首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The purpose of this study was to evaluate the relationships between physicochemical properties and aerosolisation performance of different grades of lactose. In order to get a wide range of physicochemical properties, various grades of lactose namely Flowlac®100 (FLO), Lactopress anhydrous®250 (LAC), Cellactose®80 (CEL), Tablettose®80 (TAB), and Granulac®200 (GRA) were used. The different lactose grades were carefully sieved to separate 63-90 μm particle size fractions and then characterised in terms of size, shape, density, flowability, and solid state. Formulations were prepared by blending each lactose with salbutamol sulphate (SS) at ratio of 67.5:1 (w/w), and then evaluated in terms of SS content uniformity, lactose-SS adhesion properties, and in vitro aerosolisation performance delivered from the Aerolizer®. Sieved lactose grades showed similar particle size distributions (PSDs) and good flow properties but different particle shape, particle surface texture, and particle solid state. Content uniformity assessments indicated that lactose particles with rougher surface produced improved SS homogeneity within DPI formulation powders. Lactose-SS adhesion assessments indicated that lactose particles with more elongated shape and the rougher surface showed smaller adhesion force between lactose and salbutamol sulphate. Lactose powders with higher bulk density and higher tap density produced smaller emission (EM) and higher drug loss (DL) of SS. In vitro aerosolisation for various lactose grades followed the following rank order in terms of deposition performance: GRA > TAB > LAC ≈ CEL > FLO. Linear relationships were established showing that in order to maximize SS delivery to lower airway regions, lactose particles with more elongated shape, more irregular shape, and rougher surface are preferred. Therefore, considerable improvement in DPI performance can be achieved by careful selection of grade of lactose included within DPI formulations.  相似文献   

2.
Micellization and gelation of binary mixtures of EO99PO69EO99 (pluronic® F127) and EO80PO27EO80 (pluronic® F68) in aqueous solutions were investigated by means of micro-differential scanning calorimetry and rheology and for a total copolymer concentration fixed at 20 wt%. The aim of this investigation is to determine the interplay between micellization and macroscopic gelation of the mixed solutions. Micro-DSC reveals the formation of two distinct populations in F127/F68 mixtures during heating and subsequent cooling of the solutions. The enthalpies of micellization of each copolymer and the respective onset temperatures remained constant after mixing indicating the predominance of two independent processes of micellization in the mixtures. The F127 exhibits a crystallization transition, at a distinct temperature which persists, but increases in the mixtures with concentrations higher than 10 wt%. Rheological measurements were performed during heating ramps or after maturation periods versus frequency. They showed two types of gelation transitions: either a steep increase of the storage and the loss moduli, which corresponds to the crystallization temperature of the F127 micelles or a progressive jamming transition when no crystal can form. Maturation process has a major effect on the rheological properties of the mixed gels, possibly related to local rearrangements of the two micellar phases. This investigation highlights the unique features of the binary pluronic® mixtures, compared to dilution effects of single component aqueous solutions.  相似文献   

3.
The present work describes the formulation of Eudragit® L30 D-55 microparticles (MP) alone or with mucoadhesive agents, alginate or Carbopol®, as an approach for the development of an oral cholera vaccine. In the first part, a spray drying technique was optimized for microparticle elaboration, obtaining a microparticle size ranging from 7 to 9 μm with high encapsulation efficiencies. Moreover, gastro resistant properties and Vibrio cholerae (VC) antigenicity were maintained, but for Eudragit®-Carbopol® microparticles which showed low antigenicity values, ≈25%. Next, a stability study was performed following ICH Q1 A (R2) guidelines, i.e. 25 °C-60% relative humidity (RH) for 12 months, and 30 °C-65% RH and 40 °C-75% RH for 6 months. Upon storage, microparticle size changed slightly, 1 μm for Eudragit®-alginate MPs and 0.36 μm for Eudragit®MP. However, gastro resistance and antigenicity values were kept in an acceptance range. In the third stage of this work, in vivo experiments were performed. The immune response evoked was measured by means of vibriocidal titer quantification, observing that Eudragit®-alginate MPs were able to induce stronger immune responses, comparable to the free VC. Therefore, microencapsulation of VC by spray drying could be proposed as an approach to a cold chain free and effective oral cholera vaccine.  相似文献   

