首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to examine the receptor occupancy of D1/D5 antagonists for D1-like dopamine receptors in rat brain using [3H]SCH 39166, a highly selective D1/D5 antagonist with low affinity for 5HT2 receptors. A single concentration of triated SCH 39166 was administered to rats, with or without competing doses of the Dl/D5 antagonist SCH 23390 and unlabeled SCH 39166. the D2-like antagonists haloperidol or the 5-HT, antagonist ketanserin. The bound radioactivity in the cortex, striatum, nucleus accumbens and olfactory tubercle was then quantified using an in vivo autoradiographic procedure. The results indicated that [3H]SCH 39166 was dose dependently displaced by the Dl/D5 antagonists in regions associated with both the nigro-striatal pathway and the mesolimbic dopamine pathway, particularly the nucleus accumbens. Neither haloperidol nor ketanserin displaced [3H]SCH 39166 in any of the regions examined. The data were compared with previously published data examining the in vivo binding of [3H]SCH 39166 in rat brain homogenates. The relative values obtained were comparable to values detected in rat brain homogenates after in vivo binding of [3H]SCH 39166.  相似文献   

2.
The purpose of this study was to examine the receptor occupancy of D1/D5 antagonists for D1-like dopamine receptors in rat brain using [3H]SCH 39166, a highly selective D1/D5 antagonist with low affinity for 5HT2 receptors. A single concentration of triated SCH 39166 was administered to rats, with or without competing doses of the D1/D5 antagonist SCH 23390 and unlabeled SCH 39166, the D2-like antagonists haloperidol or the 5-HT2 antagonist ketanserin. The bound radioactivity in the cortex, striatum, nucleus accumbens and olfactory tubercle was then quantified using an in vivo autoradiographic procedure. The results indicated that [3H]SCH 39166 was dose dependently displaced by the D1/D5 antagonists in regions associated with both the nigro-striatal pathway and the mesolimbic dopamine pathway, particularly the nucleus accumbens. Neither haloperidol nor ketanserin displaced [3H]SCH 39166 in any of the regions examined. The data were compared with previously published data examining the in vivo binding of [3H]SCH 39166 in rat brain homogenates. The relative values obtained were comparable to values detected in rat brain homogenates after in vivo binding of [3H]SCH 39166.  相似文献   

