首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Cochlear implants restore hearing cues in the severe–profoundly deaf by electrically stimulating spiral ganglion neurons (SGNs). However, SGNs degenerate following loss of cochlear hair cells, due at least in part to a reduction in the endogenous neurotrophin (NT) supply, normally provided by hair cells and supporting cells of the organ of Corti. Delivering exogenous NTs to the cochlea can rescue SGNs from degeneration and can also promote the ectopic growth of SGN neurites. This resprouting may disrupt the cochleotopic organization upon which cochlear implants rely to impart pitch cues. Using retrograde labeling and confocal imaging of SGNs, we determined the extent of neurite growth following 28 days of exogenous NT treatment in deafened guinea pigs with and without chronic electrical stimulation (ES). On completion of this treatment, we measured the spread of neural activation to intracochlear ES by recording neural responses across the cochleotopically organized inferior colliculus using multichannel recording techniques. Although NT treatment significantly increased both the length and the lateral extent of growth of neurites along the cochlea compared with deafened controls, these anatomical changes did not affect the spread of neural activation when examined immediately after 28 days of NT treatment. NT treatment did, however, result in lower excitation thresholds compared with deafened controls. These data support the application of NTs for improved clinical outcomes for cochlear implant patients. J. Comp. Neurol. 521:2818–2832, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
Loss of sensory hair cells within the cochlea results in a permanent sensorineural hearing loss and initiates the gradual degeneration of spiral ganglion neurons (SGNs) - the primary afferent neurons of the cochlea. While these neurons are normally myelinated via Schwann cells, loss of myelin occurs as a precursor to neural degeneration. However, the relationship between demyelination and the status of Schwann cells in deafness is not well understood. We used a marker of peripheral myelin (myelin protein zero; P0) and a marker of Schwann cells (S100) to determine the temporal sequence of myelin and Schwann cell loss as a function of duration of deafness. Rat pups were systemically deafened for periods ranging from 2 weeks to greater than 6 months by co-administration of frusemide and gentamicin. Cochleae were cryosectioned and quantitative immunohistochemistry used to determine the extent of P0 and S100 labelling within the peripheral processes, SGN soma and their central processes within the modiolus. SGN density was also determined for each cochlear turn. P0 labelling decreased throughout the cochlea with increasing duration of deafness. The reduction in P0 labelling occurred at a faster rate than the SGN loss. In contrast, S100 labelling was not significantly reduced compared with age-matched controls in any cochlear region until 6 months post-deafening. These results suggest that Schwann cells may revert to non-myelinating phenotypes in response to deafness and exhibit greater survival traits than SGNs. The potential clinical significance of these findings for cochlear implants is discussed.  相似文献   

3.
The development and maintenance of spiral ganglion neurons (SGNs) appears to be supported by both neural activity and neurotrophins. Removal of this support leads to their gradual degeneration. Here, we examined whether the exogenous delivery of the neurotrophin brain-derived neurotrophic factor (BDNF) in concert with electrical stimulation (ES) provides a greater protective effect than delivery of BDNF alone in vivo. The left cochlea of profoundly deafened guinea pigs was implanted with an electrode array and drug-delivery system. BDNF or artificial perilymph (AP) was delivered continuously for 28 days. ES induced neural activity in two cohorts (BDNF/ES and AP/ES), and control animals received BDNF or AP without ES (BDNF/- and AP/-). The right cochleae of the animals served as deafened untreated controls. Electrically evoked auditory brainstem responses (EABRs) were recorded immediately following surgery and at completion of the drug-delivery period. AP/ES and AP/- cohorts showed an increase in EABR threshold over the implantation period, whereas both BDNF cohorts exhibited a reduction in threshold (P < 0.001, t-test). Changes in neural sensitivity were complemented by significant differences in both SGN survival and soma area. BDNF cohorts demonstrated a significant trophic or survival advantage and larger soma area compared with AP-treated and deafened control cochleae; this advantage was greatest in the base of the cochlea. ES significantly enhanced the survival effects of BDNF throughout the majority of the cochlea (P < 0.05, Bonferroni's t-test), although there was no evidence of trophic support provided by ES alone. Cotreatment of SGNs with BDNF and ES provides a substantial functional and trophic advantage; this treatment may have important implications for neural prostheses.  相似文献   

