共查询到20条相似文献,搜索用时 22 毫秒
1.
Hydroxyapatite deposition by electrophoresis on titanium sheets with different surface finishing 总被引:5,自引:0,他引:5
Agata De Sena L Calixto De Andrade M Malta Rossi A de Almeida Soares G 《Journal of biomedical materials research》2002,60(1):1-7
Hydroxyapatite coatings are commonly applied to metallic biomedical implants to accelerate osseointegration. These coatings, usually produced by plasma spray techniques, can be obtained by alternative processes, like biomimetic process, electrolytic deposition, or electrophoretic process as well. Electrophoretic deposition of hydroxyapatite exhibits several advantages like simplicity and low cost. In this article, titanium sheets with three different surface finishing were coated with hydroxyapatite by using electrophoresis. Surface treatments include: (1) abrading with SiC paper; (2) abrading with SiC paper plus electrolytic etch with H3PO4 solution; and (3) blasting with alumina powder followed by etch with a solution containing H2O2 and HF. Stoichiometric hydroxyapatite was used to coat titanium sheets. Blasted samples were also coated using a calcium-deficient hydroxyapatite. SEM, XRD, and FTIR were employed to characterize titanium substrates and coatings produced. Results show that electrophoretic process can produce a uniform thin layer, satisfactorily adhered, of hydroxyapatite on treated titanium samples. Furthermore, sintering at 800 degrees C do not promote the decomposition of calcium-deficient hydroxyapatite. 相似文献
2.
Kim HM Kokubo T Fujibayashi S Nishiguchi S Nakamura T 《Journal of biomedical materials research》2000,52(3):553-557
A macroporous titanium surface layer is often formed on titanium and titanium alloy implants for morphological fixation of the implants to bone via bony ingrowth into the porous structure. The surface of titanium metal was recently shown to become highly bioactive by being subjected to 5.0 M-NaOH treatment at 60 degrees C for 24 h and subsequent heat treatment at 600 degrees C for 1 h. In the present study, the NaOH and heat treatments were applied to a macroporous titanium surface layer formed on titanium substrate by a plasma spraying method. The NaOH and heat treatments produced an uniform amorphous sodium titanate layer on the surface of the porous titanium. The sodium titanate induced a bonelike apatite formation in simulated body fluid at an early soaking period, whereby the apatite layer grew uniformly along the surface and cross-sectional macrotextures of the porous titanium. This indicates that the NaOH and heat treatments lead to a bioactive macroporous titanium surface layer on titanium substrate. Such a bioactive macroporous layer on an implant is expected not only to enhance bony ingrowth into the porous structure, but also to provide a chemical integration with bone via apatite formation on its surface in the body. 相似文献
3.
Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol-gel method 总被引:17,自引:0,他引:17
Hydroxyapatite (HA) was coated onto a titanium (Ti) substrate with the insertion of a titania (TiO2) buffer layer by the sol-gel method. The HA layer was employed to enhance the bioactivity and osteoconductivity of the Ti substrate, and the TiO2 buffer layer was inserted to improve the bonding strength between the HA layer and Ti substrate, as well as to prevent the corrosion of the Ti substrate. The HA layer coated over the TiO2 showed a typical apatite phase at 400 degrees C and the phase intensity increased above 450 degrees C. The sol-gel derived HA and TiO2 films, with thicknesses of approximately 800 and 200 nm, respectively, adhered tightly to each other and to the Ti substrate. The bonding strength of the HA/TiO2 double layer coating on Ti was markedly improved when compared to that of the HA single coating on Ti. The highest strength of the double layer coating was 55 MPa after heat treatment at 500 degrees C. The improvement in bonding strength with the insertion of TiO2 was attributed to the resulting enhanced chemical affinity of TiO2 toward the HA layer, as well as toward the Ti substrate. Human osteoblast-like cells, cultured on the HA/TiO2 coating surface, proliferated in a similar manner to those on the TiO2 single coating and on the pure Ti surfaces. However, the alkaline phosphatase activity of the cells on the HA/TiO2 double layer was expressed to a higher degree than that on the TiO2 single coating and pure Ti surfaces. The corrosion resistance of Ti was improved by the presence of the TiO2 coating, as confirmed by a potentiodynamic polarization test. 相似文献
4.