3.
On the basis of experiments made on striatal membranes, Leff and Creese [Molec. Pharmac. (1985) 27, 184-192] have proposed that tritiated dopamine binds to a high-affinity agonist state of D1 dopamine receptors (D1h) which adopt this conformation when they are associated with the GTP-binding protein involved in the transduction process. Quantitative autoradiography was thus used to look for the distribution of these D1h sites in the rat brain and to compare it with that of D1 receptors labelled with [3H]7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benz aze pine [( 3H]SCH23390), a D1 antagonist. The effects of unilateral 6-hydroxydopamine lesion of the ascending dopamine pathways on the density of [3H]dopamine D1h and [3H]SCH23390 binding sites in the striatum and the nucleus accumbens were also analysed. In the striatum, when D2 receptors were blocked by spiroperidol (20 nM), [3H]dopamine was found to bind specifically to dopamine receptors of the D1 type. Complementary experiments made with dopamine uptake blockers indicated that high-affinity dopamine uptake sites were not labelled by [3H]dopamine under our experimental conditions. The anatomical distribution of [3H]dopamine D1h binding sites was found to be markedly different from that of [3H]SCH23390 binding sites. This was particularly the case in the substantia nigra, some amygdaloid nuclei and the prefrontal cortex--structures in which the ratios between [3H]SCH23390 and [3H]dopamine binding sites were more than seven-fold higher than that observed in the striatum. [3H]SCH23390 binding was not significantly affected in either the striatum or the nucleus accumbens six weeks after a complete unilateral destruction of ascending dopamine pathways. In contrast, a marked decrease in [3H]dopamine D1h binding sites was found in both structures, but this effect was lower in the medioventral (-60%) than in the laterodorsal (-81%) part of the striatum, even though dopamine denervation was uniform throughout the structure. Preincubation of the sections with dopamine (0.5 microM) led to a partial recovery (+126%) in the lesioned striatum and an increase of [3H]dopamine labelling in the control striatum (+68%). This suggest that the presence of dopamine stabilizes the D1h state of D1 receptors. The absence or low amount of dopamine, either due to dopamine denervation or naturally occurring (prefrontal cortex), would then impair the [3H]dopamine D1h binding. In addition, a lower coupling of D1 receptors with adenylate cyclase was observed in the substantia nigra when compared to that in the striatum: this may explain the relatively weak [3H]dopamine binding in the substantia nigra.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
A widespread distribution of dopamine D1 receptors in the neocortex is well recognized. However, the presence of dopamine D2 receptors in this structure has only recently been established [Martres et al. (1985) Eur. J. Pharmac.118, 211–219; Lidow et al. (1989) Proc. natn. Acad. Sci. U.S.A.86, 6412–6416]. In the present paper, a highly specific antagonist, [3H]raclopride, was used for autoradiographic determination of the distribution of D2 receptors in 12 cytoarchitectonic areas of the frontal, parietal, and occipital lobes of the rhesus monkey. A low density of D2-specific [3H]raclopride binding (1.5–4.0 fmol/mg tissue) was detected in all layers of all cortical areas studied. Throughout the entire cortex, the highest density of binding was consistently found in layer V. This is a unique distribution not observed so far for any other neurotransmitter receptor subtype in monkey cerebral cortex, including D1 receptor. In addition, a comparison was made of the distribution of [3H]raclopride and [3H]spiperone, which has been commonly used in previous attempts to label cortical D2 receptors. We found marked differences in the distribution of these two radioligands. In the prefrontal cortex, the pattern of [3H]spiperone binding in the presence of ketanserin resembled the combined distribution of 5-HTic serotoninergic and 2-adrenergic sites as well as D2 receptors. Thus, [3H]raclopride provides a better estimation of the D2 receptor distribution than does [3H]spiperone. The distribution of D2-specific binding of [3H]raclopride was also compared with the D1-specific binding of [3H]SCH23390 in the presence of mianserin to block labeling to 5-HT2 and 5-HTIC sites. The density of D1-specific [3H]SCH23390 binding was 10–20 times higher than that of D2-speciflc [3H]raclopride binding throughout the cortex. The densities of both [3H]raclopride and [3H]SCH23390 binding sites display a rostral-caudal gradient with the highest concentrations in prefrontal and the lowest concentrations in the occipital cortex. However, the binding sites of these two ligands had different laminar distributions in all areas examined. In contrast to preferential [3H]raclopride binding in layer V, a bilaminar pattern of [3H]SCH23390 labeling was observed in most cytoarchitectonic areas, with the highest concentrations in supragranular layers I, II and IIIa and infragranular layers V and VI. Whereas [3H]raclopride binding was similar in all cytoarchitectonic areas, [3H]SCH23390 exhibited some region-specific variations in the primary visual and motor cortex.

The different regional and laminar distributions of D1 and D2 dopaminergic receptors indicates that they may subserve different aspects of dopamine function in the cerebral cortex.  相似文献   


5.
The autoradiographic distribution of D1 dopaminergic binding sites was studied in the human ventral mesencephalon using the D1 antagonist [3H]SCH 23390. [3H]SCH 23390 binding was characterized by a single class of sites with a Kd of 2.5 nM and a Bmax of 31 fmol/mg of tissue. The density of [3H]SCH 23390 binding sites was high in the substantia nigra, moderate in the ventral tegmental area and low in the peri- and retrorubral field (catecholaminergic region A8). Binding densities were similar in pars compacta and pars reticulata of the substantia nigra, except for a peak value of high [3H]SCH 23390 in the pars reticulata, at a level just ventral to a zone of hyperdensity of melanized dopaminergic neurons in the pars compacta. The anatomical organization of the human ventral mesencephalon was analysed on adjacent sections stained for acetylcholinesterase histochemistry and tyrosine hydroxylase, substance P, dynorphin B, somatostatin and methionine-enkephalin immunohistochemistry, respectively. The similarity in distribution of [3H]SCH 23390 binding sites and substance P or dynorphin B immunoreactivity suggests that D1 binding sites are mainly located on the striatonigral projections. In accordance with these results: (1) the density of [3H]SCH 23390 binding sites was reduced in the substantia nigra of a patient with Huntington's chorea, a disease associated with a degeneration of striatonigral neurons; (2) the density of [3H]SCH 23390 binding sites was unaffected in the substantia nigra of a patient with Parkinson's disease, a disorder characterized by a marked loss in nigral tyrosine hydroxylase-positive neurons. [3H]SCH 23390 binding sites showed a characteristic, heterogeneous distribution within the human ventral mesencephalon, confirming data obtained in other species. The preferential localization of D1 dopamine receptors on striatonigral projections in human brain suggests that pharmacological manipulation of these receptors modulates the activity of striatonigral pathways, thereby affecting the various outputs of the nigral complex.  相似文献   

