstriatum accessorium, and hyperstriatum ventrale. Medial to the nucleus taeniae, an accumulation of stained cells was observed that appeared to merge with a band of stained neurons located dorsal to the occipitomesencephalic tract. These are considered to belong to the nucleus interstitialis of the dorsal olfactory projection. Further caudally, neurons with different staining intensities were found in the lateral hypothalamic area, lateral mammillary nucleus, periventricular organ, ventral tegmental area, medial spiriform nucleus, optic tectum, isthmooptic nucleus, mesencephalic trigeminal nucleus, interpeduncular nucleus, and central gray of the mesencephalon. A particularly dense cluster of NADPH-diaphorase positive neurons was located in the locus coeruleus. It is proposed that these might represent cholinergic cells intermingled with catecholaminergic neurons, thus forming the avian counterpart of the tegmental cholinergic nuclei of mammals. Several NADPH-diaphorase reactive neurons were seen in the parabrachial nucleus and medial and dorsal vestibular nucleus, as well as scattered in the reticular formation. In the caudal medulla, intensely stained cells were grouped around the central canal. Therefore the pattern of expression of NADPH-diaphorase, and thus possibly of nitric oxide synthase, within the avian and mammalian brain might be largely conserved. © 1993 Wiley-Liss, Inc.  相似文献   

2.
Glutamatergic neurons are distributed widely in the telencephalic pallium of birds, but their targets are unknown. In the present study, a polyclonal antibody was produced against pigeon vesicular glutamate transporter 2 (vGluT2) and was used for Western blot and immunohistochemistry to detect projection targets of glutamatergic neurons in the pigeon central nervous system. The molecular weight of vGluT2 was measured at 65 kDa. vGluT2 immunoreactivity was observed in neuropil, but not in neuronal cell bodies or glia. Immunoreactive neuropil generally appeared homogeneous, but fine granules or puncta were found in many areas or nuclei. The telencephalon showed strong immunoreactivity, except for the globus pallidus. In particular, the mesopallium and hippocampal formation revealed the most intense immunostaining. In the diencephalon, vGluT2 immunoreactivity was intense in the dorsal thalamus and hypothalamus. In the midbrain, strong immunostaining was seen in the periaqueductal gray, the dorsal part of the lateral mesencephalic nucleus, and the isthmo-optic nucleus. The optic tectum showed moderate immunoreactivity. In the cerebellar cortex, glomeruli in the granular layer were intensely immunoreactive, and the molecular layer showed intensely homogeneous immunostaining. In the caudal brainstem, the cochlear magnocellular and angular nuclei showed strongly immunoreactive puncta around neuronal cell bodies. In the spinal cord, the dorsal horn revealed moderate immunoreactivity and the marginal nucleus was strongly immunoreactive. Ultrastructural observations revealed that vGluT2 immunoreactivity is localized in asymmetric, presynaptic terminals. The present results indicate an extensive distribution of glutamatergic projections and circuits in the avian central nervous system.  相似文献   

3.
Prior studies revealed that aversive stimuli and psychostimulant drugs elicit Fos expression in neurons clustered above and behind the interpeduncular nucleus that project strongly to the ventral tegmental area (VTA) and substantia nigra (SN) compacta (C). Other reports suggest that these neurons modulate responses to aversive stimuli. We now designate the region containing them as the “mesopontine rostromedial tegmental nucleus” (RMTg) and report herein on its neuroanatomy. Dense μ‐opioid receptor and somatostatin immunoreactivity characterize the RMTg, as do neurons projecting to the VTA/SNC that are enriched in GAD67 mRNA. Strong inputs to the RMTg arise in the lateral habenula (LHb) and, to a lesser extent, the SN. Other inputs come from the frontal cortex, ventral striatopallidum, extended amygdala, septum, preoptic region, lateral, paraventricular and posterior hypothalamus, zona incerta, periaqueductal gray, intermediate layers of the contralateral superior colliculus, dorsal raphe, mesencephalic, pontine and medullary reticular formation, and the following nuclei: parafascicular, supramammillary, mammillary, ventral lateral geniculate, deep mesencephalic, red, pedunculopontine and laterodorsal tegmental, cuneiform, parabrachial, and deep cerebellar. The RMTg has meager outputs to the forebrain, mainly to the ventral pallidum, preoptic‐lateral hypothalamic continuum, and midline‐intralaminar thalamus, but much heavier outputs to the brainstem, including, most prominently, the VTA/SNC, as noted above, and to medial tegmentum, pedunculopontine and laterodorsal tegmental nuclei, dorsal raphe, and locus ceruleus and subceruleus. The RMTg may integrate multiple forebrain and brainstem inputs in relation to a dominant LHb input. Its outputs to neuromodulatory projection systems likely converge with direct LHb projections to those structures. J. Comp. Neurol. 513:566–596, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
Previous studies have shown that GABAergic processes in the ponto-mesencephalic region of the brainstem are involved in the generation of wakefulness and active sleep (AS). The dorsal and ventral tegmental nuclei of Gudden (DTN and VTN, respectively) are known to contain a large population of GABAergic neurons. In the present study, utilizing Fos immunoreactivity as a marker of neuronal activity, it was determined that GABAergic DTN pars dorsalis neurons are active during active wakefulness and AS induced by carbachol, but not during quiet wakefulness or quiet sleep. In contrast, no differences in the number of Fos immunoreactive neurons were observed in the DTN pars ventralis and VTN across behavioral states.  相似文献   