4.
Cochlear implants are dependent on functionally viable spiral ganglion neurons (SGNs) — the primary auditory neurons of the inner ear. Cell-based therapies are being used experimentally in an attempt to rescue SGNs from deafness-induced degeneration or to generate new neurons. The success of these therapies will be dependent on the development of surgical techniques designed to ensure precise cell placement while minimizing surgical trauma, adverse tissue reaction and cell dispersal. Using 24 normal adult guinea pigs we assessed three surgical procedures for cell delivery into the cochlea: (i) a cochleostomy into the scala tympani (ST); (ii) direct access to Rosenthal's canal – the site of the SGN soma – via a localized fracture of the osseous spiral lamina (RC); and (iii) direct access to the auditory nerve via a translabyrinthine surgical approach (TL). Half the cohort had surgery alone while the other half had surgery combined with the delivery of biocompatible microspheres designed to model implanted cells. Following a four week survival period the inflammatory response and SGN survival were measured for each cohort and the location of microspheres were determined. We observed a wide variability across the three surgical approaches examined, including the extent of the inflammatory tissue response (TL  RC ≥ ST) and the survival of SGNs (ST > RC  TL). Importantly, microspheres were effectively retained at the implant site after all three surgical approaches. Direct access to Rosenthal's canal offered the most promising surgical approach to the SGNs, although the technique must be further refined to reduce the localized trauma associated with the procedure.  相似文献   

5.
Deafferentation of the auditory nerve from loss of sensory cells is associated with degeneration of nerve fibers and spiral ganglion neurons (SGN). SGN survival following deafferentation can be enhanced by application of neurotrophic factors (NTF), and NTF can induce the regrowth of SGN peripheral processes. Cochlear prostheses could provide targets for regrowth of afferent peripheral processes, enhancing neural integration of the implant, decreasing stimulation thresholds, and increasing specificity of stimulation. The present study analyzed distribution of afferent and efferent nerve fibers following deafness in guinea pigs using specific markers (parvalbumin for afferents, synaptophysin for efferent fibers) and the effect of brain derived neurotrophic factor (BDNF) in combination with acidic fibroblast growth factor (aFGF). Immediate treatment following deafness was compared with 3-week-delayed NTF treatment. Histology of the cochlea with immunohistochemical techniques allowed quantitative analysis of neuron and axonal changes. Effects of NTF were assessed at the light and electron microscopic levels. Chronic BDNF/aFGF resulted in a significantly increased number of afferent peripheral processes in both immediate- and delayed-treatment groups. Outgrowth of afferent nerve fibers into the scala tympani were observed, and SGN densities were found to be higher than in normal hearing animals. These new SGN might have developed from endogenous progenitor/stem cells, recently reported in human and mouse cochlea, under these experimental conditions of deafferentation-induced stress and NTF treatment. NTF treatment provided no enhanced maintenance of efferent fibers, although some synaptophysin-positive fibers were detected at atypical sites, suggesting some sprouting of efferent fibers.  相似文献   

6.
The spiral ganglion neurons (SGNs) located in the Rosenthal’s canal of cochlea are essential target for cochlear implant. Previous studies found that the canaliculi perforantes, small pores on the surface of the osseous spiral lamina (OSL) of the scala tympanic (ST) of cochlea, may provide communication between the cochlear perilymph and SGNs. In this study, we found that chronic treatment of aminoglycosides antibiotics, which is well known to cause sensory cell damage in the cochlea, induced significant damage of bone lining cells on the OSLs and increased the permeability of the Rosenthal’s canal. The pores among the bone lining cells became significantly wider after chronic treatment of amikacin (100 mg/kg/day for 3–7 days). Injection of Evans Blue in the ST resulted in significant increase in its migration in the modulus in the amikacin-treated cochlea compared to the control ears, suggesting increased permeability of these passages. Treatment of amikacin with oxytetracycline, an inhibitor of matrix metalloproteases (MMPs), significantly reduced the amount of dye migrated from the ST to the modiolus. These results suggest that amikacin enhanced the permeability between the ST and SGNs by increasing MMPs. Aggregating the permeability of the bone lining cells on the OSLs may benefit gene and stem cell delivery to the SGNs in the cochlea.  相似文献   

