共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Luz A. Cortes-Burgos Ben S. Zweifel Steven L. Settle Robert A. Pufahl Gary D. Anderson Medora M. Hardy Dana E. Weir George Hu Fernando A. Happa Zachary Stewart Shanmugam Muthian Matthew J. Graneto Jaime L. Masferrer 《European journal of pharmacology》2009,617(1-3):59-67
Zileuton, a redox and iron chelator 5-lipoxygenase (5-LOX) inhibitor and, leukotriene receptor antagonists are presently used clinically in the long term treatment of asthma. Recent data implicate 5-LOX pathway in pain signaling. We report 5-LOX expression in the central nervous system (CNS) and analyze the pain efficacy of a new class of non redox, non iron chelating 5-LOX inhibitor. CJ-13610, 4-(3-(4-(2-methyl-1H-imidazol-1-yl) phenylthio) phenyl)-tetrahydro-2H-pyran-4-carboxamide, demonstrated antihyperalgesic activity in inflammatory pain models including the acute carrageenan model and the chronic inflammatory model using complete Freund's adjuvant. Following complete Freund's adjuvant stimulus leukotrieneB4 concentration in the brain was elevated (9 ± 1 ng/g, mean ± S.E.M.) by about 3 times that of the control group (3 ± 0.11, mean ± S.E.M.). Hyperalgesia and leukotrieneB4 concentration were both reversed following CJ-13610 treatment. Furthermore, we demonstrate CJ-13610 efficacy against osteoarthritis like pain using the rat medial meniscal transection model. CJ-13610 at oral doses of 0.6, 2 and 6 mg/kg/day reversed two modalities of pain in this model; tactile allodynia and weight bearing differential. Taken together, these data suggest that 5-LOX pathway and the leukotriene products are important mediators of pain. 相似文献
3.
Aflatoxin B1 (AFB1) action on cyclic nucleotide phosphodiesterase (PDE) activity has been tested on tissue extracts of various organs. In the presence of 100 microM AFB1 a significant inhibition of cAMP and cGMP hydrolytic activity is observed in all tested tissue extracts. However, cGMP hydrolytic activity appears more sensitive to AFB1 inhibition than cAMP hydrolytic activity and a considerably higher inhibition is observed in lung and spleen, than in liver, brain, kidney, and heart. When cGMP is used as substrate, the inhibitory response reaches 72% in lung and spleen extracts. We have also tested AFB1 effects on lung and liver PDE activity peaks separated by DEAE-cellulose chromatography. These data confirm the poor sensitivity to the toxin of all PDE activities present in liver, while the lung peak (where PDE V in present) shows a higher sensitivity to AFB1. In order to establish whether PDE V is in fact more sensitive to AFB1, we have used mouse neuroblastoma cells, in which cGMP hydrolytic activity has been shown to be due to PDE V only. In this case, the calculated IC50 is 24 microM and Dixon plot analysis shows a competitive inhibitory effect with a Ki of 16.7 microM. We have also used aflatoxin B2 and M2, and they proved to be much less effective than AFB1: AFB2 inhibits PDE V with an IC50 of 117 microM, while AFM2 does not show any effect. These results provide the first evidence of a competitive inhibition of AFB1 on an enzymatic activity and suggest that an alteration of cellular cyclic nucleotide levels may play a role in the mechanism of aflatoxin action. 相似文献
4.