Krupa D Baszkiewicz J Mizera J Borowski T Barcz A Sobczak JW Biliński A Lewandowska-Szumieł M Wojewódzka M 《Journal of biomedical materials research. Part A》2009,88(3):589-598
The paper presents the results of examinations of the corrosion resistance of titanium after its being subjected to the surface modification by the alkali- and heat-treatments. The material examined was commercially pure titanium (grade 2). The samples were soaked in an aqueous 10M NaOH solution at 60 degrees C for 24 h and subsequently heated at 500, 600, or 700 degrees C for 1 h. The chemical composition of the surface layers was determined by X-ray photoelectron spectroscopy and secondary ion mass spectroscopy. The phases present in the layers were identified by XRD. The corrosion resistance was evaluated by electrochemical methods (Stern's method, potentiodynamic method, and impedance spectroscopy) at a temperature of 37 degrees C after short- and long-time exposures. The 13 h exposure was aimed to allow the corrosion potential to stabilize. The aim of the long-term exposures was to examine how the corrosion resistance of the modified samples changes during the exposure. Under the conditions prevailing during the experiments, the highest corrosion resistance was achieved with the samples heated at a temperature of 700 degrees C. 相似文献
5.
背景:纯钛人工角膜支架在临床应用中的并发症发生率较高,因此寻找一种生物相容性高的人工角膜支架材料一直是国内外研究的重点和热点。目的:观察羟基磷灰石表面修饰人工角膜钛支架的体内生物相容性。方法:取新西兰白兔27只,制作右眼角膜碱烧伤模型,造模后立即均分为3组,实验组右眼植入经过羟基磷灰石表面修饰的人工角膜钛支架,对照组右眼植入人工角膜钛支架,空白对照组右眼仅制备囊袋而不植入支架。术后2,4,16周取兔右眼角膜组织,进行病理组织学观察及扫描电镜观察。结果与结论:术后16周,3组间炎性细胞与纤维细胞数量比较差异均无显著性意义。随着时间的延长,实验组角膜组织逐渐增多,纤维组织逐渐增厚,细胞外基质附着逐渐增加,角膜组织贴附密集度、细胞外基质附着密集度及组织愈合度均优于对照组及空白对照组。表明羟基磷灰石表面修饰人工角膜钛支架具有良好的生物相容性,可有效促进角膜细胞增生,有利于角膜血管化。中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程 相似文献
6.
The purpose of this study was to evaluate the bone-bonding ability of alkali-treated titanium with and without heat treatment. Three groups of smooth titanium plate were prepared: control, or pure titanium, alkali-treated titanium, and alkali- and heat-treated titanium. The plates were inserted transcortically into the proximal metaphyses of bilateral rabbit tibiae. The tensile failure loads between implants and bones were measured at two time intervals using a detaching test. The tensile failure loads of the alkali- and heat-treated titanium group were 2.71 and 4.13 kgf, at 8 and 16 weeks, respectively, and significantly higher than those of the other titanium groups. Histological examination revealed that alkali- and heat-treated titanium was in direct contact with bone, but the other titanium groups had a thin intervening fibrous tissue. This result indicated that the alkali-treated titanium without heat treatment had no bone-bonding ability due to the unstable reactive surface layer of alkali-treated titanium. In conclusion, both alkali and heat treatment are essential for preparing bioactive titanium and this bioactive titanium is thought to be useful for orthopedic implants with cementless fixation. 相似文献
7.
Hydroxyapatite grafting promotes new bone formation and osseointegration of smooth titanium implants
Sergio Allegrini Jr. Elisabeth Rumpel Ellen Kauschke Jochen Fanghnel Bruno Knig Jr. 《Annals of anatomy》2006,188(2):143-151
Titanium is the ideal metal for intra-osseous dental implants. It permits the natural formation of an oxide layer on its surface and thereby it prevents the release of potentially toxic molecules. New formation of bone around implants, partially placed into the bone marrow cavity, is a gradual process that runs from the endosteum to the surface of the implant. Deposition of hydroxyapatite crystals on collagen type I fibrils is initiated by acidic proteins and leads to bone mineralization. This study analyzed the effects of hydroxyapatite upon peri-implant bone formation after insertion of smooth titanium implants. Screw-shaped smooth titanium implants of 3.75 mm thickness and 8.5 mm length were inserted into the metaphysis of rabbit tibia, either together with bovine hydroxyapatite into the right tibia or in controls without hydroxyapatite into the left tibia. Polyfluorochrome tracers (alizarin complex, calcein, tetracycline) were injected subcutaneously at different time intervals after implantation to evaluate the time frame of bone new formation over a period of 8 weeks. All samples were processed for histology and analyzed by fluorescence and polarizing microscopy. Our results showed a higher quantity of mature type I collagen fibers around implants and an acceleration of bone formation in the presence of hydroxyapatite. Mainly immature organic matrix was formed at the surface of implants in controls. The presence of hydroxyapatite seems to promote the maturation of collagen fibers surrounding the titanium implants and to support osteoconduction. Moreover, new formation of bone was faster in all samples where implants were inserted together with hydroxyapatite. 相似文献
8.