4.
The purpose of the present study was to formulate a novel thermoresponsive membrane controlled therapeutic system from Metolose for possible transdermal application. Metolose gel shows thermal gelation property, which can be characterized by two (T(1), T(2)) temperatures. A sharp decrease of viscosity can be measured at T(1), but gelation can be observed at T(2). Different types of Metolose polymers were compared considering their thermoresponsive behaviour. Only thermal gelation was observed in the case of Metolose SM, while Metolose SH showed a sudden decrease of viscosity at T(1). Since this temperature is above the body temperature, so it should be shifted to the skin temperature in case of possible transdermal application. Modulation of thermoresponsibility was followed by rheological method, and the thermoresponsive drug release from Metolose gel was studied by static liberation test. Our results demonstrated that the effect of different salts (NaCl, NaHCO(3), KCl) of various concentrations in Metolose SH gel reduced T(1) to the skin temperature, which enabled enhanced drug release.  相似文献   

5.
The purpose of the present study was to formulate a novel thermoresponsive membrane controlled therapeutic system from Metolose for possible transdermal application. Metolose gel shows thermal gelation property which can be characterized by two (T1, T2) temperatures. A sharp decrease of viscosity can be measured at T1, but gelation can be observed at T2. Different types of Metolose polymers were compared considering their thermoresponsive behavior. Only thermal gelation was observed in the case of Metolose SM, while Metolose SH showed a sharp decrease of viscosity at T1. Since this temperature is above the body temperature, so it should be shifted to the skin temperature in case of possible transdermal application. Modulation of thermoresponsibility was followed by rheological method, and the thermoresponsive drug release from Metolose gel was studied by static liberation test. Our results demonstrated that the effect of different salts (NaCl, NaHCO3, KCl) of various concentrations in Metolose SH gel reduced T1 to the skin temperature, which enabled enhanced piroxicam release.  相似文献   

6.
The objective of this study was to identify and evaluate key polymer properties affecting direct compression and drug release from water-insoluble matrices. Commonly used polymers, such as Kollidon® SR, Eudragit® RS and ethyl cellulose, were characterized, formulated into tablets and compared with regard to their properties in dry and wet state. A similar site percolation threshold of 65% v/v was found for all polymers in dry state. Key parameters influencing polymer compactibility were the surface properties and the glass transition temperature (Tg), affecting polymer elasticity and particle size-dependent binding. The important properties observed in dry state also governed matrix characteristics and therefore drug release in wet state. A low Tg (Kollidon® SR < Eudragit® RS) decreased the percolation threshold, particle size effect and tortuosity, but increased permeability and sensitivity to heat/humidity treatment. Hence, lower permeability and higher stability are benefits of a high-Tg polymer (ethyl cellulose). However, release retardation was observed in the same order as matrix integrity (Eudragit® RS < ethyl cellulose < Kollidon® SR), as the high permeability was counteracted by PVP in case of Kollidon® SR. Therefore, the Tg and composition of a polymer need to be considered in polymer design and formulation of controlled-release matrix systems.  相似文献   

7.
Diprosalic Lotion® is an anti-inflammatory drug product that contains salicylic acid and betamethasone dipropionate as active pharmaceutical ingredients (APIs). A reversed-phase high performance liquid chromatography (RP-HPLC) method was developed for simultaneous determination of salicylic acid, betamethasone dipropionate, and their related compounds in Diprosalic Lotion®. A 150 mm × 4.6 mm I.D. YMC J'sphere ODS-H80 column at 35 °C and UV detection at 240 nm was used. A gradient elution was employed using 0.05% (v/v) methanesulfonic acid solution and acetonitrile as mobile phases. A total of thirty three compounds from Diprosalic Lotion® samples were separated in 38 min. The stability-indicating capability of this method has been demonstrated by the adequate separation of all the impurities and degradation products in expired stability samples of Diprosalic Lotion®. The method was validated as per the current ICH guidelines.  相似文献   

8.
The miniCD4 M48U1 was formulated into thermosensitive and mucoadhesive pluronic® hydrogels as anti-HIV-1 microbicide. The release kinetics of M48U1 from F127/HPMC (20/1 wt%) and F127/F68/HPMC (22.5/2.5/1 wt%) studied during 24 h by using Franz diffusion cells showed that HEC hydrogel (1.5 wt%) used as control released 93% of the peptide, while about 25% of M48U1 remained in pluronic® hydrogels. The formulation of M48U1 in pluronic® hydrogels ensures a local delivery because no diffusion of the peptide was detected through vaginal Cynomolgus macaque mucosa using Ussing chamber. Finally, toxicological studies showed no significant difference in the HeLa cell viability of the pluronic® hydrogels in comparison with HEC and phosphate buffer saline.  相似文献   