7.
Studies of sensorineural hearing loss have long suggested that survival of spiral ganglion neurons (SGNs) depends on trophic support provided by their peripheral targets, the inner hair cells (IHCs): following ototoxic drugs or acoustic overexposure, IHC death is rapid whereas SGN degeneration is always delayed. However, recent noise-trauma studies show that SGNs can die even when hair cells survive, and transgenic mouse models show that supporting cell dysfunction can cause SGN degeneration in the absence of IHC pathology. To reexamine this issue, we studied a model of IHC loss that does not involve noise or ototoxic drugs. Mice lacking the gene for the high-affinity thiamine transporter (Slc19a2) have normal cochlear structure and function when fed a regular (thiamine-rich) diet. However, dietary thiamine restriction causes widespread, rapid (within 10 d) loss of IHCs. Using this model, we show that SGNs can survive for months after IHC loss, indicating that (1) IHCs are not necessary for neuronal survival, (2) neuronal loss in the other hearing loss models is likely due to effects of the trauma on the sensory neurons or other inner ear cells, and (3) that other cells, most likely supporting cells of the organ of Corti, are the main source of SGN survival factors. These results overturn a long-standing dogma in the study of sensorineural hearing loss and highlight the importance of cochlear supporting cells in neuronal survival in the adult inner ear.  相似文献   

8.
Today a cochlear implant (CI) may significantly restore auditory function, even for people with a profound hearing loss. Because the efficacy of a CI is believed to depend mainly on the remaining population of spiral ganglion neurons (SGNs), it is important to understand the timeline of the degenerative process of the auditory neurons following deafness. Guinea pigs were transtympanically deafened with neomycin, verified by recording auditory brainstem responses (ABRs), and then sacrificed at different time points. Loss of SGNs as well as changes in cell body and nuclear volume were estimated. To study the effect of delayed treatment, a group of animals that had been deaf for 12 weeks was implanted with a stimulus electrode mimicking a CI, after which they received a 4‐week treatment with glial cell‐derived neurotrophic factor (GDNF). The electrical responsiveness of the SGNs was measured by recording electrically evoked ABRs. There was a rapid degeneration during the first 7 weeks, shown as a significant reduction of the SGN population. The degenerative process then slowed, and there was no difference in the amount of remaining neurons between weeks 7 and 18. © 2016 The Authors Journal of Neuroscience Research Published by Wiley Periodicals, Inc.  相似文献   

9.
Ethacrynic acid (EA) is known to interact with aminoglycoside antibiotics such as gentamicin (GM). In the chinchilla, co-administration of GM and EA can produce hair cell lesions ranging from a small loss of outer hair cells (OHCs) in the base of the cochlea to complete destruction of all hair cells, depending on dosing parameters. Although hair cell loss has been characterized, little is known about the fate of efferent fibers or spiral ganglion neurons (SGNs) in this model. To study the time course of efferent fiber and SGN loss, chinchillas were injected with GM (125 mg/kg IM) followed immediately by EA (40 mg/kg IV). Estimates of efferent fiber loss and density changes were made after 3 days or 1, 2, 3, or 4 weeks of survival. Estimates of SGN loss and density changes were made after 15 days or 1, 2, 4, or 6 months of survival. Cochlear function was rapidly abolished and all cochlear hair cells were missing within 24 h after treatment. Inner hair cells (IHCs) in the middle turn of the cochlea died earlier than cells in the apex or base, and OHCs in Rows 1 and 2 died earlier than OHCs in Row 3. Degeneration of efferent nerve fibers began 3-7 days post-injection, versus 15-30 days for SGNs, and the loss of efferent fibers was essentially complete within 1 month, versus 2-4 months for SGNs. The rapid time course of efferent fiber and SGN loss in the chinchilla may make it a practical model for studying mechanisms of neural loss and survival in the mammalian inner ear.  相似文献   

