首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
In ventromedial cells of the developing CNS, Sonic hedgehog (Shh) has been shown to affect precursor proliferation, phenotype determination, and survival. Here we show that Shh and its receptor, Ptc-1, are expressed in the adult rat basal forebrain, and that Ptc-1 is expressed specifically by cholinergic neurons. In basal forebrain cultures, Shh was added alone and in combination with nerve growth factor (NGF), and the number of cholinergic neurons was determined by choline acetyltransferase (ChAT) immunocytochemistry. By 8 days in vitro, Shh and NGF show a synergistic effect: the number of ChAT-positive cells after treatment with both factors is increased over untreated cultures or cultures treated with either factor alone. While Shh increases the overall basal level of proliferation, double-labeling of dividing neuronal precursors with [(3)H]thymidine followed by ChAT immunocytochemistry after they mature, demonstrates that the specific increase in cholinergic neurons is not due to this proliferation enhancement. These experiments imply a role for Shh in the development of postmitotic cholinergic neurons and suggest a therapeutic value for Shh in neurodegenerative disease.  相似文献   

7.
NeuN is a 46/48-kD nuclear protein antigen used widely to identify postmitotic neurons in both research and diagnostics. It is expressed by neurons throughout the nervous system of a variety of species, including birds, rodents, and man (Mullen et al. [1992] Development 116:201-211). When we sought to use NeuN to follow the developmental progression of murine cerebellar interneurons, we observed that expression of this antigen in the cerebellum was restricted to granule neurons and a small population of cells present in the lower molecular layer of the adult cerebellum. In an attempt to identify these cells, we combined immunostaining for NeuN with a panel of cell type-specific markers to unambiguously identify neurons that express NeuN in the adult and developing cerebellum. In contrast to postmitotic granule neurons, NeuN was not expressed by any other immunocytochemically identified cerebellar interneurons, which comprised basket and stellate cells, Golgi neurons, unipolar brush cells, and Lugaro cells. NeuN-positive cells in the molecular layer failed to express any cell type-specific markers tested. They may represent ectopic granule cells; alternatively, they may represent a hitherto unknown population of cerebellar cells. In vitro experiments suggest that NeuN expression is related closely to granule cell axogenesis. This approach also revealed that the level of NeuN expression could be modulated by chronically depolarizing these cells. Thus, whereas NeuN expression per se is a reliable marker of proliferative capacity, levels of NeuN expression may also be indicative of the physiological status of a postmitotic neuron.  相似文献   

8.
9.
Apoptosis-associated tyrosine kinase (AATYK) is a non-receptor type tyrosine kinase that is predominantly expressed in adult mouse brain. Although it is also expressed in developing brains, its expression pattern and physiological functions are unclear. In the present study, we analyzed expression profiles of AATYK in developing mouse brains and its functional role and subcellular localization in cultured cerebellar granule cells. Expression of AATYK mRNA and protein increased during postnatal brain development. Immunohistochemical analysis indicated that the protein was differentially expressed in postmitotic neurons within various brain areas including the olfactory bulb, cerebral cortex, hippocampus, thalamus, colliculus, cerebellum, and brain stem. Developmental increases in its expression were also observed in cultured cerebellar granule cells. AATYK protein was largely fractionated into the microsomal fraction and was immunocytochemically distributed in an ER-like meshwork of the granule cell soma, suggesting a possible association with the ER membrane. AATYK protein was also present in neurites. In immature granule cells, overexpression of wild-type AATYK promoted neurite outgrowth, whereas that of tyrosine kinase-defective mutant significantly inhibited it. These results suggest that, in addition to its role in cell death in mature neurons, AATYK has a unique role in promoting neurite extension through its tyrosine kinase activity in developing neurons.  相似文献   

