首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary (1) Topical administration of Ruthenium Red (10–100 M in saline) to the serosal surface of the urinary bladder in urethane-anesthetized rats prevented the motor response of the urinary bladder to topical administration of capsaicin and protected the sensory fibers from capsaicin desensitization, but had no effect on the volume-evoked contractions (micturition reflex). At 1 mM increased bladder capacity and decreased amplitude of micturition contraction were observed. (2) At 100 M, topical Ruthenium Red prevented the blood pressure rise produced by topical administration of capsaicin onto the bladder but did not affect the blood pressure rise produced by sudden bladder distension in spinal rats. (3) After intrathecal administration, Ruthenium Red (80–800 ng/rat) produced a long lasting inhibition of the micturition reflex in urethane-anesthetized rats, this effect being evident in both vehicleor capsaicin- (50 mg/kg s. c. 4 days before) pretreated rats. At 800 ng/rat, intrathecal Ruthenium Red did not affect the blood pressure rise produced by topical administration of capsaicin onto the rat bladder nor that produced by bladder distension. (4) These findings provide further evidence that Ruthenium Red acts quite selectively as a capsaicin antagonist preventing both reflex and efferent responses activated by peripherally administered capsaicin. By contrast, sensory impulse generation by a natural stimulus such as bladder distension is apparently unaffected by Ruthenium Red. The marked inhibition of the micturition reflex observed after intrathecal administration of Ruthenium Red does probably not involve an interaction with primary afferents in the spinal cord.  相似文献   

2.
1. Capsaicin produced a prompt release of substance P-like immunoreactivity (SP-LI) from superfused mucosa-free muscle strips excised from the guinea-pig urinary bladder. A second application of capsaicin had no further effect, indicating desensitization. 2. Neither tetrodotoxin (1 microM) or nifedipine (10 microM) had any inhibitory effect on SP-LI release by capsaicin nor influenced the establishment of the desensitized state. Nifedipine produced per se some SP-LI release. 3. SP-LI release by capsaicin was abolished by incubation in a Calcium(Ca)-free medium containing EDTA (1.0 mM) which also afforded a partial protection toward desensitization. A lower EDTA concentration (0.1 mM) did not suppress SP-LI release by capsaicin but still inhibited desensitization. 4. When the concentration of CaCl2 in the medium was lowered to 1/10-1/100 of that present in normal Krebs solution, capsaicin still evoked a marked SP-LI release and desensitization occurred. In a nominally Ca free medium (maximal Ca concentration due to impurities was 6.7 microM) SP-LI release was still observed and desensitization was incomplete. 5. In a nominally Ca free medium, removal of Mg ions enhanced the SP-LI release induced by capsaicin and enhanced desensitization. 6. In functional studies, nifedipine greatly reduced or abolished the capsaicin- or SP-induced contraction of the rat or guinea-pig isolated bladder but did not prevent desensitization. Likewise, SP-LI depletion in the rat bladder following systemic capsaicin desensitization was not prevented by nifedipine pretreatment. On the other hand, the protective action of Ca free media (containing EDTA) was confirmed in organ bath studies (guinea-pig bladder). 7. These findings indicate that: (a) the requirements of extracellular calcium for activation of neuropeptide release from sensory nerves by capsaicin are very low; (b) both excitation of sensory fibers (SP-LI release) and desensitization are dependent upon the presence of extracellular calcium and (c) L-type voltage-sensitive Ca channels are not likely to be involved in the actions of capsaicin on sensory nerve terminals.  相似文献   

3.
Ruthenium Red, an inorganic dye which blocks transmembrane calcium (Ca) fluxes in neural tissues, reduced the capsaicin-induced release of substance P-like immunoreactivity from muscle strips of the guinea-pig urinary bladder in a concentration-dependent (30 nM - 3 microM) manner, and protected the sensory fibers from capsaicin-induced densensitization. A similar antagonism of the actions of capsaicin was observed in functional experiments (capsaicin-induced contraction of the isolated guinea-pig bladder or inhibition of twitches of the isolated rat vas deferens). In view of its established action on the depolarization-coupled entry of Ca into synaptosomes and the secretion of transmitter, we propose that Ruthenium Red could antagonize the action of capsaicin on the peripheral terminals of sensory nerves by a similar mechanism, thereby suppressing transmitter secretion and preventing the establishment of desensitization.  相似文献   