6.
The regional distribution of the specific D1 agonist [3H]SKF 38393 (SKF 38393, 2,3,4,5-tetra-hydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine) has been studied autoradiographically in the rat CNS. The binding of [3H]SKF 38393 to striatal sections was saturable, stereospecific, reversible, of high affinity (Kd = 9.9 nM) and partly sodium sensitive; it occurred at a single population of sites and possessed the pharmacological characteristics of the dopamine D1 receptor. The highest levels of [3H]SKF 38393 binding sites were found in the caudate-putamen, nucleus accumbens, olfactory tubercle and substantia nigra. Moderately high concentrations of the [3H]ligand were observed in the amygdala, endopyriform nucleus, nucleus olfactorius anterior, lateral septum, primary olfactory cortex, cerebellum (molecular layer) and spinal cord. An intermediate labelling was found in the thalamus, habenula, subthalamic nucleus, hypothalamus, ventral tegmental area, superior colliculus, hippocampus and cerebral cortex. Moderate levels of [3H]SKF 38393 binding were observed in the globus pallidus and arcuate nucleus. The autoradiographic distribution of [3H]SKF 38393 overlapped with that of [3H]N,n-propylnorapomorphine, a radioligand which labels the D2 dopamine receptors, in a number of dopamine-rich brain areas but there were several areas which exhibited a high density of [3H]SKF 38393 binding sites but undetectable concentrations of [3H]N,n-propylnorapomorphine. Moreover, in the spinal cord, the subregional localization of these [3H]ligands clearly differed. Intrastriatal injection of ibotenic acid caused a large decrease in [3H]SKF 38393 and [3H]N,n-propylnorapomorphine binding in the striatum and provoked a reduction of [3H]SKF 38393 but not [3H]N,n-propylnorapomorphine binding in the substantia nigra confirming the view that nigral D1 but not D2 receptors are located on striatonigral fibres.  相似文献   

7.
The distribution of dopamine D1 receptors in the rat, labeled with [125I]SCH 23982, was studied using a quantitative in-vitro light-microscopic autoradiographic method. The binding of [125I]SCH 23982 to slide-mounted tissue sections and membrane preparations of prefrontal cortex was saturable, specific and of high affinity. Scatchard analysis revealed a Kd of 1.15 +/- 0.47 nM and Bmax of 8.76 +/- 0.34 fmol/mg tissue in prefrontal cortex membranes and a Kd of 1.27 +/- 0.14 nM and Bmax of 67.6 +/- 3.75 fmol/mg tissue in slide-mounted tissue sections at the level of the striatum. [125I]SCH 23982 was found to predominantly label D1 receptors, but a small fraction of the binding was to serotonin receptors. D1 receptors were found throughout the forebrain and were concentrated in the substantia nigra pars reticulata, accumbens nucleus, caudate putamen, entopeduncular nucleus, olfactory tubercle and the major island of Calleja. [125I]SCH 23982 binding to serotonin receptors was concentrated in the cortices, dorsal raphe, central gray, anterior hypothalamic area and the molecular cell layer of the cerebellum. Knowledge of the distribution of D1 receptors may increase our understanding of the role of D1 receptors in central nervous system dopaminergic function. Furthermore, data on the potential sites of interaction of [125I]SCH 23982 with serotonin receptors may help to understand the complex physiology and pharmacology of the primarily D1 selective compound.  相似文献   

8.
The distribution and pharmacological specificity of [3H]tryptamine binding to coronal and horizontal sections of the rat brain were investigated with computer-assisted autoradiography. [3H]Tryptamine bound to brain regions with up to 58% specificity, as determined with 10 microM tryptamine as a displacer. The capacity (Bmax) of saturable [3H]tryptamine binding sites was greatest in the nucleus accumbens and claustrum (660-760 fmol mg protein-1), with intermediate binding site concentrations in hippocampus, septum, olfactory tubercle, frontal cortex, cingulate cortex and caudate-putamen. The phenylalkylamine, p-methoxyphenylpropylamine and the beta-carboline, harmaline, as well as 5-methyl-tryptamine, displaced [3H]tryptamine from each of these brain regions with a potency that approximated the 5-9 nM affinity (Kd) of [3H]tryptamine binding to each site. Only micromolar concentrations of serotonin displaced [3H]tryptamine, which did not bind to S1, S2, D1, D2 or alpha- or beta-adrenergic sites. The unique pharmacology and the regional overlap of [3H]tryptamine binding sites with dopaminergic nerve terminals in the nucleus accumbens and caudate-putamen suggest that tryptamine-containing neurons in the mammalian brain may modulate behavioral functions such as locomotion.  相似文献   