9.
Bacillus cereus var. toyoi is a naturally occurring, non-toxigenic and non-pathogenic strain of B. cereus. Safety studies were conducted on a B. toyoi preparation (Toyocerin®), including but not limited to enterotoxicity, eye irritation, genotoxicity, acute, subchronic and chronic toxicity studies and human clinical trials. In rabbits, Toyocerin® did not exhibit enterotoxicity and was only slightly irritating to the eyes. It was non-mutagenic in an Ames assay at up to 10,000 μg/plate and did not exhibit clastogenic activity in a chromosomal aberration test at up to 450 mg/ml. It was non-toxic in acute and repeated-dose (30 and 60 days and 1 year) toxicity studies in rats and mice at up to 3 × 1011 spores/kg bw/day. In an eight-day human clinical trial, Toyocerin® did not cause any adverse effects in healthy male and female subjects at 1 × 109 and 1 × 1010 spores/kg bw/day. In feeding trials, Toyocerin® did not cause any adverse effects in rabbits, pigs, chickens, turkeys and cattle at doses ranging from 8.5 × 107 to 4 × 109 spores/kg bw/day for durations of 2 weeks to 18 months. Taken together, these studies demonstrate that Toyocerin® is safe at the doses tested.  相似文献   

10.
Mini-matrices with release-sustaining properties were developed by hot-melt extrusion (diameter 3 mm, height 2 mm) using metoprolol tartrate as model drug (30%, w/w) and ethylcellulose as sustained-release agent. Polyethylene glycol or polyethylene oxide was added to the formulation to increase drug release. Changing the hydrophilic polymer concentration (0%, 1%, 2.5%, 5%, 10%, 20% and 70%, w/w) and molecular weight (6000, 100,000, 1,000,000 and 7,000,000) modified the in vitro drug release: increasing concentrations yielded faster drug release (irrespective of molecular weight), whereas the influence of molecular weight depended on concentration. Smooth extrudates were obtained when processed at 40 and 70 °C for polyethylene glycol and polyethylene oxide formulations, respectively. Raman analysis revealed that metoprolol tartrate was homogeneously distributed in the mini-matrices, independent of hydrophilic polymer concentration and molecular weight. Also drug and polymer crystallinity were independent of both parameters. An oral dose of 200 mg metoprolol tartrate was administered to dogs in a randomized order either as immediate-release preparation (Lopresor® 100), as sustained-release formulation (Slow-Lopresor® 200 Divitabs®), or as experimental mini-matrices (varying in hydrophilic polymer concentration). The sustained-release effect of the experimental formulations was limited, and relative bioavailabilities of 66.2% and 148.2% were obtained for 5% and 20% PEO 1,000,000 mini-matrices, respectively.  相似文献   

11.

Scope

To evaluate the ability of grape skin and seeds to protect endothelial progenitor cells (EPC) from oxidative stress induced by hyperglycemia (HG) compared to red wine (RW) and prepare innovative pharmaceutical systems for the oral administration of red grape extract allowing the overcoming of its poor intestinal absorption.

Methods and results

Human EPC were characterized by expression of cell surface markers. Cells were incubated with different concentrations of total polyphenols from grape components or RW in the presence or absence of HG. Cell viability, migration, adhesion, and reactive oxygen species (ROS) production were assayed. Intestinal permeation of polyphenols was studied in the absence or presence of a quaternary ammonium-chitosan conjugate (N+(60)-Ch). Grape components and RW increased EPC viability, adhesion and migration, and prevented the HG effect (P < 0.01). ROS production induced by HG was significantly reduced only by grape seed extract and RW (P < 0.01). N+(60)-Ch acted as an effective enhancer of polyphenol permeability across the excised rat intestine.