Hirata I Yoshida Y Nagaoka N Hiasa K Abe Y Maekawa K Kuboki T Akagawa Y Suzuki K Meerbeek BV Messersmith PB Okazaki M 《Acta biomaterialia》2012,8(3):1260-1266
Due to the high corrosion resistance and strength to density ratio titanium is widely used in industry, and also in a gamut of medical applications. Here we report for the first time on our development of a titanium passivation layer sensor that makes use of surface plasmon resonance (SPR). The deposited titanium metal layer on the sensor was passivated in air, similarly to titanium medical devices. Our "Ti-SPR sensor" enables analysis of biomolecule interactions with the passivated surface of titanium in real time. As a proof of concept, corrosion of a titanium passivation layer exposed to acid was monitored in real time. The Ti-SPR sensor can also accurately measure the time-dependence of protein adsorption onto the titanium passivation layer at sub-nanogram per square millimeter accuracy. Besides such SPR analyses, SPR imaging (SPRI) enables real time assessment of chemical surface processes that occur simultaneously at "multiple independent spots" on the Ti-SPR sensor, such as acid corrosion or adhesion of cells. Our Ti-SPR sensor will therefore be very useful to study titanium corrosion phenomena and biomolecular titanium-surface interactions with application in a broad range of industrial and biomedical fields. 相似文献
9.
Preparation of different forms of titanium oxide on titanium surface: effects on apatite deposition 总被引:3,自引:0,他引:3
Rohanizadeh R Al-Sadeq M Legeros RZ 《Journal of biomedical materials research. Part A》2004,71(2):343-352
Methods of preparing different types of titanium oxide (TiO(2)) and their effects on apatite deposition and adhesion on titanium surfaces were investigated. Forty-eight commercially pure titanium (Ti) discs were divided into four groups (12 per group) and each group was subjected to the following treatments: Group 1, heat treatment at 750 degrees C; Group 2, oxidation in H(2)O(2) solution followed by heat treatment; Group 3, dipping in rutile/gelatin slurry; and Group 4, dipping in anatase/gelatin slurry. Surface-treated Ti discs were immersed in a supersaturated calcium phosphate solution to allow apatite deposition. Results showed that the percentage of area covered by deposited apatite was highest in Group 4 compared to the other groups. Apatite deposited on Ti discs pretreated in H(2)O(2) solution (Group 2) demonstrated the highest adhesion to the titanium substrate. Results from this study indicated that surface treatment method affects the type of TiO(2) layer formed (anatase or rutile) and affects apatite deposition and adhesion on the Ti surface. 相似文献
10.
11.
E. V. Semenov A. N. Petrov S. S. Krylov 《Bulletin of experimental biology and medicine》1977,83(2):185-187
Activity of Na,K-ATPase and the content of Na+ and K+ ions in the rat brain were studied after administration of arecoline and benactyzine. Both drugs increased Na,K-ATPase activity, possibly on account of changes in the redistribution of Na+ and K+ ions in the nerve cell. Arecoline was shown to cause changes in the distribution of electrolytes characteristic of depolarization, and benactyzine changes characteristic of hyperpolarization of the nerve cell membrane.(Presented by Academician of the Academy of Medical Sciences of the USSR S. N. Golikov.) Translated from Byulleten' Éksperimental'noi Biologii i Meditsiny, Vol. 83, No. 2, pp. 180–183, February, 1977. 相似文献
12.