9.
Following the determination of the binding characteristics of [3H]SCH 23390 using slide-mounted tissue sections of molded minced forebrain, the effects of chronic methamphetamine (MAP) treatment (at a dose of 4 mg/kg for 14 days) on D1 receptors in the rat brain were studied using quantitative receptor autoradiography. There were no differences in both Kd(app) and Bmax values between vehicle- and MAP-treated rats, indicating that D1 receptors might not be involved in the development of behavioral sensitization in chronically MAP-treated rats.  相似文献   

10.
The regional distribution of binding sites labeled by [3H]haloperidol, in the presence of excess spiroperidol, was compared to the regional distribution of receptors labeled by [3H]SCH 23390 and [3H]sulpiride, [3H]SCH 23390 and [3H]sulpiride labeled distinct nuclei, such as the olfactory tubercle, caudate, globus pallidus, substantia nigra, and inferior and superior colliculi. In contrast, the distribution of binding sites labeled by [3H]haloperidol, in the presence of excess spiroperidol, were much more extensive. Some areas containing the highest density of sites labeled by [3H]haloperidol were the external plexiform layer of the olfactory bulb, the cerebral cortex, the paraventricular nuclei, the interpeduncular nucleus and the superior colliculus. The distribution of non-dopaminergic binding sites labeled by haloperidol was clearly quite different from that labeled by dopaminergic ligands.  相似文献   

11.
Using the novel substituted benzamide drug [3H]raclopride in combination with in vitro receptor autoradiography, the distribution of dopamine D-2 receptors was studied in the monkey brain. Highest densities of D-2 receptors are present in dopamine-rich areas and the distribution shows the following rank order: caudatus and putamen greater than nucleus accumbens greater than olfactory tubercle greater than substantia nigra (pars compacta) greater than insular cortex greater than piriform and entorhinal cortex greater than substantia nigra (pars reticulata). In all of these areas [3H]raclopride binding was blocked by dopamine (1 microM) and by D-2 receptor antagonists such as (+)-butaclamol, eticlopride and raclopride, while the D-1 receptor antagonist SCH 23390 (1 microM) reduced [3H]raclopride binding by 15-20% in some restricted parts of the caudatus and putamen exclusively.  相似文献   

12.
The anatomical distribution of [3H]norharman binding sites was determined by quantitative autoradiography in rat brain slices. They are enriched in hypothalamic, thalamic, accumbens and amygdaloid nuclei as well as in hippocampal, neocortical and olfactory-related structures. The distribution pattern differs from that of other previously described receptors or binding sites (e.g. monoamine oxidase, benzodiazepine, tryptamine, 5-hydroxytryptamine receptors (5-HT1A, 5-HT1B, 5-HT1C, 5HT2], which suggests that a unique class of [3H]norharman binding sites exists in the rat brain. The findings are consistent with previous experiments which showed high affinity binding sites for [3H]norharman in rat brain membranes (KD 1.552 nM; autoradiography KD 5.5 nM). A correspondence in the displacing activity of drugs was found for both methods (crude membrane fraction: harman much greater than tryptamine much greater than 5-hydroxytryptamine greater than N-methyl-beta-carboline-3-carboxamide (FG 7142) = diazepam; autoradiography: harman much greater than tryptamine much greater than FG 7142 greater than 5-hydroxytryptamine greater than diazepam). Provided that the binding sites represent functional receptors, the present anatomical findings may explain the biological effects of norharman, e. g. pro-conflict behaviour (limbic-hypothalamic structures), tonic-clonic convulsions (limbic-cortical structures) and alterations of locomotor activity (accumbens nucleus).  相似文献   

13.
The precise neuronal localization of D1 receptors in the substantia nigra has been studied autoradiographically in the rat by measuring the alterations of [3H]SCH 23390 binding site densities in this brain area after 6-hydroxydopamine (6-OHDA) induced destruction of nigrostriatal dopaminergic neurons and after ibotenate-induced lesion of striatal afferents. 6-OHDA-induced nigral lesion provoked a total loss of [3H]SCH 23390 binding sites in the pars compacta and pars lateralis (but not in the pars reticulata) of the substantia nigra. In contrast, ibotenate-induced striatal lesion caused a large diminution of the [3H]ligand binding site density in the pars reticulata but not in the pars compacta and pars lateralis of the substantia nigra. These results suggest that D1 receptors in the pars compacta or pars lateralis of the substantia nigra are located on the dopaminergic perikarya whereas those D1 receptors present in the pars reticulata of the substantia nigra lie on the terminals of nigral afferents of striatal origin.  相似文献   