10.
Enhanced spiral ganglion neuron (SGN) survival and regeneration of peripheral axons following deafness will likely enhance the efficacy of cochlear implants. Overexpression of Bcl‐2 prevents SGN death but inhibits neurite growth. Here we assessed the consequences of Bcl‐2 targeted to either the mitochondria (GFP‐Bcl‐2‐Maob) or the endoplasmic reticulum (ER, GFP‐Bcl‐2‐Cb5) on cultured SGN survival and neurite growth. Transfection of wild‐type GFP‐Bcl‐2, GFP‐Bcl‐2‐Cb5, or GFP‐Bcl‐2‐Maob increased SGN survival, with GFP‐Bcl‐2‐Cb5 providing the most robust response. Paradoxically, expression of GFP‐Bcl‐2‐Maob results in SGN death in the presence of neurotrophin‐3 (NT‐3) and brain‐derived neurotrophic factor (BDNF), neurotrophins that independently promote SGN survival via Trk receptors. This loss of SGNs is associated with cleavage of caspase 3 and appears to be specific for neurotrophin signaling, insofar as coexpression of constitutively active mitogen‐activated kinase kinase (MEKΔEE) or phosphatidyl inositol‐3 kinase (P110), but not other prosurvival stimuli (e.g., membrane depolarization), also results in the loss of SGNs expressing GFP‐Bcl‐2‐Maob. MEKΔEE and P110 promote SGN survival, whereas P110 promotes neurite growth to a greater extent than NT‐3 or MEKΔEE. However, wild‐type GFP‐Bcl‐2, GFP‐Bcl‐2‐Cb5, and GFP‐Bcl‐2‐Maob inhibit neurite growth even in the presence of neurotrophins, MEKΔEE, or P110. Historically, Bcl‐2 has been thought to act primarily at the mitochondria to prevent neuronal apoptosis. Nevertheless, our data show that Bcl‐2 targeted to the ER is more effective at rescuing SGNs in the absence of trophic factors. Additionally, Bcl‐2 targeted to the mitochondria results in SGN death in the presence of neurotrophins. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
Loss of cochlear hair cells in the rat initiates degenerative change within the primary auditory neurons (ANs) of the cochlea. These degenerative changes include loss of peripheral processes, demyelination and ultimately cell death. This pathology will affect the biophysical processes involved in action potential generation and propagation to an electrical stimulus via a cochlear implant. We measured the response properties of ANs, with particular reference to their refractory behaviour, in normal, short- (9 weeks) and long-term (> 52 weeks) deafened rats. AN loss was moderate in the short-term and severe in the long-term deafened animals. AN activity was elicited using a brief electrical stimulus delivered via a bipolar electrode array implanted into the cochlea. The general response properties of ANs recorded from deafened cochleae were similar to those observed in normal cochleae, i.e. a monotonic increase in the probability of firing and a decrease in response latency and temporal jitter with increasing stimulus intensity. However, the absolute refractory period was significantly prolonged in animals deaf for > 12 months (P = 0.0026). Deafened animals also exhibited a highly significant increase in threshold compared with normal controls (P < 0.001). These functional changes have implications for recipients of cochlear implants and potential therapies directed toward halting or reversing AN pathology.  相似文献   

12.
As with other cranial nerves and many CNS neurons, primary auditory neurons degenerate as a consequence of loss of input from their target cells, the inner hair cells (IHCs). Electrical stimulation (ES) of spiral ganglion cells (SGCs) has been shown to enhance their survival. Glial cell line-derived neurotrophic factor (GDNF) has also been shown to increase survival of SGCs following IHC loss. In this study, the combined effects of the GDNF transgene delivered by adenoviral vectors (Ad-GDNF) and ES were tested on SGCs after first eliminating the IHCs. Animal groups received Ad-GDNF or ES or both. Ad-GDNF was inoculated into the cochlea of guinea pigs after deafening, to overexpress human GDNF. ES-treated animals were implanted with a cochlear implant electrode and chronically stimulated. A third group of animals received both Ad-GDNF and ES (GDNF/ES). Electrically evoked auditory brainstem responses were recorded from ES-treated animals at the start and end of the stimulation period. Animals were sacrificed 43 days after deafening and their ears prepared for evaluation of IHC survival and SGC counts. Treated ears exhibited significantly greater SGC survival than nontreated ears. The GDNF/ES combination provided significantly better preservation of SGC density than either treatment alone. Insofar as ES parameters were optimized for maximal protection (saturated effect), the further augmentation of the protection by GDNF suggests that the mechanisms of GDNF- and ES-mediated SGC protection are, at least in part, independent. We suggest that GDNF/ES combined treatment in cochlear implant recipients will improve auditory perception. These findings may have implications for the prevention and treatment of other neurodegenerative processes. .  相似文献   