4.
Summary 1. The effect of capsaicin on bladder motility in vivo (urethane anaesthesia) and in vitro, plasma extravasation (Evans blue leakage technique) and content of substance P-like immunoreactivity (SP-LI) of the urinary bladder was investigated in various mammalian species. 2. Systemic capsaicin desensitization (rat and hamster, 50 mg/kg s.c. 4 days before; guinea-pig 55 mg/kg s. c. 4–7 days before) increased bladder capacity in rats and guinea-pigs and reduced voiding efficiency in guinea-pigs. All other urodynamic parameters were unaffected in both rats, guinea-pigs and hamsters. 3. Reflex bladder voiding was abolished by spinal cord transection in anaesthetized rats and hamsters. On the other hand, hexamethonium-(20 mg/kg i.v.)sensitive voiding contractions were obtained in response to saline filling 45 min from cord transection in guinea-pigs, indicating a profound interspecies variation in the basic organization of micturition. 4. Exposure to capsaicin (1 M) produced a contraction of the isolated bladder from rats, guinea-pigs (dome) and mice. Capsaicin produced only a slight contractile response in the guinea-pig bladder base. The motor response to capsaicin of the rat, guinea-pig and mouse bladder exhibited marked desensitization, suggesting a specific effect on sensory nerves. On the other hand, capsaicin (1 M) produced a slight relaxation of the hamster isolated bladder but this effect was reproducible at 1–2 h intervals, suggesting an unspecific effect. Capsaicin (1–10 M) did not affect motility of strips from the dome or the base of the rabbit bladder. 5. Intravenously administered capsaicin produced a marked plasma extravasation (Evans blue leakage) in the lower urinary tract of rats, mice and guinea pigs. In rats but not guinea-pigs the reaction in the bladder base was greater than in the dome. In hamsters intravenous capsaicin failed to induce any significant Evans blue leakage in the lower urinary tract. 6. SP-LI was detected in the lower urinary tract of rats, guinea-pigs, rabbits and mice but not hamsters. Bladder SP-LI was depleted by systemic capsaicin desensitization in rats, guinea-pigs and mice. Reverse phase HPLC indicated that all the immunoreactive material co-eluted with authentic substance P or its oxidized form. 7. These findings indicate that noticeable species-related differences exist with regard to the functions mediated by the Capsaicin-sensitive neurons in the urinary bladder. Send offprint requests to C. A. Maggi  相似文献   

5.
1. Intravesical administration of hyperosmolar NaCl or urea solutions produced a concentration-dependent stimulatory action on the micturition reflex in urethane-anesthetized rats. This effect was not modified in rats pretreated with capsaicin as adults (50 mg/kg s.c. 4 days before). 2. Hyperosmolar NaCl also produced Evans blue leakage (plasma extravasation) in the rat bladder. This effect was greatly reduced by extrinsic bladder denervation and in rats desensitized to capsaicin as newborns but not as adults. 3. Cumulative addition of NaCl produced a concentration-dependent increase in tone and biphasic effects on neurogenic contractions of the rat isolated bladder. These effects were not modified by in vitro capsaicin desensitization. 4. These findings do not support the idea that true osmoreceptors are present in the rat urinary bladder. The neurogenic component of the inflammatory response to hyperosmolar NaCl could involve activation of a subpopulation of bladder sensory fibers susceptible to the neurotoxic action of capsaicin in the early postnatal period only.  相似文献   