14.
Age-related changes in serotonergic regulation of neuroendocrine function were investigated in female Fischer 344 rats; serotonin ([3H]5-HT) binding sites were characterized in several brain regions. Neither the number (Bmax) nor the affinity (Kd) of [3H]5-HT sites were altered in the frontal cortex of reproductively young and senescent groups. However, a significant decline in receptor affinity was observed in the hypothalamus and midbrain dorsal raphe nucleus. An increase in the density of binding sites was also observed in the hypothalamus with advancing age. Acute 48 h exposure to estrogen failed to influence [3H]5-HT binding site characteristics in these brain regions. In summary, these results suggest that age-related changes in [3H]5-HT binding are regionally specific. Moreover, the observed changes in hypothalamic 5-HT function may underlie neuroendocrine aging events.  相似文献   

15.
L-DOPA stimulated the K(+)-induced [3H]GABA (gamma-aminobutyric acid) release from slices of substantia nigra pars reticulata, entopeduncular nucleus, globus pallidus and caudate-putamen isolated from the ipsilateral side of 6-hydroxydopamine-lesioned rats, but the release from ipsilateral subthalamic slices was not affected. In substantia nigra, L-DOPA stimulation (EC50 = 1 microM) of [3H]GABA release was dose-dependently blocked (IC50 = 0.1 microM for the stimulation caused by 10 microM L-DOPA) by the D1 antagonist SCH 23390, but was not affected by (-)-sulpiride, a D2 antagonist. SCH 23390 also blocked the stimulation in the other nuclei. The DOPA decarboxylase inhibitor NSD-1015 (500 microM) did not prevent the stimulation induced by L-DOPA in all of the studied nuclei. The results suggest that L-DOPA is able to activate D1 receptors located on the terminals of striatal projections via the dopamine formed by a decarboxylation mediated by an NSD-1015-resistant enzyme. Activation of the presynaptic D1 receptors results in stimulation of GABA release.  相似文献   

16.
Tritiated dipyridamole, a specific adenosine uptake inhibitor binds in a saturable and reversible fashion to high-affinity receptor sites in guinea pig brain sections (Kd = 10 +/- 1.5 nM; Bmax = 650 +/- 100 fmol/mg prot.). The anatomical distribution of [3H]dipyridamole binding sites obtained with autoradiographic techniques shows a widespread but heterogeneous distribution of the binding sites throughout the whole guinea pig brain. Very high densities of binding sites are observed in the cerebellar cortex (molecular layer), the pyriform cortex, the superior colliculus (superficial layer), the supraoptic nucleus and the nucleus of the tractus solitarius. The anatomical characterization of the adenosine uptake site, using [3H]dipyridamole as a probe, may be useful to determine the functional role of adenosine in the brain.  相似文献   

17.
In striatal membranes bearing significant levels of histamine H3 receptors (72 +/- 14 fmol/mg protein), the H3 agonist immepip (1 microM) increased [35S]GTPgammaS binding to 119 +/- 2% of basal, an effect prevented by the H3 antagonist clobenpropit and by pre-treatment with pertussis toxin. In slices labelled with [3H]adenine and in the presence of 1 mM isobutylmethylxantine (IBMX), the selective dopamine D1-like (D1/D5) receptor agonist SKF-81297 stimulated cyclic [3H]AMP ([3H]cAMP) accumulation (maximal stimulation 205 +/- 24% of basal, EC50 113 +/- 12 nM), an effect fully blocked by the D1/D5 antagonist SCH-23390. The accumulation of [3H]cAMP induced by 1 microM SKF-81297 was inhibited in a concentration-dependent manner by the selective H3 receptor agonist immepip (maximal inhibition 60+/-5%, IC50 13 +/- 5 nM). The inhibitory action of 100 nM immepip was reversed in a concentration-dependent manner by the H3 antagonist thioperamide (EC50 13 +/- 3 nM, Ki 1.4 +/- 0.3 nM). Forskolin-induced [3H]cAMP accumulation (726 +/- 57% of basal) was also reduced by H3 receptor activation, although to a lesser extent (19.1 +/- 3.2% inhibition), an action not affected by the absence of either IBMX or Ca2+ ions in the incubation medium. Neither the density of [3H]SCH-23390 binding sites (D1 receptors) nor the inhibition by SKF-81297 were affected by 1 microM immepip, ruling out a direct interaction between D1 and H3 receptors. These results indicate that through H3 receptors coupled to Galphai/o proteins, histamine modulates cAMP formation in striatal neurones that possess D1 receptors, most probably GABAergic striato-nigral neurones.  相似文献   