5.
In order to verify the existence of the ventral and posterodorsal tegmental nuclei and to extend previous findings regarding the dorsal tegmental nucleus in the human brainstem, studies were conducted using cyto- and chemoarchitectonics, and computer reconstruction techniques. Serial sections of five brainstems from adults with no known neurological disorders were stained for Nissl substance, acetylcholinesterase, and substance P. The topography, cytoarchitecture, and acetylcholinesterase reactivity of the tegmental nuclei were presented in a mini-atlas depicting sections cut in transverse and sagittal planes. The dorsal and posterodorsal tegmental nuclei were identified fully within the central grey matter while the ventral tegmental nucleus extended across the medial longitudinal fasciculus into the pontine reticular formation. The dorsal tegmental nucleus featured a cell-poor pericentral part, strongly positive for acetylcholinesterase, and a central part comprised of densely packed small neurons that displayed moderate acetylcholinesterase reactivity and strong substance P-like immunoreactivity. The posterodorsal tegmental nucleus, located in the same transverse plane as the rostral part of the motor nucleus of the trigeminal nerve, was composed of diffusely arranged small to medium neurons with its neuropil displaying moderate acetylcholinesterase reactivity and strong substance P-like immunoreactivity. The ventral tegmental nucleus, identified as a prominent structure in the pontine tegmentum immediately rostral to the genu of the facial nerve, contained predominantly large neurons and displayed intensive acetylcholinesterase reactivity and substance P-like immunoreactivity. These studies showed that the tegmental nuclei, which displayed distinctive cyto- and chemoarchitectonic features, were fully present in adult human brainstem.  相似文献   

6.
Postnatal developmental changes of preproenkephalin (PPE) gene expression in rat brainstem neurons were studied by in situ hybridization histochemistry. On the basis of PPE mRNA expression, brainstem neurons were categorized into three types: 1) type I neurons were characterized by constant or increasing expression of PPE mRNA during postnatal development; 2) type II neurons started to express PPE mRNA several days after birth and continued to do so thereafter; and 3) type III neurons showed transient expression of PPE mRNA or stopped expressing the mRNA during early postnatal development. Type I PPE neurons were observed in diverse brainstem structures including the mesencephalic and pontine central gray matter, various reticular and raphe nuclei, the ventral tegmental area of Tsai, the interpeduncular nucleus, the nucleus of the brachium of the inferior colliculus, the ventral and dorsal tegmental nuclei of Gudden, the sphenoid nucleus, the laterodorsal tegmental nucleus, Barrington's nucleus, the parabrachial region, the lateral lemniscus and its related nuclei, the trapezoid nucleus, the rostral and ventromedial periolivary nuclei, the mesencephalic trigeminal and principal sensory trigeminal nuclei, the locus coeruleus, the subcoeruleus nucleus, the medial and spinal vestibular nuclei, the dorsal and ventral cochlear nuclei, the medial and lateral cerebellar nuclei, the Roller nucleus, and the intermedius nucleus of the medulla. Type II PPE neurons were found in the superior colliculus, the inferior colliculus, the central part of the dorsal tegmental nucleus, and as Golgi neurons in the granular layer of the cerebellum. Type III PPE neurons were located in the substantia nigra, the red nucleus, the superior olive, the motor trigeminal nucleus, the facial nucleus, the inferior olive, the dorsal motor nucleus of the vagus, and the hypoglossal nucleus. Such region-specific expression of the PPE gene during postnatal ontogeny suggests that rat brainstem PPE neurons may be involved in a variety of developmental events, such as cell proliferation, differentiation, and migration.  相似文献   