《Drug metabolism and pharmacokinetics》2020,35(6):555-562
The hepatic uptake transporter organic anion transporting polypeptide (OATP) 1B1 is inhibited by some uremic toxins; however, direct inhibition can only partially explain the delayed systemic elimination of substrate drugs in renal failure patients. This study aimed to examine the long-lasting inhibition of OATP1B1 by uremic toxins and their metabolites. Preincubation of HEK293/OATP1B1 cells with 21 uremic toxins resulted in almost no change in the uptake of a typical substrate [3H]estrone-3-sulfate (E1S), although some directly inhibited [3H]E1S uptake. In contrast, preincubation with an indole metabolite, 6-hydroxyindole, reduced [3H]E1S uptake, even after the inhibitor was washed out before [3H]E1S incubation. Such long-lasting inhibition by 6-hydroxyindole was time-dependent and recovered after a 3-h incubation without 6-hydroxyindole. Preincubation with 6-hydroxyindole increased the Km for [3H]E1S uptake with minimal change in Vmax. This was compatible with no change in the cell-surface expression of OATP1B1, as assessed by a biotinylation assay. Preincubation with 6-hydroxyindole reduced [3H]E1S uptake in human hepatocytes without changes in OATP1B1 mRNA. Plasma concentration of 6-hydroxyindole in renal failure patients increased as renal function decreased, but might be insufficient to exhibit potent OATP1B1 inhibition. In conclusion, 6-hydroxyindole is an endogenous long-lasting OATP1B1 inhibitor with elevated plasma concentrations in renal failure patients. 相似文献
5.
Iwaki K Sakaeda T Kakumoto M Nakamura T Komoto C Okamura N Nishiguchi K Shiraki T Horinouchi M Okumura K 《The Journal of pharmacy and pharmacology》2006,58(12):1617-1622
The involvement of the multidrug resistant transporter MDR1/P-glycoprotein in the penetration of haloperidol into the brain and absorption in the intestine was investigated to examine its role in inter/intra-individual variability, using the porcine kidney epithelial cell line LLC-PK(1) and its MDR1-overexpressing transfectant, LLC-GA5-COL150. The inhibitory effect of haloperidol on other MDR1 substrates was also investigated in terms of the optimization of haloperidol-based pharmacotherapy. The transepithelial transport of [(3)H]haloperidol did not differ between the two cell lines, and vinblastine, a typical MDR1 substrate, had no effect on the transport, suggesting that haloperidol is not a substrate for MDR1, and it is unlikely that MDR function affects haloperidol absorption and brain distribution, and thereby the response to haloperidol. However, haloperidol was found to have an inhibitory effect on the MDR1-mediated transport of [(3)H]digoxin and [(3)H]vinblastine with an IC50 value of 7.84+/-0.76 and 3.60+/-0.64 microM, respectively, suggesting that the intestinal absorption, not distribution into the brain, of MDR1 substrate drugs could be altered by the co-administration of haloperidol in the clinical setting, although further clinical studies are needed. 相似文献
6.
The conversion from E-cadherin to N-cadherin has been observed in several human cancer types, including prostate cancer, with more homogenous expression of N-cadherin detected in high-grade prostate tumors. N-cadherin, in vitro, has been shown to promote cell mobility, migration and invasion of several cancer cell lines, indicating the possibility of N-cadherin as a molecular target of cancer therapy. Herein, we examined the potential of an N-cadherin inhibitor, ADH1, in reducing tumor angiogenesis ex vivo and delaying tumor progression in vivo. Our data demonstrate that ADH1, at the dosages evaluated, does not display either antiangiogenic activity in a rat aortic ring assay or antitumor potential in a PC3 subcutaneous xenograft tumor model. We detected cytotoxic activity in human umbilical vein endothelial cells, PC3, and Tsu-Pr1 cells, when ADH1 exposure was evaluated at 500 micromol/l or above. 相似文献
7.
Our laboratory recently reported the development of novel prodrug chemistry for the intracellular delivery of phosphotyrosine mimetics. This chemistry has now been adapted for the synthesis of a prodrug that delivers the nonhydrolyzable difluoromethylphosphonate moiety intracellularly. Activation of the prodrug generates a difluoromethylphosphonamidate anion that undergoes subsequent cyclization and hydrolysis with a t1/2 = 44 min. A highly potent and selective inhibitor of protein tyrosine phosphatase 1B (PTP1B) with a nanomolar Ki has been reported, but this bis(difluoromethylphosphonate) lacks potential utility due to its exceedingly low membrane permeability at physiological pH. A prodrug of this inhibitor has been synthesized and evaluated in a cell-based assay. The prodrug exhibits nanomolar PTP1B inhibitory activity in this assay, confirming the efficacy of intracellular phosphonate delivery using this prodrug approach. 相似文献
8.