18.
The binding of [3H]dihydrotetrabenazine, a specific ligand of the monoamine transporter present on serotonin and catecholamine synaptic vesicles, was studied on rat brain sections. The characteristics of binding (Kd = 5.0 nM, k1 = 0.13 x 10(6) M-1 s-1; k-1 = 0.66 x 10(-3) s-1) were similar to those previously observed on tissue homogenates. The rostrocaudal topographical distribution of dihydrotetrabenazine binding sites was analysed by quantitative autoradiography. High labelling was observed in regions richly innervated by monoaminergic systems: dopamine in the striatum and olfactory tubercles, noradrenaline in the striatal fissure and in the paraventricular and dorsomedial hypothalamus and serotonin in the lateral septum, islands of Calleja and suprachiasmatic nucleus. Cell bodies were also labelled in the substantia nigra and ventral tegmental area (dopamine), in locus coeruleus (noradrenaline) and in raphe nucleus (serotonin). The pituitary gland (particularly the neural lobe) and the pineal gland were also labelled. Low labelling was observed in various areas of the cerebral cortex and in the cerebellum. Unilateral 6-hydroxydopamine lesion of the substantia nigra dramatically reduced [3H]dihydrotetrabenazine labelling in the ipsilateral striatum. Moreover, ketanserin has recently been shown to possess a nanomolar affinity for the vesicular monoamine transporter, and autoradiographic localization of brain monoaminergic synaptic vesicles was also obtained by means of the derivative 7-amino-8-[125I]iodoketanserin in the presence of 5-hydroxytryptamine2 and alpha 1 antagonists, although the non-specific labelling was higher than with [3H]dihydrotetrabenazine. It is concluded that [3H]dihydrotetrabenazine may represent a valuable monoaminergic marker in in vitro autoradiographic studies.  相似文献   

19.
As determined by autoradiographic techniques, multiple high doses of methamphetamine elicited a reduction in dopamine receptor population (both D1 and D2) in several areas of the rat central nervous system. D1 receptors were labeled with the D1-selective antagonist, [3H]SCH 23390, and D2 receptors were labeled with the D2-selective neuroleptic, [3H]sulpiride. Scatchard analysis, obtained from saturation data in caudate-putamen, indicated that the receptor alterations were due to a decrease in the number of receptors (Bmax) without an apparent change in affinity (Kd). A time course demonstrated that five doses of methamphetamine were required to elicit significant changes in receptors in most brain areas examined. The onset of the receptor alterations in various brain regions correlated with the development of methamphetamine-induced depression of striatal tyrosine hydroxylase activity. In most brain areas, the dopamine receptors returned to normal within 7 days following methamphetamine.  相似文献   

20.
In order to examine a possible interaction between D1 and D2 receptors in the dopaminergic control of the electrically-evoked release of [3H]GABA in the rat prefrontal cortex, the effects of D1 and D2 dopamine agonists were studied in vitro on cortical slices. The D1 agonist SKF38393 (10(-5) M) inhibited the electrically-evoked release of [3H]GABA. This effect was totally reversed by both the D1 antagonist SCH23390 (10(-7) M) and the D2 antagonist sulpiride (10(-5) M). We previously observed that maximal D2-mediated inhibition of the electrically-evoked release of [3H]GABA was obtained with 10(-7) M RU24926 and 10(-8) M LY171555. Here we showed that the inhibition produced by these two D2 agonists is also abolished by 10(-7) M SCH23390. In dopamine-depleted slices from reserpine-treated animals, it was not possible to detect an effect of either RU24926 (10(-7) M) or SKF38393 (10(-5) M), suggesting a permissive role of endogenous dopamine in the effect of either D2 or D1 agonist. Finally, SKF38393 used at a subliminar concentration (10(-6) M) was able to potentiate the effect of a liminar concentration of RU24926 (1.5 x 10(-8) M). Taken together these results strongly suggest that in the rat prefrontal cortex a D1-D2 receptor synergism is involved in the dopaminergic control of the electrically-evoked release of [3H]GABA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号