共查询到20条相似文献,搜索用时 15 毫秒
1.
In the experiments reported here, female subjects were presented with reasoning tasks that changed from solvable to unsolvable, evoking "learned helplessness" or "loss of control" reactions in some subjects. Significant differences in slow cortical potential (SCP) changes were found between emotionally highly and lowly reactive subjects (grouped according to responses in postexperimental questionnaires) when processing unsolvable tasks. Cortical LORETA of SCP topographies and subsequent statistical nonparametric mapping (SnPM; analysis indicate clear reduction of anterior cingulate activity only with emotionally highly reactive subjects. In these subjects a region of the brain that is indispensable for goal-directed handling of tasks was switched off, whereas regions that are primarily engaged in processing the task stimuli were even more active during loss of control, although not at a statistically significant level. According to the anterior cingulate monitors the conflicts among brain regions and issues calls for further processing to the PFC that then guides behavior toward a goal. Learned helplessness might then be seen a state in which the function of the anterior cingulate is no longer maintained, perhaps due to the inhibitory influence of the amygdala possibly mediated via the brainstem dopaminergic ventral tegmental area. 相似文献
2.
Royet JP Hudry J Zald DH Godinot D Grégoire MC Lavenne F Costes N Holley A 《NeuroImage》2001,13(3):506-519
Humans routinely make judgments about olfactory stimuli. However, few studies have examined the functional neuroanatomy underlying the cognitive operations involved in such judgments. In order to delineate this functional anatomy, we asked 12 normal subjects to perform different judgments about olfactory stimuli while regional cerebral blood flow (rCBF) was measured with PET. In separate conditions, subjects made judgments about the presence (odor detection), intensity, hedonicity, familiarity, or edibility of different odorants. An auditory task served as a control condition. All five olfactory tasks induced rCBF increases in the right orbitofrontal cortex (OFC), but right OFC activity was highest during familiarity judgments and lowest during the detection task. Left OFC activity increased significantly during hedonic and familiarity judgments, but not during other odor judgments. Left OFC activity was significantly higher during hedonicity judgments than during familiarity or other olfactory judgments. These data demonstrate that aspects of odor processing in the OFC are lateralized depending on the type of olfactory task. They support a model of parallel processing in the left and right OFC in which the relative level of activation depends on whether the judgment involves odor recognition or emotion. Primary visual areas also demonstrated a differential involvement in olfactory processing depending on the type of olfactory task: significant rCBF increases were observed in hedonic and edibility judgments, whereas no significant rCBF increases were found in the other three judgments. These data indicate that judgments of hedonicity and edibility engage circuits involved in visual processing, but detection, intensity, and familiarity judgments do not. 相似文献
3.
Segmentation of brain structures from magnetic resonance (MR) scans plays an important role in the quantification of brain morphology. Since 3D deep learning models suffer from high computational cost, 2D deep learning methods are favored for their computational efficiency. However, existing 2D deep learning methods are not equipped to effectively capture 3D spatial contextual information that is needed to achieve accurate brain structure segmentation. In order to overcome this limitation, we develop an Anatomical Context-Encoding Network (ACEnet) to incorporate 3D spatial and anatomical contexts in 2D convolutional neural networks (CNNs) for efficient and accurate segmentation of brain structures from MR scans, consisting of 1) an anatomical context encoding module to incorporate anatomical information in 2D CNNs and 2) a spatial context encoding module to integrate 3D image information in 2D CNNs. In addition, a skull stripping module is adopted to guide the 2D CNNs to attend to the brain. Extensive experiments on three benchmark datasets have demonstrated that our method achieves promising performance compared with state-of-the-art alternative methods for brain structure segmentation in terms of both computational efficiency and segmentation accuracy. 相似文献
4.
Functional neuroanatomy of aversion and its anticipation 总被引:6,自引:0,他引:6
The capacity to anticipate aversive circumstances is central not only to successful adaptation but also to understanding the abnormalities that contribute to excessive worry and anxiety disorders. Forecasting and reacting to aversive events mobilize a host of affective and cognitive capacities and corresponding brain processes. Rapid event-related functional magnetic resonance imaging (fMRI) in 21 healthy volunteers assessed the overlap and divergence in the neural instantiation of anticipating and being exposed to aversive pictures. Brain areas jointly activated by the anticipation of and exposure to aversive pictures included the dorsal amygdala, anterior insula, dorsal anterior cingulate cortex (ACC), right dorsolateral prefrontal cortex (DLPFC), and right posterior orbitofrontal cortex (OFC). Anticipatory processes were uniquely associated with activations in rostral ACC, a more superior sector of the right DLPFC, and more medial sectors of the bilateral OFC. Activation of the right DLPFC in anticipation of aversion was associated with self-reports of increased negative affect, whereas OFC activation was associated with increases in both positive and negative affect. These results show that anticipation of aversion recruits key brain regions that respond to aversion, thereby potentially enhancing adaptive responses to aversive events. 相似文献
5.
Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI 总被引:29,自引:0,他引:29
Neuroimagingstudies with positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) have begun to describe the functional neuroanatomy of emotion. Taken separately, specific studies vary in task dimensions and in type(s) of emotion studied and are limited by statistical power and sensitivity. By examining findings across studies, we sought to determine if common or segregated patterns of activations exist across various emotional tasks. We reviewed 55 PET and fMRI activation studies (yielding 761 individual peaks) which investigated emotion in healthy subjects. Peak activation coordinates were transformed into a standard space and plotted onto canonical 3-D brain renderings. We divided the brain into 20 nonoverlapping regions, and characterized each region by its responsiveness across individual emotions (positive, negative, happiness, fear, anger, sadness, disgust), to different induction methods (visual, auditory, recall/imagery), and in emotional tasks with and without cognitive demand. Our review yielded the following summary observations: (1) The medial prefrontal cortex had a general role in emotional processing; (2) fear specifically engaged the amygdala; (3) sadness was associated with activity in the subcallosal cingulate; (4) emotional induction by visual stimuli activated the occipital cortex and the amygdala; (5) induction by emotional recall/imagery recruited the anterior cingulate and insula; (6) emotional tasks with cognitive demand also involved the anterior cingulate and insula. This review provides a critical comparison of findings across individual studies and suggests that separate brain regions are involved in different aspects of emotion. 相似文献
6.
Cough and sniff are both spontaneous respiratory behaviors that can be initiated voluntarily in humans. Disturbances of cough may be life threatening, while inability to sniff impairs the sense of smell in neurological patients. Cortical mechanisms of voluntary cough and sniff production have been predicted to exist; however, the localization and function of supramedullary areas responsible for these behaviors are poorly understood. We used functional magnetic resonance imaging to identify the central control of voluntary cough and sniff compared with breathing. We determined that both voluntary cough and sniff require a widespread pattern of sensorimotor activation along the Sylvian fissure convergent with voluntary breathing. Task-specific activation occurred in a pontomesencephalic region during voluntary coughing and in the hippocampus and piriform cortex during voluntary sniffing. Identification of the localization of cortical activation for cough control in humans may help potential drug development to target these regions in patients with chronic cough. Understanding the sensorimotor sniff control mechanisms may provide a new view on the cerebral functional reorganization of olfactory control in patients with neurological disorders. 相似文献
7.
8.
Functional neuroanatomy of auditory mismatch processing: an event-related fMRI study of duration-deviant oddballs 总被引:4,自引:0,他引:4
This study was designed to identify the neural networks underlying automatic auditory deviance detection in 10 healthy subjects using functional magnetic resonance imaging. We measured blood oxygenation level-dependent contrasts derived from the comparison of blocks of stimuli presented as a series of standard tones (50 ms duration) alone versus blocks that contained rare duration-deviant tones (100 ms) that were interspersed among a series of frequent standard tones while subjects were watching a silent movie. Possible effects of scanner noise were assessed by a "no tone" condition. In line with previous positron emission tomography and EEG source modeling studies, we found temporal lobe and prefrontal cortical activation that was associated with auditory duration mismatch processing. Data were also analyzed employing an event-related hemodynamic response model, which confirmed activation in response to duration-deviant tones bilaterally in the superior temporal gyrus and prefrontally in the right inferior and middle frontal gyri. In line with previous electrophysiological reports, mismatch activation of these brain regions was significantly correlated with age. These findings suggest a close relationship of the event-related hemodynamic response pattern with the corresponding electrophysiological activity underlying the event-related "mismatch negativity" potential, a putative measure of auditory sensory memory. 相似文献
9.