7.
Combinations of anatomical tracing with detection of Fos (the protein product of the immediate early gene c-fos) consequent to the stimulation of the central nucleus of the amygdala were used to explore the possibility that the hypothalamic paraventricular nucleus participates in the activation of brainstem neurons in the nucleus of the solitary tract and ventrolateral medulla. After injections of the anterograde tracer Phaseolus vulgaris leucoagglutinin in the paraventricular nucleus, labeled fibers and varicosities were found to impinge on catecholaminergic and non-catecholaminergic Fos-positive neurons in the brainstem. After injections of a retrograde tracer in the nucleus of the solitary tract or ventrolateral medulla, we observed that some of the Fos-positive neurons within the parvocellular paraventricular nucleus that project to the brainstem were catecholaminergic or oxytocinergic. The results indicate that direct and indirect inputs from the amygdala may influence the activity of autonomic neurons in the brainstem. The paraventricular nucleus, via its direct projections onto catecholaminergic and non-catecholaminergic neurons, may participate in activation of brainstem neurons. Activated catecholaminergic and oxytocinergic parvocellular neurons in the paraventricular nucleus may be involved in the transmission of autonomic signals from the amygdala toward the brainstem. ©1995 Wiley-Liss, Inc.  相似文献   

8.
The adaptation to hypoxia and hypercapnia requires the activation of several anatomical structures along the neuraxis. In this study, using Fos immunoreactivity, we sought to map neuronal populations involved in chemoreflex networks activated during the responses to moderate hypoxia (O(2) 11%), and hypercapnia (CO(2) 5%) in the brainstem and the hypothalamus of the rat. In the medulla, hypoxia elicited marked and significant staining in the nucleus of the solitary tract (NTS), and in parapyramidal neurons located near the ventral surface, whereas hypercapnia evoked significantly c-fos only near the ventral surface in paraolivar neurons. In contrast, within pontine and suprapontine structures, both hypoxia and hypercapnia evoked similarly Fos immunoreactivity in the lateral parabrachialis area, the central grey, the caudal hypothalamus (dorsomedial and posterior hypothalamic nuclei), and in a ventro-lateral hypothalamic area, extending from the rostral limit of the mammillary nuclei to the retrochiasmatic area. More rostrally, labelling was observed in the paraventricular nucleus of the hypothalamus in response to hypercapnia, and in the supraoptic nucleus in response to hypoxia. These results support the hypothesis that chemoreflexes pathways are not only restricted to medulla and pons but also involved mesencephalic and hypothalamic regions. The parabrachialis area and the central grey may be key relays between caudal and ventral hypothalamic neurons, and medullary neurons involved in the response to hypoxia and hypercapnia.  相似文献   

9.
The distribution of catecholaminergic and cholinergic neurons in the upper brainstem of the ferret were mapped by staining immunohistochemically two adjacent series of sections of brainstem for tyrosine hydroxylase and choline acetyltransferase, respectively. As in other species, large numbers of tyrosine-hydroxylase-positive neurons are localized in the ventral tegmental area (A10), the substantia nigra (A9), and in A8. Tyrosine-hydroxylase-positive neurons in the dorsolateral pontine tegmentum (A4, A6, and A7--the locus coeruleus complex) of the ferret are rather diffusely distributed, as has been observed in other carnivore species such as the cat and the dog, but unlike the cat, these cells in the ferret display a relative uniformity in size and morphology. Choline-acetyltransferase-positive neurons which extend in the ferret's pedunculopontine tegmental nucleus and ventral parabrachial area (Ch5) are relatively large cells that stain intensely for choline acetyltransferase, and their dendrites form prominent bundles in regions where unstained fibre tracts are prevalent. Choline-acetyltransferase-positive neurons distributed in the laterodorsal tegmental nucleus (Ch6) are smaller than the cholinergic cells of Ch5, and they stain less intensely for choline acetyltransferase. Rostrally, there is little overlap between the catecholaminergic cell groups A8, A9, and A10 and the cholinergic cell groups of Ch5 and Ch6. Caudally, the Ch5 neurons extend some considerable extent into the locus coeruleus complex. In the region of overlap, no cells with staining for both tyrosine hydroxylase and choline acetyltransferase were observed, as was ascertained with a double staining method employing a combination of tyrosine hydroxylase immunofluorescence and choline acetyltransferase peroxidase-antiperoxidase immunohistochemistry. In conclusion, the ferret has a typically carnivore pattern for the distribution of catecholaminergic cells in the upper brainstem, and there is a significant overlap between the catecholaminergic and cholinergic cell groups in the dorsolateral pontine tegmentum.  相似文献   