Boltz DA Ilyushina NA Arnold CS Babu YS Webster RG Govorkova EA 《Antiviral research》2008,80(2):150-157
The replication efficiency and multi-organ dissemination of some influenza A (H5N1) viruses requires a rapid re-evaluation of the available antiviral strategies. We assessed five regimens of the neuraminidase (NA) inhibitor peramivir in mice inoculated with H5N1 virus. The regimens differed by: (1) frequency of administration on first day (once vs twice); (2) duration of administration (1 day vs 8 days); (3) route of administration (intramuscular [IM] injection alone or followed by oral administration). In all regimens, BALB/c mice were administered 30 mg/kg peramivir IM 1 h after lethal challenge with 5 MLD(50) of A/Vietnam/1203/04 (H5N1) influenza virus. When given only on the day of inoculation, a single IM injection produced a 33% survival rate, which increased to 55% with two injections. Eight-day regimens significantly increased survival; two IM injections followed by seven daily IM injections was the most effective regimen (100% survival; inhibition of replication in lungs and brain). When this 8-day regimen began at 24h after inoculation, 78% of mice survived; 56% survived when treatment began at 48 hours. Anti-HA antibody titer differed with the peramivir regimen and corresponded to the severity of disease. Overall, our results demonstrate that IM administration of peramivir is effective in promoting the survival of mice infected with systemically replicating H5N1 virus. 相似文献
9.
Lamellarin alpha 20-sulfate, an inhibitor of HIV-1 integrase active against HIV-1 virus in cell culture. 总被引:2,自引:0,他引:2
M V Reddy M R Rao D Rhodes M S Hansen K Rubins F D Bushman Y Venkateswarlu D J Faulkner 《Journal of medicinal chemistry》1999,42(11):1901-1907
HIV-1 integrase is an attractive target for anti-retroviral chemotherapy, but to date no clinically useful inhibitors have been developed. We have screened diverse marine natural products for compounds active against integrase in vitro and found a series of ascidian alkaloids, the lamellarins, that show selective inhibition. A new member of the family named lamellarin alpha 20-sulfate (1), the structure of which was determined from spectroscopic data, displayed the most favorable therapeutic index. The site of action of lamellarin alpha 20-sulfate on the integrase protein was mapped by testing activity against deletion mutants of integrase. Inhibition of isolated catalytic domain was detectable though weaker than inhibition of full length integrase; possibly lamellarin alpha 20-sulfate binds a site composed of multiple integrase domains. Lamellarin alpha 20-sulfate also inhibited integration in vitro by authentic HIV-1 replication intermediates isolated from infected cells. Lamellarin alpha 20-sulfate was tested against wild type HIV using the MAGI indicator cell assay and found to inhibit early steps of HIV replication. To clarify the inhibitor target, we tested inhibition against an HIV-based retroviral vector bearing a different viral envelope. Inhibition was observed, indicating that the HIV envelope cannot be the sole target of lamellarin alpha 20-sulfate in cell culture. In addition, these single round tests rule out action against viral assembly or budding. These findings provide a new class of compounds for potential development of clinically useful integrase inhibitors. 相似文献
10.