Conclusions

Red grape components are a source of antioxidant compounds that ameliorate EPC viability and function, while preventing endothelial dysfunction. The use of polycationic chitosan derivatives can promote the absorption of polyphenols across intestinal epithelium, thus increasing their bioavailability and potential therapeutic value in atherosclerosis.  相似文献   

12.
The effects of sanguinarine (SG) and its metabolite dihydrosanguinarine (DHSG) on Na+/K+-ATPase were investigated using fluorescence spectroscopy. The results showed that the enzyme in E1 conformation can bind both charged and neutral (pseudobase) forms of SG with a KD = 7.2 ± 2.0 μM or 11.7 ± 0.9 μM, while the enzyme in E2 conformation binds only the charged form of SG with a KD = 4.7 ± 1.1 μM. Fluorescence quenching experiments suggest that the binding site in E1 conformation is located on the surface of the enzyme for both forms but the binding site in E2 conformation is protected from the solvent. We found no evidence for interaction of Na+/K+-ATPase and DHSG. This implies that any in vivo effect of SG attributable to inhibition of Na+/K+-ATPase can be considered only prior to SG → DHSG transformation in the gastro-intestinal tract and/or blood. Hence, Na+/K+-ATPase inhibition will be effective in SG topical application but its duration will be very limited in SG oral or parenteral administration.  相似文献   

13.
Seven day exposure to a low concentration of lead acetate increases nitric oxide bioavailability suggesting a putative role of K+ channels affecting vascular reactivity. This could be an adaptive mechanism at the initial stages of toxicity from lead exposure due to oxidative stress. We evaluated whether lead alters the participation of K+ channels and Na+/K+-ATPase (NKA) on vascular function. Wistar rats were treated with lead (1st dose 4 μg/100 g, subsequent doses 0.05 μg/100 g, im, 7 days) or vehicle. Lead treatment reduced the contractile response of aortic rings to phenylephrine (PHE) without changing the vasodilator response to acetylcholine (ACh) or sodium nitroprusside (SNP). Furthermore, this treatment increased basal O2 production, and apocynin (0.3 μM), superoxide dismutase (150 U/mL) and catalase (1000 U/mL) reduced the response to PHE only in the treated group. Lead also increased aortic functional NKA activity evaluated by K+-induced relaxation curves. Ouabain (100 μM) plus L-NAME (100 μM), aminoguanidine (50 μM) or tetraethylammonium (TEA, 2 mM) reduced the K+-induced relaxation only in lead-treated rats. When aortic rings were precontracted with KCl (60 mM/L) or preincubated with TEA (2 mM), 4-aminopyridine (4-AP, 5 mM), iberiotoxin (IbTX, 30 nM), apamin (0.5 μM) or charybdotoxin (0.1 μM), the ACh-induced relaxation was more reduced in the lead-treated rats. Additionally, 4-AP and IbTX reduced the relaxation elicited by SNP more in the lead-treated rats. Results suggest that lead treatment promoted NKA and K+ channels activation and these effects might contribute to the preservation of aortic endothelial function against oxidative stress.  相似文献   

14.
A sensitive and specific method for the determination of cidofovir (CDV) in human plasma using high-performance liquid chromatography with tandem mass spectrometry (LC–MS/MS) was developed and validated. Plasma samples were processed by a solid phase extraction (SPE) procedure using Varian® SAX extraction cartridges prior to chromatography. The internal standard was 13C5-Folic acid (13C5-FA). Chromatography was performed using a Luna C8(2) analytical column, 5 μm, 150 mm × 3.0 mm, using an isocratic elution with a mobile phase consisting of 43% methanol in water containing 12 mM ammonium acetate, at a flow rate of 0.3 mL/min. The retention times of CDV and 13C5-FA were 2.1 min and 1.9 min, respectively, with a total run time of 5 min. The analytes were detected by a Micromass Quattro Micro triple quadrupole mass spectrometer in positive electron spray ionization (ESI) mode using multiple reaction monitoring (MRM). The extracted ions monitored following MRM transitions were m/z 280.0 → 262.1 for CDV and m/z 447.0 → 294.8 for 13C5-FA (IS). The assay was linear over the range 20–1000 ng/mL. Accuracy (101.6–105.7%), intra-assay precision (4.1–5.4%), and inter-assay precision (5.6–6.8%) were within FDA limits. No significant variation in the concentration of CDV was observed with different sample storage conditions. This method is simple, adaptable to routine application, and allows easy and accurate measurement of CDV in human plasma.  相似文献   