10.
GTPCH-I immunoreactive structures in the rat brain were studied using a polyclonal antibody raised in the chick. General mapping was made using the avidin–biotin–peroxidase technique and compared with the distribution of tyrosine hydroxylase and serotonin immunoreactivities. Double immunofluorescence was performed in order to establish real intracellular colocalization. GTPCH-I immunoreactivity was generally found to be low. Immunostained neurons were present in all the serotonin cell groups. In catecholaminergic neurons, although tyrosine hydroxylase immunoreactivity was always very high, GTPCH-I immunoreactivity was extremely variable, from relatively strong (substantia nigra, ventral tegmental area) to low (locus coeruleus, caudal part of the hypothalamus), extremely low (rostral hypothalamus, ventral brainstem) or almost absent (dorsal brainstem, some hypothalamic nuclei). When feasible, double immunolabeling revealed that all the serotonin cells and most of the tyrosine hydroxylase cells were also expressing GTPCH-I. Our results argue in favor of a regulation of tyrosine hydroxylase activity by the intracellular synthesis of BH4.  相似文献   

11.
在外周压力感受器去神经支配的大鼠上,用Fos蛋白和酪氨酸羟化酶(TH)的双重免疫组化方法,研究辣椒素的效应是否通过激活脑干核团内儿茶酚胺能神经元而诱发。结果显示,颈动脉注射辣椒素诱发脑干中最后区(AP)、孤束核(NTS)、巨细胞旁外侧核(PGL)和蓝斑(LC)等多个部位出现大量FOS样免疫反应(FLI)神经元和双标神经元,辣椒素受体阻断剂钌红(RR)或NMDA受体阻断剂MK-801可明显减弱此效应。以上结果表明,辣椒素的兴奋效应通过激活儿茶酚胺能神经元而诱发,辣椒素受体和/(或)谷氨酸介导这一效应。  相似文献   

12.
Restricted injections either of horseradish peroxidase conjugated with wheat germ agglutinin, or of unconjugated horseradish peroxidase were made into hooded rats in order to distinguish subcortical sources of afferents to dorsal lateral geniculate nucleus from those to the adjacent visually responsive thalamic reticular nucleus, which modulates geniculate activity. Five “nonvisual” brainstem regions project to the dorsal lateral geniculate nucleus: mesencephalic reticular formation, dorsal raphe nucleus, periaqueductal gray matter, dorsal tegmental nucleus, and locus coeruleus. Projections are generally bilateral, but ipsilateral projections dominate. Of these regions, three also project ipsilaterally to the thalamic reticular nucleus: mesencephalic reticular formation, periaqueductal gray matter, and dorsal tegmental nucleus. Similar discrete injections of horseradish peroxidase into ventral lateral geniculate nucleus allowed a comparison of afferents to dorsal and ventral lateral geniculate nuclei. In addition to the five nonvisual brainstem regions which project to the dorsal division, the ventral lateral geniculate nucleus receives afferents from the perirubral reticular formation and the central gray matter at the thalamic level. The dorsal and ventral lateral geniculate nuclei receive substantially different afferents from subcortical visual centres. The dorsal division receives projections from superior colliculus, pretectum, and parabigeminal nucleus whereas the ventral division receives afferents from superior colliculus, additional pretectal nuclei, lateral terminal nucleus of the accessory optic system, and the contralateral ventral lateral geniculate nucleus.  相似文献   