Cohn JV Alkhalil A Wagner MA Rajapandi T Desai SA 《Molecular and biochemical parasitology》2003,132(1):27-34
The human malaria parasite, Plasmodium falciparum, induces an unusual ion channel, the plasmodial surface anion channel (PSAC), on its host red blood cell (RBC) membrane. PSAC has a broad selectivity with permeability to anions, sugars, amino acids, purines, and certain vitamins, suggesting a role in nutrient acquisition by the intracellular parasite. Permeating solutes cover a range of molecular sizes and may be either neutral or carry a net negative or positive charge. Despite this broad selectivity, PSAC must efficiently exclude Na+ to avoid osmotic lysis of infected RBCs in the bloodstream. Here, we used amine-reactive N-hydroxysulfosuccinimide esters to probe PSAC's unusual selectivity. PSAC permeation rates, measured with both a kinetic osmotic lysis assay and single-channel patch-clamp, irreversibly decrease after treatment with these reagents. Sequential labelings with different esters and the effects of their chain length suggest that PSAC has multiple lysine residues near its extracellular pore mouth and that inhibition occurs via steric hindrance of its pore by the amide-linked side chain. When combined with the effects of pH on permeation, these findings implicate a combination of cation repulsion by pore mouth charges and a weak binding site for permeant solutes in PSAC's broad selectivity yet effective exclusion of Na+. 相似文献
13.
Comparative study of osteoconduction on micromachined and alkali-treated titanium alloy surfaces in vitro and in vivo 总被引:3,自引:0,他引:3
This study sought to evaluate osteoconduction of Ti-6Al-4V surfaces under various conditions, including micro-patterned, alkali-treated, micro-patterned plus alkali-treated, and surfaces without any treatment as the control. The through-mask electrochemical micromachining (EMM) was used to fabricate micro-hole arrays on the titanium alloy surface. In vitro calcium phosphate formation on titanium surfaces was in static and dynamic simulated body fluid (SBF). In vivo comparison was conducted in the medullary cavity of dog femur using the implant cages which could provide the same physiological environment for specimens with different surface conditions. In vitro experiments indicate good conduction of calcium phosphate on the alkali-treated surfaces, and also better calcium phosphate deposition on the micro-hole surface than on the flat surfaces in dynamic SBF. In vivo experiments confirm the beneficial effect of alkaline treatment on osteoconduction. The results of in vivo experiments also indicate a synergistic effect of the alkaline treatment and the topographic pattern on osteoconduction. 相似文献
14.
This study characterized the corrosion behavior of cast CP titanium made with a face-coating method. Wax patterns were coated with oxide slurry of Y(2)O(3) or ZrO(2) before investing with a MgO-based investment. Three surface preparations were tested: ground, sandblasted, and as-cast. Uncoated castings served as controls. Sixteen-hour open circuit potential (OCP) measurement, linear polarization and potentiodynamic cathodic polarization were performed in an aerated modified Tani-Zucchi synthetic saliva at 37 degrees C. Anodic polarization was conducted in the same deaerated medium. Polarization resistance (R(p)) and Tafel slopes were determined. Corrosion current density was calculated for each specimen. Results (n=4) were subjected to nonparametric statistical analysis (alpha=0.05). Cross sections of cast specimens were examined by optical microscopy. Energy dispersive spectroscopy (EDS) spot analysis was performed at various depths below the surface. The OCP stabilized within several hours for all the specimens. Apparent differences in anodic polarization behavior were observed among the different surfaces. A distinctive wide passive region followed by breakdown was seen on specimens with ground and sandblasted surfaces. There were no significant differences in the corrosion resistance among the control and the two face-coating groups for each group. The Mann-Whitney test showed significantly lower OCP and higher R(p) values for ground surfaces. The surface condition significantly affected the corrosion behavior more than the face coating methods. In most cases, specimens with as-cast surfaces exhibited the least corrosion resistance during the potentiodynamic anodic polarization. 相似文献
15.
16.
The bisphosphonate pamidronate on the surface of titanium stimulates bone formation around tibial implants in rats 总被引:9,自引:0,他引:9
Kajiwara H Yamaza T Yoshinari M Goto T Iyama S Atsuta I Kido MA Tanaka T 《Biomaterials》2005,26(6):581-587
Many materials with differing surfaces have been developed for clinical implant therapy in dentistry and orthopedics. We analyzed the quantity of new bone formed in vivo around calcium-immobilized titanium implants with surfaces modified using pamidronate (PAM), a nitrogen-containing bisphosphonate (N-BP), implants of pure titanium, and titanium implants immobilized with calcium ions. New bone formation was visualized using fluorescent labeling (calcein blue and alizarin complexone) with intravenous injection at 1 and 3 weeks after implantation. After 4 weeks, undecalcified sections were prepared, and new bone formation around the implants was examined by morphometry using confocal laser scanning microscopy images. After 1 week, more new bone formed around the PAM-immobilized implant than around the calcium-immobilized and pure titanium implants. This was also seen with the new bone formation after 3 weeks. After 4 weeks, significantly more new bones were formed around the BP-immobilized implant than around the calcium ion-implanted and pure titanium implants. The new N-BP-modified titanium surface stimulates new bone formation around the implant, which might contribute to the success of implant therapy. 相似文献
17.