15.
Molecular imaging is an emerging technology that allows the visualization of interactions between molecular probes and biological targets. Molecules that either direct or are subject to homeostatic controls in biological systems could be labeled with the appropriate radioisotopes for the quantitative measurement of selected molecular interactions during normal tissue homeostasis and again after perturbations of the normal state. In particular, positron emission tomography (PET) offers picomolar sensitivity and is a fully translational technique that requires specific probes radiolabeled with a usually short-lived positron-emitting radionuclide. PET has provided the capability of measuring biological processes at the molecular and metabolic levels in vivo by the detection of the gamma rays formed as a result of the annihilation of the positrons emitted. Despite the great wealth of information that such probes can provide, the potential of PET strongly depends on the availability of suitable PET radiotracers. However, the development of new imaging probes for PET is far from trivial and radiochemistry is a major limiting factor for the field of PET. In this review, we provided an overview of the most common chemical approaches for the synthesis of PET-labeled molecules and highlighted the most recent developments and trends. The discussed PET radionuclides include 11C (t1/2 = 20.4 min), 13N (t1/2 = 9.9 min), 15O (t1/2 = 2 min), 68Ga (t1/2 = 68 min), 18F (t1/2 = 109.8 min), 64Cu (t1/2 = 12.7 h), and 124I (t1/2 = 4.12 d).  相似文献   

16.
Excursions from storage condition requirements may affect product performance and stability. The effects of temperature excursion on stability depend on the amount of time that a product is subjected to these conditions, temperature level, and activation energy. Both time at elevated temperature and the temperature level can be directly measured, while activation energy needs to be estimated from the accelerated stability tests. Coulter Clenz® reagent degradation information is used to demonstrate the effects of temperature excursions. The stability of the product is affected by any excursion, but Coulter Clenz® will not lose all of its stability for excursion of up to 30 days at 35 °C and 20 days at 40 °C. Temperature excursion for up to 20 days at 40 °C will reduce the stability of a product that has activation energy in the range of 26–30 kcal mol−1 approximately by 5–7 months. Products with lower activation energy will have a significantly lower reduction in stability. The effects of excursions on shelf life performance are less severe when lower level of risk is implemented to establish the claimed shelf life. The proposed model can effectively predict temperature excursion if used within the scope of a product performance and its characteristics.  相似文献   

17.
In recent years, there has been a particular interest in bioadhesive formulations for oromucosal drug delivery as this may promote prolonged local therapy and enhanced systemic effect. Saliva plays a vital role in oromucosal drug absorption by dissolving the drug and presenting it to the mucosal surface. However, the rheological, chemical, and interfacial properties of this complex biological fluid may strongly affect the adhesion of bioadhesive formulations. There is a need for well characterized in vitro models to assess the bioadhesive properties of oral dosage forms for administration in the oral cavity. Thus we aimed at developing an advanced ex vivo buccal retention model, with focus on choosing a physiologically relevant irrigation media closely resembling human saliva. Spray dried chitosan microparticles containing metformin hydrochloride as an example of a small hydrophilic drug, were employed as bioadhesive formulations. Chewing-stimulated human whole saliva was collected and characterized for use in retention studies in comparison with four artificial irrigation media; phosphate buffer, Saliva Orthana®, porcine gastric mucin base media (PGM3), and xanthan gum based media (XG2). Retention of metformin, applied as spray dried microparticles on porcine buccal mucosa, greatly depended on the characteristics of the irrigation media. When rheology of the irrigation media was examined, changes in retention profiles could be interpreted, as irrigation media containing mucin and xanthan gum possessed a higher viscosity than phosphate buffer, which led to longer retention of the drug due to better hydration of the mucosa and the spray dried microparticles. Metformin retention profiles were comparable when human saliva, Saliva Orthana®, or PGM3 were used as irrigation media. Moreover, PGM3 displayed physico-chemical properties closest to those of human saliva with regard to pH, protein content and surface tension. Saliva Orthana® and PGM3 are therefore considered as suitable irrigation media for further retention studies.  相似文献   

18.
Microemulsion (ME) and poloxamer microemulsion-based gel (PMBG) were developed and optimized to enhance transport of diclofenac epolamine (DE) into the skin forming in-skin drug depot for sustained transdermal delivery of drug. D-optimal mixture experimental design was applied to optimize ME that contains maximum amount of oil, minimum globule size and optimum drug solubility. Three formulation variables; the oil phase X1 (Capryol®), Smix X2 (a mixture of Labrasol®/Transcutol®, 1:2 w/w) and water X3 were included in the design. The systems were assessed for drug solubility, globule size and light absorbance. Following optimization, the values of formulation components (X1, X2, and X3) were 30%, 50% and 20%, respectively. The optimized ME and PMBG were assessed for pH, drug content, skin irritation, stability studies and ex vivo transport in rat skin. Contrary to PMBG and Flector® gel, the optimized ME showed the highest cumulative amount of DE permeated after 8 h and the in vivo anti-inflammatory efficacy in rat paw edema was sustained to 12 h after removal of ME applied to the skin confirming the formation of in-skin drug depot. Our results proposed that topical ME formulation, containing higher fraction of oil solubilized drug, could be promising for sustained transdermal delivery of drug.  相似文献   