Whereas behavioral studies have made significant contributions toward the identification of the principles governing the coordination of limb movements, little is known about the role of higher brain areas that are involved in interlimb coordination. Functional magnetic resonance imaging (fMRI) was used to reveal the brain areas activated during the cyclical coordination of ipsilateral wrist and foot movements. Six normal subjects performed five different tasks that were presented in a random order, i.e., isolated flexion-extension movements of the right wrist (WRIST) and right foot (FOOT), cyclical coordination of wrist and foot according to the isodirectional (ISODIR) and nonisodirectional (NON-ISODIR) mode, and rest (REST). All movements were auditory paced at 66 beats/min. During the coordination of both limb segments, a distributed network was identified showing activation levels in the supplementary motor area (SMA), cingulate motor cortex (CMC), premotor cortex (PMC), primary sensorimotor cortex (M1/S1), and cerebellum that exceeded the sum of the activations observed during the isolated limb movements. In addition, coordination of the limb movements in different directions was associated with extra activation of the SMA as compared to movements in the same direction. It is therefore concluded that the SMA is substantially involved in the coordination of the nonhomologous limbs as part of a distributed motor network. Accordingly, the long-standing exclusive association that has been made between this medial frontal area and bimanual (homologous) coordination needs to be abandoned and extended towards other forms of interlimb coordination (nonhomologous). 相似文献
10.
Functional brain imaging studies of working memory (WM) in schizophrenia have yielded inconsistent results regarding deficits in the dorsolateral prefrontal (DLPFC) and parietal cortices. In spite of its potential importance in schizophrenia, there have been few investigations of WM deficits using auditory stimuli and no functional imaging studies have attempted to relate brain activation during auditory WM to positive and negative symptoms of schizophrenia. We used a two-back auditory WM paradigm in a functional MRI study of men with schizophrenia (N = 11) and controls (N = 13). Region of interest analysis was used to investigate group differences in activation as well as correlations with symptom scores from the Brief Psychiatric Rating Scale. Patients with schizophrenia performed significantly worse and were slower than control subjects in the WM task. Patients also showed decreased lateralization of activation and significant WM related activation deficits in the left and right DLPFC, frontal operculum, inferior parietal, and superior parietal cortex but not in the anterior cingulate or superior temporal gyrus. These results indicate that in addition to the prefrontal cortex, parietal cortex function is also disrupted during WM in schizophrenia. Withdrawal-retardation symptom scores were inversely correlated with frontal operculum activation. Thinking disturbance symptom scores were inversely correlated with right DLPFC activation. Our findings suggest an association between thinking disturbance symptoms, particularly unusual thought content, and disrupted WM processing in schizophrenia. 相似文献
11.
Maccari C Kamel KS Davids MR Halperin ML 《QJM : monthly journal of the Association of Physicians》2006,99(7):475-485
This teaching exercise demonstrates how principles of physiology might help in identifying the cause of a particularly severe case of metabolic acidosis and making appropriate decisions about therapy. The patient's plasma pH was 7.00 and their plasma bicarbonate concentration was 2 mmol/l. Because the time course of the patient's illness was believed to be <24 h, this suggested that a large quantity of acid had been added to the body in this short time period, but the medical team managing the case could not identify any acid that could have been produced rapidly by endogenous processes, or was ingested by the patient. Moreover, there was a question about how such a very low arterial PCO(2) (8 mmHg) could be sustained. Even once the diagnosis was made, there were issues to resolve concerning therapy. These included questions about how much sodium bicarbonate to administer, and what dangers might arise during this therapy. The missing links in this interesting story emerge during a discussion between the medical team and their imaginary mentor, Professor McCance. 相似文献
12.
13.
Toward a nursing theory of self-transcendence: deductive reformulation using developmental theories 总被引:2,自引:0,他引:2
P G Reed 《ANS. Advances in nursing science》1991,13(4):64-77
The purpose of this article is to explicate the development of an emerging middle-range nursing theory of self-transcendence. The process of developing the theory was based largely on the method of "deductive reformulation." Using this strategy, theoretic knowledge derived from life span developmental psychology was reformulated based on Rogers' conceptual system. Clinical experience and empirical investigations were also important in the theory development process. The theory of self-transcendence is potentially useful for application in various nursing settings where clients' well-being may be compromised by end-of-life issues. 相似文献
14.
15.