13.
《Brain stimulation》2023,16(2):466-483
Optogenetic control of neural activity enables innovative approaches to improve functional restoration of diseased sensory and motor systems. For clinical translation to succeed, optogenetic stimulation needs to closely match the coding properties of the targeted neuronal population and employ optimally operating emitters. This requires the customization of channelrhodopsins, emitters and coding strategies. Here, we provide a framework to parametrize optogenetic neural control and apply it to the auditory pathway that requires high temporal fidelity of stimulation. We used a viral gene transfer of ultrafast targeting-optimized Chronos into spiral ganglion neurons (SGNs) of the cochlea of mice. We characterized the light-evoked response by in vivo recordings from individual SGNs and neurons of the anteroventral cochlear nucleus (AVCN) that detect coincident SGN inputs. Our recordings from single SGNs demonstrated that their spike probability can be graded by adjusting the duration of light pulses at constant intensity, which optimally serves efficient laser diode operation. We identified an effective pulse width of 1.6 ms to maximize encoding in SGNs at the maximal light intensity employed here (~35 mW). Alternatively, SGNs were activated at lower energy thresholds using short light pulses (<1 ms). An upper boundary of optical stimulation rates was identified at 316 Hz, inducing a robust spike rate adaptation that required a few tens of milliseconds to recover. We developed a semi-stochastic stimulation paradigm to rapidly (within minutes) estimate the input/output function from light to SGN firing and approximate the time constant of neuronal integration in the AVCN. By that, our data pave the way to design the sound coding strategies of future optical cochlear implants.  相似文献   

14.
15.
透射电镜观察SD大鼠耳蜗螺旋神经节神经元形态变化,发现阿米卡星可以诱导耳蜗螺旋神经节神经元凋亡。免疫组化染色和RT-PCR检测发现,阿米卡星诱导耳蜗螺旋神经元Bcl-2 蛋白表达下调,Bax、Caspase-3蛋白及Caspase-6 mRNA表达增强。表没食子儿茶素没食子酸酯可以抑制耳蜗螺旋神经元Bax、Caspase-3蛋白及Caspase-6 mRNA的表达,同时增强Bcl-2蛋白表达,从而降低耳蜗螺旋神经元凋亡率。证实表没食子儿茶素没食子酸酯对阿米卡星损伤的耳蜗螺旋神经节具有保护作用。  相似文献   

16.
Previous studies have shown that electrical stimulation of the cochlea by a cochlear implant promotes increased survival of spiral ganglion (SG) neurons in animals deafened early in life (Leake et al. [1999] J Comp Neurol 412:543-562). However, electrical stimulation only partially prevents SG degeneration after deafening and other neurotrophic agents that may be used along with an implant are of great interest. GM1 ganglioside is a glycosphingolipid that has been reported to be beneficial in treating stroke, spinal cord injuries, and Alzheimer's disease. GM1 activates trkB signaling and potentiates neurotrophins, and exogenous administration of GM1 has been shown to reduce SG degeneration after hearing loss. In the present study, animals were deafened as neonates and received daily injections of GM1, beginning either at birth or after animals were deafened and continuing until the time of cochlear implantation. GM1-treated and deafened control groups were examined at 7-8 weeks of age; additional GM1 and no-GM1 deafened control groups received a cochlear implant at 7-8 weeks of age and at least 6 months of unilateral electrical stimulation. Electrical stimulation elicited a significant trophic effect in both the GM1 group and the no-GM1 group as compared to the contralateral, nonstimulated ears. The results also demonstrated a modest initial improvement in SG density with GM1 treatment, which was maintained by and additive with the trophic effect of subsequent electrical stimulation. However, in the deafened ears contralateral to the implant SG soma size was severely reduced several months after withdrawal of GM1 in the absence of electrical activation.  相似文献   