13.
为研究calbindinD 2 8K(CB)是否与内脏伤害性信息的传递或调控有关 ,应用免疫组织化学双重标记技术 ,对给予内脏伤害性刺激后大鼠脑干内表达Fos蛋白的CB免疫阳性神经元分布进行了观察。结果显示 :在孤束核 (NTS)、延髓腹外侧区 (VLM)、蓝斑 (LC)、臂旁外侧核 (LPB)、中脑导水管周围灰质腹外侧区 (vlPAG)等核团内均可见Fos/CB双标记神经元。双标记神经元分别占上述核团内Fos蛋白免疫阳性神经元数量的比例为12 .8% ,4 2 .7% ,4 8.1% ,14 .0 %和 13.9% ;占CB免疫标记阳性神经元数量的比例为 14 .3% ,2 4 .3% ,38.4 % ,6 .8%和 8.9%。研究结果提示 ,CB可能参与脑干内内脏伤害性信息的传递或调控。  相似文献   

14.
The ventral tegmental area contains a high density of dopaminergic perikarya having ascending projections to a number of limbic forebrain regions. In this study, we use combined retrograde labeling with horseradish peroxidase (HRP) and immunohistochemical staining for tyrosine hydroxylase to examine the catecholaminergic projection from the ventral tegmental area to the diagonal band of Broca. When injection of HRP was restricted to the diagonal band, only neurons in the nucleus linearis, nucleus interfascicularis and ventromedial portion of the nucleus paranigralis were labeled. In contrast, HRP injection into the adjacent nucleus accumbens labeled neurons throughout these nuclei, plus the nucleus parabrachialis pigmentosus, nucleus retroruber and substantia nigra, pars compacta. Approximately 60% of neurons in the ventral tegmental area labeled from the diagonal band contained tyrosine hydroxylase, compared with 79% of the neurons labeled from the nucleus accumbens. Neurotensin is a tridecapeptide found in the ventral tegmental area which has been shown to activate dopamine neurons projecting to the nucleus accumbens. In this study, microinjection of neurotensin into ventral tegmental nuclei which contained neurons retrogradely labeled from the diagonal band significantly elevated the levels of dopamine metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid, in the diagonal band. The results of this study demonstrate that a catecholaminergic projection exists from the ventral tegmental area to the diagonal band of Broca, and that this pathway can be stimulated by intra-ventral tegmental injection with neurotensin.  相似文献   

15.
A survey was made of the density of the cholinergic innervation of different parts of the brainstem of the rat and ferret. Sections of rat and ferret brainstems were stained for choline acetyltransferase (ChAT) immunoreactivity by using a sensitive immunocytochemical method. Adjacent sections were stained for acetylcholinesterase activity or Nissl substance. The density of the distribution of fine calibre, varicose ChAT-positive axons, assumed to represent cholinergic terminals, was categorised arbitrarily into high, medium, or low. A high density of ChAT-positive terminals was found in all or parts of these structures: interpeduncular nucleus, superficial grey layer of the superior colliculus (ferret), intermediate layers of the superior colliculus, lateral part of the central grey (rat), an area medial to the parabigeminal nucleus (rat), pontine nuclei, ventral tegmental nucleus (rat), midline pontine reticular formation, and an area ventral to the exit point of the 5th nerve (ferret). A medium density of ChAT-positive terminals was observed in all or parts of: the substantia nigra zona compacta (ferret), ventral tegmental area (ferret), superficial grey layer of the superior colliculus, intermediate and deep layers of the superior colliculus, lateral central grey, area medial to the parabigeminal nucleus, inferior colliculus, dorsal tegmental nucleus, ventral tegmental nucleus (ferret), pontine nuclei, ventral nucleus of the lateral lemniscus (ferret), midline pontine reticular formation, ventral cochlear nucleus, dorsal cochlear nucleus, lateral superior olive, spinal trigeminal nuclei, prepositus hypoglossal nucleus, lateral reticular nucleus, paragigantocellular nucleus, and the dorsal column nuclei including the cuneate, external cuneate, and gracile nuclei. A low density of ChAT-positive terminals was seen throughout the remainder of the brainstem of the rat and ferret, but these terminals were absent from the medial superior olive, substantia nigra zona reticulata (rat), and the central part of the ferret lateral superior olive. A pericellular-like distribution of ChAT-positive terminals was observed in the ventral cochlear nucleus and in association with some of the cells of the nucleus of the mesencephalic tract of the trigeminal nerve. A climbing fibre type arrangement of ChAT-positive terminals was found in the substantia nigra zona compacta (ferret) and medial reticular formation. In general, the distribution of staining for AChE activity reflected that of the distribution of ChAT immunoreactivity in the brainstem, except in a few regions where there were also species differences in the distribution of ChAT-positive terminals, e.g., in the superficial grey layer of the superior colliculus and in the substantia nigra.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
WOOLF, N.J. AND L. L. BUTCHER. Cholinergic projections to the basolateral amygdala: A combined Evans Blue andacetylcholinesterase analysis. BRAIN RES. BULL. 8(6) 751–763, 1982.—The origins and acetylcholinesterase (AChE, EC 3.1.1.7) content of neurons projecting to the AChE-rich basolateral amygdala were studied by infusing Evans Blue (EB), a retrogradely transported fluorescent label, into that neural region and, following microscopic evaluation of labelled somata, staining the same tissue sections for AChE according to the pharmacohistochemical regimen. The following basal forebrain areas contained cells labelled with EB: the lateral preoptic area, ventral pallidum, nuclei of the diagonal band, medial septal nucleus, bed nucleus of the stria terminalis, and substantia innominata. The majority of the basal forebrain neurons projecting to the basolateral amygdala stained intensely for AChE, suggesting that they were Cholinergic. In the brainstem, EB-labelled neurons staining intensely for AChE were found less frequently, but a few were observed in the nucleus tegmenti pendunculopontis, locus ceruleus, subcerulear region, and reticular formation. Cells accumulating EB after basolateral amygdala infusion but demonstrating no, weak, or moderate AChE activity were seen in the orbitofrontal, anterior cingulate, temporal, and insular cortices; the mediodorsal, paraventricular, and parataenial nuclei of the thalamus; the periventricular gray substance; the ventromedial mesencephalic tegmentum; the lateral and compact portions of the substantia nigra; the dorsal raphe; the dorsal tegmental nucleus; and the dorsal parabrachial nucleus. On the basis of staining intensity, intracellular organization of the AChE reaction product, and previous results in the literature, we conclude that the major Cholinergic input to the basolateral amygdala derives from the basal forebrain.  相似文献   