Fabrice Ivanes Danilo Faccenda Jemma Gatliff Ahmed A Ahmed Stefania Cocco Carol Ho Ka Cheng Emma Allan Claire Russell Michael R Duchen Michelangelo Campanella 《British journal of pharmacology》2014,171(18):4193-4206
Background and Purpose
Ischaemia compromises mitochondrial respiration. Consequently, the mitochondrial F1Fo-ATPsynthase reverses and acts as a proton-pumping ATPase, so maintaining the mitochondrial membrane potential (ΔΨm), while accelerating ATP depletion and cell death. Here we have looked for a molecule that can selectively inhibit this activity without affecting ATP synthesis, preserve ATP and delay ischaemic cell death.Experimental Approach
We developed a chemoinformatic screen based on the structure of BMS199264, which is reported to selectively inhibit F1Fo-ATPase activity and which is cardioprotective. Results suggested the molecule BTB06584 (hereafter referred to as BTB). Fluorescence microscopy was used to study its effects on ΔΨm and on the rate of ATP consumption following inhibition of respiration in several cell types. The effect of BTB on oxygen (O2) consumption was explored and protective potential determined using ischaemia/reperfusion assays. We also investigated a potential mechanism of action through its interaction with inhibitor protein of F1 subunit (IF1), the endogenous inhibitor of the F1Fo-ATPase.Key Results
BTB inhibited F1Fo-ATPase activity with no effect on ΔΨm or O2 consumption. ATP consumption was decreased following inhibition of respiration, and ischaemic cell death was reduced. BTB efficiency was increased by IF1 overexpression and reduced by silencing the protein. In addition, BTB rescued defective haemoglobin synthesis in zebrafish pinotage (pnt) mutants in which expression of the Atpif1a gene is lost.Conclusions and Implications
BTB may represent a valuable tool to selectively inhibit mitochondrial F1Fo-ATPase activity without compromising ATP synthesis and to limit ischaemia-induced injury caused by reversal of the mitochondrial F1Fo-ATPsynthase. 相似文献11.
Emodin is a novel alkaline nuclease inhibitor that suppresses herpes simplex virus type 1 yields in cell cultures 总被引:1,自引:0,他引:1
Background and purpose:Most antiviral therapies directed against herpes simplex virus (HSV) infections are limited to a small group of nucleoside analogues that target the viral polymerase. Extensive clinical use of these drugs has led to the emergence of resistant viral strains, mainly in immunocompromised patients. This highlights the need for the development of new anti-herpesviral drugs with novel targets. Herein the effects of a plant anthraquinone, emodin, on the HSV-1 alkaline nuclease activity and virus yields were investigated.Experimental approach:HSV-1 alkaline nuclease activity was examined by nuclease activity assay. Inhibition of virus yields was measured by plaque reduction assay and immunohistochemical staining. Interaction between emodin and alkaline nuclease was analysed by docking technology.Key results:Emodin specifically inhibited the nuclease activity of HSV-1 UL12 alkaline nuclease in a biochemical assay. Plaque reduction assay revealed that emodin reduced the plaque formation with an EC(50) of 21.5+/-4.4 muM. Immunohistochemical staining using the anti-nucleocapsid protein antibody demonstrated that emodin induced the accumulation of viral nucleocapsids in the nucleus in a dose-dependent manner. Docking analysis further suggested that the inhibitory effect of emodin on the UL12 activity may result from the interaction between emodin and critical catalytic amino acid residues of UL12.Conclusions and implications:Our findings suggest that emodin is a potent anti-HSV agent that inhibits the yields of HSV-1 via the suppression of a novel target, UL12.British Journal of Pharmacology (2008) 155, 227-235; doi:10.1038/bjp.2008.242; published online 16 June 2008. 相似文献
12.
Dihydroartemisinin is an inhibitor of ovarian cancer cell growth 总被引:21,自引:0,他引:21
Aim: To investigate the anticancer activity of dihydroartemisinin (DHA), a derivative of antimalaria drug artemisinin in a panel of human ovarian cancer cell lines. Methods: Cell growth was determined by the MTT viability assay. Apoptosis and cell cycle progression were evaluated by a DNA fragmentation gel electro-phoresis, flow cytometry assay, and TUNEL assay; protein and mRNA expression were analyzed by Western blotting and RT-PCR assay. Results: Artemisinin and its derivatives, including artesunate, arteether, artemether, arteannuin, and DHA, exhibit anticancer growth activities in human ovarian cancer cells. Among them, DHA is the most effective in inhibiting cell growth. Ovarian cancer cell lines are more sensitive (5-10-fold) to DHA treatment compared to normal ovarian cell lines. DHA at micromolar dose levels exhibits a dose- and time-dependent cytotoxicity in ovarian cancer cell lines. Furthermore, DHA induced apoptosis and G2 cell cycle arrest, accompanied by a decrease of Bcl-XL and Bcl-2 and an increase of Bax and Bad. Conclusion: The promising results show for the first time that DHA inhibits the growth of human ovarian cancer cells. The selective inhibition of ovarian cancer cell growth, apoptosis induction, and G2 arrest provide in vitro evidence for further studies of DHA as a possible anticancer drug in the clinical treatment of ovarian cancer. 相似文献
13.