10.
To investigate LIM gene function in the rat cerebellar system, we analyzed expression and regulation of the rat homologue of frog Xlim-1 (rlim-1) in vivo and in cultured cells. In developing cerebellum, peak levels of rlim-1 mRNA at postnatal day 8 (p8) are coincident with the peak period of granule cell proliferation. Analysis of rlim-1 protein with a specific antibody showed that expression was also maximal at p8. In situ hybridization showed that at p8 rlim-1 mRNA was expressed in Purkinje and granule cells. Both the proliferative and the premigratory granule cells in the external germinal zone displayed high levels of rlim-1 mRNA expression. Immunocytochemical staining demonstrated that at p8 rlim-1 protein was also present in proliferative and premigratory granule cells. In adult cerebellum (p30), rlim-1 mRNA and protein expression in granule cells was strongly attenuated. The down-regulation of rlim-1 mRNA occurred in granule cells just after the time of final division, coinciding with the onset of their migration. rlim-1 protein was detected in migratory granule neurons. The developmental decrease in rlim-1 mRNA and protein found in vivo was reproduced in pure cerebellar granule cell cultures. In these cultures, granule neurons were postmitotic 1 day after plating but still displayed high levels of rlim-1 protein expression up to 3 days in vitro. Our findings indicate that 1) rlim-1 is likely to act in concert with other genes to specify granule cell fate, 2) rlim-1 expression in granule neurons is regulated autonomously, and 3) rlim-1 protein may also play an important role in granule neuron differentiation and survival. Published 2001 Wiley-Liss, Inc.  相似文献   

11.
Developmental changes in KCC1, KCC2 and NKCC1 mRNAs in the rat cerebellum   总被引:5,自引:0,他引:5  
Cation chloride cotransporters are considered to play pivotal roles in controlling the intracellular and extracellular ionic environments of neurons, hence controlling neuronal function. To establish how these cotransporters are involved in cerebellum development, we investigated the expression of KCC1, KCC2 and NKCC1 mRNAs in the developing rat cerebellum using in situ hybridization histochemistry. In the external germinal layer, where premature cells exist, we found substantial KCC1 and NKCC1 mRNA expression on P7 and P14, while KCC2 mRNA was not detected. In contrast, KCC2 mRNA was already expressed in Purkinje cells on P1. We also observed KCC2 mRNA expression in postmigratory granule cells after P7. The expression of KCC1, KCC2, and NKCC1 mRNAs reached adult patterns by P21. In the adult cerebellum, KCC2 mRNA was expressed in most neurons, including Purkinje cells, granule cells, and stella/basket cells, while KCC1 and NKCC1 mRNAs were only detected in granule cells and glial cells. These findings suggest that in the rat cerebellum KCC2 mRNA expression is induced when neurons arrive their final destinations.  相似文献   

12.
INSM1 is a zinc-finger protein expressed in the developing nervous system and pancreas as well as in medulloblastomas and neuroendocrine tumors. With in situ hybridization combined with immunohistochemistry, we detected INSM1 mRNA in all embryonic to adult neuroproliferative areas examined: embryonic neocortex, ganglionic eminence, midbrain, retina, hindbrain, and spinal cord; autonomic, dorsal root, trigeminal and spiral ganglia; olfactory and vomeronasal organ epithelia; postnatal cerebellum; and juvenile to adult subgranular zone of dentate gyrus, subventricular zone, and rostral migratory stream leading to olfactory bulb. In most of these neurogenic areas, subsets of neuronal progenitors and nascent, but not mature, neurons express INSM1. For example, in developing cerebellum, INSM1 is present in proliferating progenitors of the outer external granule layer (EGL) and in postmitotic cells of the inner EGL, but not in mature granule cell neurons. Also, lining the neural tube from spinal cord to neocortex in mouse as well as human embryos, cells undergoing mitosis apically do not express INSM1. By contrast, nonsurface progenitors located in the basal ventricular and/or subventricular zones express INSM1. Whereas apical progenitors are proliferative and generate one or two additional progenitors, basal progenitors are thought to divide terminally and symmetrically to produce two neurons. The nematode ortholog of INSM1, EGL-46, is expressed during terminal symmetric neurogenic divisions and regulates the termination of proliferation. We propose that, in mice and humans, INSM1 is likewise expressed transiently during terminal neurogenic divisions, from late progenitors to nascent neurons, and particularly during symmetric neuronogenic divisions.  相似文献   

13.
We describe monoclonal antibodies recognising three cell surface antigens expressed by rat cerebellar granule neurons. The antibodies were produced after immunising mice with a cerebellar glycoprotein preparation. 6-1-3 recognises a glycoprotein with an apparent molecular weight of 144 000 daltons, and gives an unusual staining pattern on cultured neurons. 7-8D2 recognises postmitotic granule cells, but not their precursors in the external granular layer. The antigen was not detected in any brain region other than the cerebellum. 8-20-1 recognises a brain specific glycoprotein with an apparent molecular weight of 48 000 daltons, which appears on cerebellar granule cells only after the 10th postnatal day.  相似文献   