Changes in cochlear endolymph Na+ concentration measured with Na+ specific microelectrodes 总被引:2,自引:0,他引:2
Summary Sodium specific microelectrodes were used to measure the sodium ion concentration [Na+] in cochlear duct endolymph. Due to finite shunt leakage of the shank of the electrode false readings can be caused by the high endocochlear potential (+EP) of +80 mV. These were allowed for by making large fast changes in the potential and noting the effect on the Na+ electrode. Such corrections were validated by perfusing the cochlear duct with solutions of known [Na+] at constant +EP. This artefact appears to have not been widely recognised and could be troublesome for many intracellular ion measurements. Increasing the [Na+] to 20 mEqu/l in scala media resulted in an increase of +EP of 5–16 mV. The [Na+] in endolymph was reduced to 3–4 mEqu/l 30 min after perfusion had stopped. We found that the [Na+] varied from 2.7–0.1 mEqu/l. The [Na+] was recorded during prolonged anoxia (which resulted in the death of the animal) and was found to increase to 5–20 mEqu/l in 30 min. 相似文献
18.
Current orthopaedic biomaterials research mainly focuses on designing implants that could induce controlled, guided and rapid healing. In the present study, the surface morphologies of titanium (Ti) and niobium (Nb) metals were tailored to form nanoporous, nanoplate and nanofibre-like structures through adjustment of the temperature in the alkali-heat treatment. The in vitro bioactivity of these structures was then evaluated by soaking the treated samples in simulated body fluid (SBF). It was found that the morphology of the modified surface significantly influenced the apatite-inducing ability. The Ti surface with a nanofibre-like structure showed better apatite-inducing ability than the nanoporous or nanoplate surface structures. A thick dense apatite layer formed on the Ti surface with nanofibre-like structure after 1 week of soaking in SBF. It is expected that the nanofibre-like surface could achieve good apatite formation in vivo and subsequently enhance osteoblast cell adhesion and bone formation. 相似文献
19.
Effect of increasing titanium dioxide content on bulk and surface properties of phosphate-based glasses 总被引:2,自引:0,他引:2
There is an ingoing need for more effective and less costly bone substitute materials. In a previous study, addition of titanium dioxide (TiO2) up to 5 mol.% was shown to be effective in controlling glass degradation, and this was reflected in enhanced gene expression and bone-forming capacity of phosphate-based glasses. In the current study, incorporation of the maximum possible amount of TiO2 has been attempted in order to further improve the biological response of these glasses. This report describes the physical, surface properties and short-term response of an osteoblast cell line (MG63) on phosphate glasses doped with the maximum possible TiO2 content. The results showed that a maximum of 15 mol.% TiO2 can be incorporated into the ternary formulations while maintaining their amorphous nature; such incorporation was associated with a significant increase in density and glass transition temperature. On crystallization, X-ray diffraction analysis showed the presence of TiP2O7 and NaCa(PO3)3 as the main phases for all TiO2-containing glasses, while β-(CaP2O6) was only detected for 10 and 15 mol.% TiO2 glasses. The degradation rate, however, was significantly reduced by an order of magnitude with incorporation of 10 and 15 mol.% TiO2, and this was reflected in the released ions. This change in the bulk properties, produced with TiO2 incorporation, was also associated with a significant change in the hydrophilicity and surface reactivity of these glasses. Even though the addition of TiO2 reduced the hydrophilicity and the surface free energy of these glasses compared to TiO2 free composition, TiO2-containing glasses still have a significantly reactive surface layer compared to Thermanox®. Generally glasses with 5–15 mol.% TiO2 supported MG63 cell growth and maintained high cell viability for up to 7 days culture, which is comparable to Thermanox®. Based on the results obtained form this study, TiO2-containing phosphate glasses are promising substrates for bone tissue engineering applications. 相似文献