17.
Brainstem afferents to the magnocellular basal forebrain were studied by using tract tracing, immunohistochemistry and extracellular recordings in the rat. WGA-HRP injections into the horizontal limb of the diagonal band (HDB) and the magnocellular preoptic area (MgPA) retrogradely labelled many neurons in the pedunculopontine and laterodorsal tegmental nuclei, dorsal raphe nucleus, and ventral tegmental area. Areas with moderate numbers of retrogradely labelled neurons included the median raphe nucleus, and area lateral to the medial longitudinal fasciculus in the pons, the locus ceruleus, and the medial parabrachial nucleus. A few labelled neurons were seen in the substantia nigra pars compacta, mesencephalic and pontine reticular formation, a midline area in the pontine central gray, lateral parabrachial nucleus, raphe magnus, prepositus hypoglossal nucleus, nucleus of the solitary tract, and ventrolateral medulla. A similar but not identical distribution of labelled neurons was seen following WGA-HRP injections into the nucleus basalis magnocellularis. The possible neurotransmitter content of some of these afferents to the HDB/MgPA was examined by combining retrograde Fluoro-Gold labelling and immunofluorescence. In the mesopontine tegmentum, many retrogradely labelled neurons were immunoreactive for choline acetyltransferase. In the dorsal raphe nucleus, some retrogradely labelled neurons were positive for serotonin and some for tyrosine hydroxylase (TH); however, the majority of retrogradely labelled neurons in this region were not immunoreactive for either marker. The ventral tegmental area, substantia nigra pars compacta, and locus ceruleus contained retrogradely labelled neurons which were also immunoreactive for TH. Of the retrogradely labelled neurons occasionally observed in the nucleus of the solitary tract, prepositus hypoglossal nucleus, and ventrolateral medulla, some were immunoreactive for either TH or phenylethanolamine-N-methyltransferase. To characterize functionally some of these brainstem afferents, extracellular recordings were made from antidromically identified cortically projecting neurons, mostly located in the HDB and MgPA. In agreement with most previous studies, about half (48%) of these neurons were spontaneously active. Electrical stimulation in the vicinity of the pedunculopontine tegmental and dorsal raphe nuclei elicited either excitatory or inhibitory responses in 21% (13/62) of the cortically projecting neurons.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
To obtain a comprehensive map of the brainstem and spinal cord areas that project to the mesencephalic central gray small injections of hors-radish peroxidase were made into various regions of the periaqueductal gray in a series of monkeys. Despite the fact that different regions of the central gray were injected in separate animals, the majority of the brainstem areas containing retrogradely filled neurons remained the same. Labeled neurons were observed in the superior colliculus, periaqueductal gray, lateral parabrachial, locus coeruleus, nucleus raphe magnus and pallidus, and a variety of brainstem reticular nuclei. In contrast to labeled brainstem areas, where labeled neurons were present predominantly ipsilateral to the injection site, the spinal trigeminal nucleus pars caudalis and the spinal cord displayed labeled cells chiefly on the side contralateral to the injection. Also in contrast to the labeled brainstem sites, where medial and lateral injection sites produced a similar pattern of labeling, medial injections in the PAG labeled almost exclusively neurons in the deep laminae (V-X) in the spinal trigeminal nucleus pars caudalis and spinal cord while more lateral injections labeled neurons in both the deep (V-X) and superficial (I) laminae. No consistent differences were noted in the location of labeled neurons in either brainstem or spinal sites after dorsal vs. ventral injections or caudal vs. rostral injection sites. The present study has demonstrated that the central gray receives afferent projections from a number of brainstem and spinal areas which are known to be involved in the modulation andor conduction of nociception, while other inputs are probably involved in the regulation of visceral functions. These data support the hypothesis that the mesencephalic periaqueductal gray functions as a visceral, nociceptive, and cognitive integrator.  相似文献   