S. Olguín-Reyes R. Camacho-CarranzaS. Hernández-Ojeda M. Elinos-BaezJ.J. Espinosa-Aguirre 《Food and chemical toxicology》2012
Grapefruit juice (GJ) is a well known Cytochrome P450 (CYP) inhibitor; CYP3A is one of the most affected subfamily leading to anticarcinogenic and antimutagenic effects when GJ is administered to experimental animals in combination with mutagenic/carcinogenic agents metabolized by CYP3A. Bergamottin, naringin and dihydroxybergamottin are three main constituents contained within GJ and their inhibitory effect against CYP3A4 has been well documented. Reports suggest that CYP3A is not the only one affected but CYP1A and 2B are also affected by GJ. To explore this last possibility in depth we tested the in vitro capacity of bergamottin, naringin and dihydroxybergamottin to inhibit the activity of CYP1A and 2B subfamilies and found that bergamottin showed the strongest inhibitory effect and naringin showed no inhibition at all. Therefore, we decided to biochemically characterize the inhibitory properties of bergamottin. CYP1A1 Supersome® used in this study showed a Kmapp = 0.0723 μM and a Vmapp = 6.141 μU/pmol with substrate ethoxyresorufin, and the biochemical characterization of bergamottin CYP1A1 inhibitory effect revealed that it is a competitive inhibitor with a Ki = 10.703 nM. We also confirmed the antimutagenicity of this compound against the mutagenic effect of 3-methylcholanthrene and benzo[a]pyrene in the Ames test. 相似文献
14.
Sukardi H Chng HT Chan EC Gong Z Lam SH 《Expert opinion on drug metabolism & toxicology》2011,7(5):579-589
INTRODUCTION: Over the past decade, zebrafish have been tasked to play important roles from modeling human diseases to finding cures for them. Inadvertently, these fish now find themselves swimming along the drug development pipeline. A number of studies have been conducted to see if these small fish are up to the task of drug toxicity testing, an important rite of passage along the pharmaceutical pipeline. AREAS COVERED: This review covers the recent publications (2008 - 2010) on the state-of-the-art applications that couple advanced technologies with the unique advantages of zebrafish for drug toxicity screening. The paper looks at the several automated high-throughput platforms that have been developed for zebrafish teratogenicity, cardiotoxicity and neuro-sensory organ toxicity assays over the past 3 years as well as the important studies related to metabolism and biotransformation of selected drugs that have been initiated. This paper also reviews their mechanistic and predictive omics applications. EXPERT OPINION: While there have been a number of developments over the past 3 years and indeed over the last 10 years, challenges and limitations still exist, which, unless overcome, will prevent zebrafish from truly reaching their full potential as a drug toxicological model. That being said, recent developments have suggested that zebrafish could play a role in bridging the gap between in vitro cell-based models and in vivo mammalian models. 相似文献
15.
16.