Müller NG Donner TH Bartelt OA Brandt SA Villringer A Kleinschmidt A 《NeuroImage》2003,20(3):1578-1590
Visual conjunction search is proposed to be a multicomponent process which involves scaling and successive shifts of attention in space as well as object identification. Here, we first mapped brain areas sustaining the proposed attentional subprocesses and then tested whether their activity was modulated by search load, i.e., the number of shifts, as predicted by serial search models. Search load was manipulated indirectly by precueing a varying number of locations at which relevant objects were shown. Multiple subregions within the intraparietal sulcus (IPS) and the prefrontal cortex were activated after cueing. Activity in the right posterior IPS was modulated by the distance of attention shifts and in the left posterior IPS by "zooming out" to cover a large region of the visual field. More anterior subregions of the left IPS responded to object identification irrespective of the need for serial scanning. Corresponding regions in the right IPS were modulated parametrically with respect to search load, along with the right temporoparietal junction. These results support a functional segregation of subregions of the IPS. The posterior regions participate in large-scale shifts and scaling of the attentional focus and the anterior regions in object identification and rapid serial shifts during search. The sustained activation in the frontal eye fields after cueing suggests a role in maintaining attention in the periphery. Together with the findings in early visual areas from this experiment (Müller et al., 2003) the current observations are best accounted for by hybrid models of visual conjunction search, where parallel processing in visual and temporoparietal regions and serial scanning controlled by the right IPS cooperate. 相似文献
16.
Gagne JJ Glynn RJ Rassen JA Walker AM Daniel GW Sridhar G Schneeweiss S 《Clinical pharmacology and therapeutics》2012,92(1):80-86
We developed a semi-automated active monitoring system that uses sequential matched-cohort analyses to assess drug safety across a distributed network of longitudinal electronic health-care data. In a retrospective analysis, we show that the system would have identified cerivastatin-induced rhabdomyolysis. In this study, we evaluated whether the system would generate alerts for three drug-outcome pairs: rosuvastatin and rhabdomyolysis (known null association), rosuvastatin and diabetes mellitus, and telithromycin and hepatotoxicity (two examples for which alerting would be questionable). Over >5 years of monitoring, rate differences (RDs) in comparisons of rosuvastatin with atorvastatin were -0.1 cases of rhabdomyolysis per 1,000 person-years (95% confidence interval (CI): -0.4, 0.1) and -2.2 diabetes cases per 1,000 person-years (95% CI: -6.0, 1.6). The RD for hepatotoxicity comparing telithromycin with azithromycin was 0.3 cases per 1,000 person-years (95% CI: -0.5, 1.0). In a setting in which false positivity is a major concern, the system did not generate alerts for the three drug-outcome pairs. 相似文献
17.
Sustained attention in a counting task: normal performance and functional neuroanatomy 总被引:2,自引:0,他引:2
Ortuño F Ojeda N Arbizu J López P Martí-Climent JM Peñuelas I Cervera S 《NeuroImage》2002,17(1):411-420
We examined changes in relative cerebral flood flow (relCBF) using PET during a sustained attention paradigm which included auditory stimulation and different tasks of mental counting. Ten normal volunteers underwent PET (15O water) during a baseline state and under experimental conditions which included listening to clicks, serial counting with auditory stimulation, counting with no auditory stimulation, and an additional component of working memory and time estimation. All subjects performed within normal limits in a battery of neurocognitive tests, which included measures of attention and working memory. Both counting with auditory stimulation and counting with no auditory stimulation engaged motor cortex, putamen, cerebellum, and anterior cingulate. Furthermore, counting with no auditory stimulation relative to counting while listening resulted in significantly increased relCBF in the inferior parietal, dorsolateral prefrontal, and anterior cingulate. The findings obtained in this study support the notion that the parietal and dorsolateral prefrontal cortex are involved when time estimation and working memory are taking part in a task requiring sustained attention. 相似文献
18.
The neuroanatomy of general intelligence: sex matters 总被引:2,自引:0,他引:2
We examined the relationship between structural brain variation and general intelligence using voxel-based morphometric analysis of MRI data in men and women with equivalent IQ scores. Compared to men, women show more white matter and fewer gray matter areas related to intelligence. In men IQ/gray matter correlations are strongest in frontal and parietal lobes (BA 8, 9, 39, 40), whereas the strongest correlations in women are in the frontal lobe (BA10) along with Broca's area. Men and women apparently achieve similar IQ results with different brain regions, suggesting that there is no singular underlying neuroanatomical structure to general intelligence and that different types of brain designs may manifest equivalent intellectual performance. 相似文献
19.
20.
D F Heitjan 《Controlled clinical trials》1999,20(4):309-318
Recently there has been much interest in methods for analyzing clinical trials of treatments that are subject to noncompliance. In this paper I study a small, simple dataset from a clinical trial of immunosuppressive therapy in the treatment of multiple sclerosis. I apply and compare a range of methods: the as-randomized (intention-to-treat) analysis, the as-treated analysis, estimates based on a nonignorable selection model, and Rubin's causal model. The results differ substantially even in this small dataset that exhibits modest noncompliance. For this reason, data analysts should be clear about which parameters are of greatest importance in the analysis of a clinical trial. 相似文献