14.
Sonic hedgehog (Shh) signaling from the primary cilium drives cerebellar granule cell precursor (GCP) proliferation. Mutations of hedgehog (Hh) pathway repressors commonly cause medulloblastoma, the most prevalent and malignant childhood brain tumor that arises from aberrant GCP proliferation. We demonstrate that Nestin Cre-driven conditional knock-out (CKO) of a Shh pathway repressor-Rab23 in the mouse brain of both genders caused mis-patterning of cerebellar folia and elevated GCP proliferation during early development, but with no prevalent occurrence of medulloblastoma at adult stage. Strikingly, Rab23-depleted GCPs exhibited upregulated basal level of Shh pathway activities despite showing an abnormal ciliogenesis of primary cilia. In line with the compromised ciliation, Rab23-depleted GCPs were desensitized against Hh pathway activity stimulations by Shh ligand and Smoothened (Smo) agonist-SAG, and exhibited attenuated stimulation of Smo-localization on the primary cilium in response to SAG. These results implicate multidimensional actions of Rab23 on Hh signaling cascade. Rab23 represses the basal level of Shh signaling, while facilitating primary cilium-dependent extrinsic Shh signaling activation. Collectively, our findings unravel instrumental roles of Rab23 in GCP proliferation and ciliogenesis. Furthermore, Rab23''s potentiation of Shh signaling pathway through the primary cilium and Smo suggests a potential new therapeutic strategy for Smo/primary cilium-driven medulloblastoma.SIGNIFICANCE STATEMENT Primary cilium and Sonic hedgehog (Shh) signaling are known to regulate granule cell precursor (GCP) proliferation. Aberrant overactivation of Shh signaling pathway ectopically increases GCP proliferation and causes malignant childhood tumor called medulloblastoma. However, the genetic and molecular regulatory cascade of GCP tumorigenesis remains incompletely understood. Our finding uncovers Rab23 as a novel regulator of hedgehog (Hh) signaling pathway activity and cell proliferation in GCP. Intriguingly, we demonstrated that Rab23 confers dual functions in regulating Shh signaling; it potentiates primary cilium and Shh/Smoothened (Smo)-dependent signaling activation, while antagonizes basal level Hh activity. Our data present a previously underappreciated aspect of Rab23 in mediating extrinsic Shh signaling upstream of Smo. This study sheds new light on the mechanistic insights underpinning Shh signaling-mediated GCP proliferation and tumorigenesis.  相似文献   

15.
The patterns of gamma-aminobutyric acid type A (GABAA) receptor subunit gene expression in the brain are complex. For example, mouse hippocampal dentate granule cells express many subunit genes, whereas adult cerebellar granule cells, which may share differentiation mechanisms, have a smaller compliment and uniquely express the alpha6 subunit gene. To see how the alpha6 expression component arises, i.e. if intrinsically or environmentally specified, we used a mouse line (Deltaalpha6lacZ) with a beta-galactosidase reporter inserted into the alpha6 gene. Precursor cells from postnatal day 1 Deltaalpha6lacZ cerebellum were transplanted to the adult hippocampus and cerebellum of wild-type mice; 4 weeks after transplantation, Deltaalpha6lacZ cells expressed alpha6-lacZ in the hippocampus, amygdala and cerebellum. Thus, different adult environments support both the development and maintenance of alpha6 gene expression from cerebellar granule cell precursors. Establishing alpha6 gene expression is not likely to require specific patterns of neurotransmitter innervation or other factors present only in the developing brain; instead, alpha6 expression can be timed and maintained autonomously.  相似文献   

16.
We here show that the early postmitotic stage of granule cell development during adult hippocampal neurogenesis is characterized by the transient expression of calretinin (CR). CR expression was detected as early as 1 day after labeling dividing cells with bromodeoxyuridine (BrdU), but not before. Staining for Ki-67 confirmed that no CR-expressing cells were in cell cycle. Early after BrdU, CR colocalized with immature neuronal marker doublecortin; and later with persisting neuronal marker NeuN. BrdU/CR-labeled cells were negative for GABA and GABAA1 receptor, but early on expressed granule cell marker Prox-1. After 6 weeks, no new neurons expressed CR, but all contained calbindin. Stimuli inducing adult neurogenesis have limited (enriched environment), strong (voluntary wheel running), and very strong effects on cell proliferation (kainate-induced seizures). In these models the induction of cell proliferation was paralleled by an increase of CR-positive cells, indicating the stimulus-dependent progression from cell division to a postmitotic stage.  相似文献   