19.
Purpose The primary objective of this study was to prepare novel thermoresponsive binary component hydrogels composed of gelatin and monomethoxy poly(ethylene glycol)–poly(d,l-lactide) (MPEG–PDLLA) diblock copolymer and to obtain optimal formulations capable of forming gels upon a narrow temperature range between body temperature and room temperature. Methods MPEG–PDLLA diblock copolymers with a lower critical solution temperature (LCST) feature were synthesized by using a ring-opening polymerization method. The starting weight ratio of MPEG/DLLA was varied to obtain a series of copolymers with a wide range of molecular weight and hydrophilicity. The copolymers were characterized by 1H nuclear magnetic resonance (1H NMR) and thermogravimetric analysis. MPEG (2K)–PDLLA (1:4) was chosen to construct hydrogels with gelatin. To obtain optimal thermoresponsive formulation, various hydrogels were formulated and quantified in terms of sol–gel phase transition kinetics and rheological properties. Selected hydrogels were studied as drug carrier for gentamicin sulfate. Results Gelatin/MPEG–PDLLA hydrogels underwent gelation in less than 15 min when 30 wt.% MPEG (2K)–PDLLA (1:4) was mixed with 10, 50, or 100 mg/mL gelatin. Hydrogels showed rapid gelation when 100 mg/mL gelatin was mixed with 15, 20, or 25 wt.% MPEG–PDLLA as temperature fell from 37°C to room temperature. The viscosity of hydrogels depended on the frequency applied in the rheological tests, the environment temperature, and the concentration of both polymer components. The time needed for 50% gentamicin sulfate release was 5 days or longer at room temperature, and the release lasted up to 40 days. 1H NMR confirmed that MPEG–PDLLA hydrolyzed under in vitro situations. Conclusions The incorporation of a second polymer component MPEG–PDLLA into the gelatin hydrogel could modify the thermal characteristic of gelatin and the resulting binary component hydrogels obtained different thermal characteristics from the individual polymer components. Formulation of gelatin/MPEG–PDLLA hydrogels could be varied for obtaining such gels that can undergo gelation promptly upon a narrow temperature change.  相似文献   

20.
The toxic effects of diazinon and its irradiated solutions were investigated using cultivated human blood cells (lymphocytes and erythrocytes) and skin fibroblasts. Ultra Performance Liquid Chromatography (UPLC)–UV/VIS system was used to monitor the disappearance of starting diazinon during 115-min photodegradation and formation of its by-products (diazoxon and 2-isopropyl-6-methyl-4-pyrimidinol (IMP)) as a function of time. Dose-dependent AChE and Na+/K+-ATPase inhibition by diazinon was obtained for all investigated cells. Calculated IC50 (72 h) values, in M, were: 7.5 × 10−6/3.4 × 10−5, 8.7 × 10−5/6.6 × 10−5, and 3.0 × 10−5/4.6 × 10−5 for fibroblast, erythrocyte and lymphocyte AChE/Na+/K+-ATPase, respectively. Results obtained for reference commercially purified target enzymes indicate similar sensitivity of AChE towards diazinon (IC50 (20 min)-7.8 × 10−5M), while diazinon concentrations below 10 mM did not noticeably affect Na+/K+-ATPase activity. Besides, diazinon and IMP induced increasing incidence of micronuclei (via clastogenic mode of action) in a dose-dependent manner up to 2 × 10−6 M and significant inhibition of cell proliferation and increased level of malondialdehyde at all investigated concentrations. Although after 15-min diazinon irradiation formed products do not affect purified commercial enzymes activities, inhibitory effect of irradiated solutions on cell enzymes increased as a function of time exposure to UV light and resulted in significant reduction of AChE (up to 28–45%) and Na+/K+-ATPase (up to 35–40%) at the end of irradiation period. Moreover, photodegradation treatment strengthened prooxidative properties of diazinon as well as its potency to induce cytogenetic damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号