19.
The distribution ofproneuropeptide Y-containing perikarya and nerve fibers in the brain of Rana esculenta and Xenopus lavis was determined with antisera directed toward neuropeptide Y and the carboxyl terminal flanking peptide. The distribution of proneuropeptide Y-like immunoreactivity was similar in both anurans. In the telencephalon, immunoreactive perikarya were found in the olfactory bulb, all subdivisions of the pallium, the septum, pars lateralis of the amygdala, the nucleus accumbens, and the anterior preoptic area. In the diencephalon, labelled perikarya were detected in the ventromedial, ventrolateral and central thalamic nuclei, the magnocellular preoptic nucleus, the suprachiasmatic nucleus, the posterior tuberculum, and the infundibulum. Amacrine-like cells were stained in the retina. In the pretectal area, posterior thalamic neurons showed intense, Golgi-like immunostaining. In the mesencephalon, immunoreactive cells were found in the reticular nucleus, the anteroventral tegmental nucleus, the optic tectum, the interpeduncular nucleus, and the torus semicircularis. In the rhombencephalon, labelled perikarya were detected in the secondary visceral nucleus, the central gray, the nucleus of the solitary tract, the dorsal column nuclei, and the spinal nucleus of the trigeminal nerve. Immunoreactive nerve fibers were observed in all areas of the brain that contained labelled perikarya. The densest accumulations were found in the accessory olfactory bulb, pars lateralis of the amygdala, the ventral habenula, the posterior pituitary, the optic tectum, the interpeduncular nucleus, and the saccular nucleus. The distribution of proneuropeptide Y-like immunoreactivity in the anuran brain showed many similarities to the distribution described for the amniote brain. © 1993 Wiley-Liss, Inc.  相似文献   

20.
The afferent projections from the brainstem to the mediodorsal thalamic nucleus (MD) were studied in the cat, by means of retrograde transport of horseradish peroxidase. A topographical arrangement of these projections is described. The medial part of MD is the area of the nucleus which receives fewer afferents from the brainstem. After injections in this part, labeled neurons were observed mainly in the interpeduncular nucleus, the ventral tegmental area and the substantia nigra. After injections of HRP in the intermediate part of the MD, labeled cells were seen mainly in the interpeduncular nucleus, substantia nigra, dorsal and centralis superior raphe nuclei, dorsal tegmental nucleus, and coeruleus complex. Less conspicuous was the number of labeled cells in the central gray and the dorsolateral portion of the tegmentum of the mesencephalon and pons. After injections in the lateral part of MD, labeled neurons were observed mainly in the deep layers of the superior colliculus, central gray, the oral paramedian pontine reticular tegmentum, and the interpeduncular nucleus. Labeled cells were also observed in the substantia nigra, locus coeruleus, dorsal tegmental nucleus, cuneiform area, and the mesencephalic reticular formation. These findings show the MD as a thalamic link of three different groups of brainstem structures projecting to different cortical areas with different functional significance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号