17.
In this study we compare the distribution of the phosphoprotein B-50 in two regions of immature and adult rat brain using affinity-purified antibodies to B-50. In the cerebellum of the 8-day-old rat we observed distinct patterns of distribution of B-50 immunoreactivity (BIR) in the premigratory zone and the developing molecular layer, likely associated with outgrowing parallel and climbing fibers contacting Purkinje cells in the internal granular layer and in axons coursing through the cerebellar medulla. In contrast, in adult cerebellum, a sparcer distribution of BIR as punctuate deposits is observed in the molecular layer, outlining dendritic trees and the perikarya of neurons. At relatively lower density BIR is found dispersed between the cells of the granular layer and along fibers in the white matter. In the immature hippocampal formation, fibers penetrating between unstained cells of the stratum pyramidale and the subiculum, and neuropil areas are immunostained. In the adult rat a graded immunostaining pattern corresponding to the laminar structure of the hippocampal formation is found with high density of BIR in the strata oriens, radiatum, parts of stratum lacunosum molecular and in the stratum molecular adjoining the field of the proximal apical dendrites of the granule cells. BIR appears to be absent from the proximal part of the mossy fiber pathway. In neuropil areas of adult hippocampus and cerebellum BIR is fairly restricted to dot-like deposits indicating a synaptic localization. This is in correspondence with our previous ultrastructural findings. The present observations in developing brain of B-50-like components in fibers, as well, suggest that B-50 (and/or B-50-like precursors) are involved in neurite outgrowth.  相似文献   

18.
Cells in the early neuroepithelium differentiate and give rise to all cells in the central nervous system (CNS). The ways from a multipotent CNS stem cell to specialized neurons and glia are not fully understood. Using immunohistochemistry we found that neuroepithelial cells express the platelet-derived growth factor receptor-alpha (PDGFR-alpha) in the neural plate at embryonic day 8.5 and onwards in the neural tube. The protein was polarized to ventricular endfeet. Furthermore, PDGFR-alpha expression was localized to cells undergoing early neuronal development. We also found PDGFR-alpha expression in developing granule cells in the postnatal cerebellum, in Purkinje cells in the adult cerebellum and on processes of developing dorsal root ganglion cells. Previous reports mainly describe PDGFR-alpha expression in oligodendrocyte precursors and glial cells. We believe, in line with a few previous reports, that the PDGFR-alpha in addition marks a pool of undifferentiated cells, which are able to differentiate into neurons.  相似文献   

19.
The kinesin-related motor protein CHO1/MKLP1 was initially thought to be expressed only in mitotic cells, where it presumably transports oppositely oriented microtubules relative to one another in the spindle mid-zone. We have recently shown that CHO1/MKLP1 is also expressed in cultured neuronal cells, where it is enriched in developing dendrites ( 1 ) J. Cell Biol., 138, 833–843]. The putative function of CHO1/MKLP1 in these postmitotic cells is to intercalate minus-end-distal microtubules among oppositely oriented microtubules within developing dendrites, thereby establishing their non-uniform microtubule polarity pattern. Here we used in situ hybridization to determine whether CHO1/MKLP1 is expressed in a variety of rodent neurons both in vivo and in vitro. These analyses revealed that CHO1/MKLP1 is expressed within various neuronal populations of the brain including those in the cerebral cortex, hippocampus, olfactory bulb and cerebellum. The messenger ribonucleic acid (mRNA) levels are high within these neurons well after the completion of their terminal mitotic division and throughout the development of their dendrites. After this, the levels decrease and are relatively low within the adult brain. Parallel analyses on developing hippocampal neurons in culture indicate that the levels of expression increase dramatically just prior to dendritic development, and then decrease somewhat after the dendrites have differentiated. Dorsal root ganglion neurons, which generate axons but not dendrites, express significantly lower levels of mRNA for CHO1/MKLP1 than hippocampal or sympathetic neurons. These results are consistent with the proposed role of CHO1/MKLP1 in establishing the dendritic microtubule array.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号