目的建立针对以血小板衍生生长因子受体-β(plate-let-derived growth factor receptor-β,PDGFR-β)为靶标的特异及灵敏的细胞模型体系,用于酪氨酸激酶受体(receptor tyro-sine kinase,RTK)抑制剂的筛选和研究。方法构建人的PDGFR-β真核表达载体pcDNA3.1-PDGFR-β,将其转染至NIH 3T3细胞,获得稳定转染的细胞克隆,并对其进行功能学鉴定及应用;应用瞬时转染PDGFR-β的HeLa细胞,建立PDGF依赖性的受体磷酸化细胞模型。结果在无血清培养条件下,稳定转染人PDGFR-β的NIH 3T3细胞获得了PDGF依赖性的细胞增殖特征;HeLa细胞经瞬时转染PDG-FR-β后,可以检测出明显的PDGF依赖性的受体酪氨酸磷酸化。通过应用已知PDGFR-β抑制剂及自行合成化合物,确证了以上细胞模型具有机制针对性特征。结论所构建并确证的细胞模型具有特异性和灵敏性,适用于较高通量的PDGFR-β和其它RTK抑制化合物的体外筛选与研究。 相似文献
17.
Rui Gu David E. Hibbs Jennifer A. Ong Robert J. Edwards Michael Murray 《Biochemical pharmacology》2014
The tyrosine kinase inhibitors (TKIs) and multikinase inhibitors (MKIs) are oncology drugs of increasing importance that have improved the treatment of multiple tumors types. In some patients these agents produce adverse effects, including pharmacokinetic drug–drug interactions, due to cytochrome P450 (CYP) inhibition. Information on the propensity of the drugs to elicit such effects often only becomes evident as the drugs enter clinical use. The present study assessed 18 kinase inhibitors (1 and 50 μM) for the inhibition of major drug metabolizing CYPs 1A2, 2C9, 2D6 and 3A4 in human liver microsomes. Most TKIs and MKIs inhibited CYP reactions at the higher concentration but axitinib also potently inhibited CYP1A2-dependent 7-ethoxyresorufin O-deethylation activity at the lower concentration. Kinetic analyses of CYP1A2 inhibition by axitinib were undertaken in microsomes and found a Ki of 0.11 ± 0.01 μM, which was 7.5-fold lower than the Km for 7-ethoxyresorufin oxidation (0.83 ± 0.06 μM); the inhibition mechanism was linear-mixed. From computational modeling two potential binding modes for axitinib were identified in the active site of CYP1A2: one in which the oxidizable axitinib thioether sulfur atom is within ∼4.45 Å of the CYP1A2 heme, and is likely to favor biotransformation of the drug, and a second in which the pyridine moiety is in proximity to the heme, which may contribute to inhibition. The applicability of these findings to potential pharmacokinetic interactions in patients during axitinib treatment should now be assessed. 相似文献
18.
Heme oxygenase (HO) converts heme to carbon monoxide (CO) and biliverdin IX. CO is a weak activator of soluble guanylyl cyclase (SGC), the enzyme that catalyzes the conversion of GTP to the second messenger cGMP. HO overexpression has recently been shown to inhibit production of cGMP by SGC in vivo. The aim of the present study was to investigate a possible influence of biliverdin IX on SGC activity. Using recombinant alpha(1)/beta(1) isoform of SGC, we show an inhibitory effect of biliverdin IX in the micromolar range both on basal and NO stimulated guanylyl cyclase activity. Bilirubin IX which differs from biliverdin IX in two hydrogen atoms had no effect. Biliverdin IX reduced maximal guanylyl cyclase activity (V(max) values) while it had no effect on the K(M) values indicating unchanged affinity towards the substrate GTP. Concentration response experiments using the NO donor, 2,2-diethyl-1-nitroso-oxyhydrazine (DEA/NO), showed that enzyme activities at maximal DEA/NO concentration were reduced by biliverdin IX. The affinity of the NO-donor, DEA/NO, towards SGC was significantly reduced in the presence of biliverdin IX. Biliverdin IX lowered enzyme activity at maximal activator concentrations of YC-1 and protoporphyrin IX (PPIX) while it had no significant effect on the EC(50) values of these two NO independent activators. The inhibitory effect of biliverdin IX on PPIX activated enzyme activity is not shared by ODQ, which indicates that the inhibitory mechanism of biliverdin IX is different from ODQ. 相似文献
19.
van Beers MM Sauerborn M Gilli F Brinks V Schellekens H Jiskoot W 《Pharmaceutical research》2011,28(10):2393-2402