17.
With the exception of humans, the somata of type I spiral ganglion neurons (SGNs) of most mammalian species are heavily myelinated. In an earlier study, we used Ly5.1 congenic mice as transplant recipients to investigate the role of hematopoietic stem cells in the adult mouse inner ear. An unanticipated finding was that a large percentage of the SGNs in this strain were unmyelinated. Further characterization of the auditory phenotype of young adult Ly5.1 mice in the present study revealed several unusual characteristics, including 1) large aggregates of unmyelinated SGNs in the apical and middle turns, 2) symmetrical junction‐like contacts between the unmyelinated neurons, 3) abnormal expression patterns for CNPase and connexin 29 in the SGN clusters, 4) reduced SGN density in the basal cochlea without a corresponding loss of sensory hair cells, 5) significantly delayed auditory brainstem response (ABR) wave I latencies at low and middle frequencies compared with control mice with similar ABR threshold, and 6) elevated ABR thresholds and deceased wave I amplitudes at high frequencies. Taken together, these data suggest a defect in Schwann cells that leads to incomplete myelinization of SGNs during cochlear development. The Ly5.1 mouse strain appears to be the only rodent model so far identified with a high degree of the “human‐like” feature of unmyelinated SGNs that aggregate into neural clusters. Thus, this strain may provide a suitable animal platform for modeling human auditory information processing such as synchronous neural activity and other auditory response properties. J. Comp. Neurol. 518:3254–3271, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
The effect of membrane electrical activity on spiral ganglion neuron (SGN) neurite growth remains unknown despite its relevance to cochlear implant technology. We demonstrate that membrane depolarization delays the initial formation and inhibits the subsequent extension of cultured SGN neurites. This inhibition depends directly on the level of depolarization with higher levels of depolarization causing retraction of existing neurites. Cultured SGNs express subunits for L-type, N-type, and P/Q type voltage-gated calcium channels (VGCCs) and removal of extracellular Ca(2+) or treatment with a combination of L-type, N-type, and P/Q-type VGCC antagonists rescues SGN neurite growth under depolarizing conditions. By measuring the fluorescence intensity of SGNs loaded with the fluorogenic calpain substrate t-butoxy carbonyl-Leu-Met-chloromethylaminocoumarin (20 microM), we demonstrate that depolarization activates calpains. Calpeptin (15 microM), a calpain inhibitor, prevents calpain activation by depolarization and rescues neurite growth in depolarized SGNs suggesting that calpain activation contributes to the inhibition of neurite growth by depolarization.  相似文献   

19.
In mammals, hair cells and spiral ganglion neurons (SGNs) in the cochlea together are sophisticated “sensorineural” structures that transduce auditory information from the outside world into the brain. Hair cells and SGNs are joined by glutamatergic ribbon‐type synapses composed of a molecular machinery rivaling in complexity the mechanoelectric transduction components found at the apical side of the hair cell. The cochlear hair cell ribbon synapse has received much attention lately because of recent and important findings related to its damage (sometimes termed “synaptopathy”) as a result of noise overexposure. During development, ribbon synapses between type I SGNs and inner hair cells form in the time window between birth and hearing onset and is a process coordinated with type I SGN myelination, spontaneous activity, synaptic pruning, and innervation by efferents. In this review, we highlight new findings regarding the diversity of type I SGNs and inner hair cell synapses, and the molecular mechanisms of selective hair cell targeting. Also discussed are cell adhesion molecules and protein constituents of the ribbon synapse, and how these factors participate in ribbon synapse formation. We also note interesting new insights into the morphological development of type II SGNs, and the potential for cochlear macrophages as important players in protecting SGNs. We also address recent studies demonstrating that the structural and physiological profiles of the type I SGNs do not reach full maturity until weeks after hearing onset, suggesting a protracted development that is likely modulated by activity.  相似文献   

20.
The development and survival of spiral ganglion neurons (SGNs) are dependent on multiple trophic factors as well as membrane electrical activity. Semaphorins (Sema) constitute a family of membrane‐associated and secreted proteins that have garnered significant attention as a potential SGN “navigator” during cochlea development. Previous studies using mutant mice demonstrated that Sema3A plays a role in the SGN pathfinding. The mechanisms, however, by which Sema3A shapes SGNs firing behavior are not known. In these studies, we found that Sema3A plays a novel role in regulating SGN resting membrane potential and excitability. Using dissociated SGN from pre‐hearing (P3–P5) and post‐hearing mice (P12–P15), we recorded membrane potentials using whole‐cell patch clamp recording techniques in apical and basal SGN populations. Recombinant Sema3A was applied to examine the effects on intrinsic membrane properties and action potentials evoked by current injections. Apical and basal SGNs from newborn mice treated with recombinant Sema3A (100 ng/ml) displayed a higher resting membrane potential, higher threshold, decreased amplitude, and prolonged latency and duration of spikes. Although a similar phenomenon was observed in SGNs from post‐hearing mice, the resting membrane potential was essentially indistinguishable before and after Sema3A exposure. Sema3A‐mediated changes in membrane excitability were associated with a significant decrease in K+ and Ca2+ currents. Sema3A acts through linopirdine‐sensitive K+ channels in apical, but not in the basal SGNs. Therefore, Sema3A induces differential effects in SGN membrane excitability that are dependent on age and location, and constitutes an additional early and novel effect of Sema3A SGNs in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号