6.
1. Intravesical instillation of xylene (10-100%, dissolved in silicone oil) through a catheter implanted into the bladder of conscious, freely-moving rats produced behavioural effects (licking of lower abdomen or perineal region) suggestive of intense visceral pain, not mimicked by topical application of the irritant on the urethral outlet. 2. The xylene-induced visceral pain was prevented, to the same extent, by systemic desensitization to capsaicin (50 mg/kg s.c.) performed in either adult or newborn rats, as well as by extrinsic bladder denervation (pelvic ganglionectomy), thus indicating the involvement of primary afferents in the bladder wall. 3. Other behavioural responses induced by xylene instillation into the bladder (hind limb hyperextension, grooming) were not affected by systemic capsaicin desensitization in either adult or newborn rats, but were abolished by bladder denervation. 4. Systemic capsaicin desensitization produced an almost complete depletion of substance P-, neurokinin A-like and calcitonin gene-related peptide-like immunoreactivity in the rat urinary bladder. 5. These findings indicate that, in addition to their role in activating reflex micturition, the neuropeptides-containing capsaicin-sensitive sensory nerves of the rat bladder are involved in chemogenic visceral pain.  相似文献   

7.
Allyl isothiocyanate is well known to be a principal pungent constituent of horseradish and an agonist for transient receptor potential (TRP) A1. Ally isothiocyanate markedly inhibited the formation of gastric lesions induced by ethanol (1.5 ml/rat, p.o.), 0.6 M HCl (1.5 ml/rat, p.o.), 1% ammonia (1.5 ml/rat, p.o.), and aspirin (150 mg/kg, p.o.) (ED(50)=1.6, 2.2, 1.7, ca. 6.5 mg/kg, p.o.). It also significantly inhibited the formation of gastric lesions induced by indomethacin (20 mg/kg, p.o.), though the inhibition was ca. 60% at a high dose (40 mg/kg, p.o.). Furthermore, several synthetic isothiocyanate compounds also significantly inhibited ethanol and indomethacin-induced gastric lesions. Whereas, TRPV1 agonists, capsaicin and piperine, inhibited gastric lesions induced by ethanol, 1% ammonia, and aspirin, but had less of an effect on 0.6 M HCl-induced gastric lesions. With regard to mode of action, the protective effects of ally isothiocyanate on ethanol-induced gastric lesions were attenuated by pretreatment with indomethacin, but not with N(G)-nitro-L-arginine methyl ester hydrochloride (L-NAME), or ruthenium red. Pretreatment with indomethacin reduced the protective effects of piperine, and L-NAME reduced the effects of capsaicin and omeprazole. Furthermore, ruthenium red reduced the effects of capsaicin, piperine, and omeprazole. These findings suggest that endogenous prostaglandins play an important role in the protective effect of allyl isothiocyanate in ethanol-induced gastric lesions different from capsaicin, piperine, and omeprazole.  相似文献   

8.
Ruthenium red has recently been found to inhibit the effects of capsaicin on peripheral terminals of sensory neurones. Thus the effects of ruthenium red on the responses of the guinea-pig isolated ileum to capsaicin, acetylcholine (ACh), substance P (SP) and nicotine were investigated. Ruthenium red, 5 mumol/l, abolished responses to capsaicin 1.5 mumol/l and nicotine 2 mumol/l, and shifted the concentration-response lines to ACh and SP to the right. Pretreatment of ileum preparations with ruthenium red, 12.5 mumol/l for 2 min, prevented desensitization of ileum responses to capsaicin tested 30 min later. Tetrodotoxin, 1 mumol/l, abolished the response to capsaicin on control preparations and those pretreated with atropine, 5 mumol/l, ruthenium red, 12.5 mumol/l or spantide, 10 mumol/l. It is proposed that capsaicin acts via a specific receptor coupled to a receptor-operated membrane calcium channel, and that ruthenium red binds irreversibly to the calcium channel part of the complex but reversibly to some other site which prevents the action or binding of capsaicin at its specific receptor.  相似文献   

9.
Piperine (1 microM), a congener of capsaicin, produced an initial contraction blocked the capsaicin-sensitive contractile response to mesenteric nerve stimulation and inhibited the twitch response induced by field stimulation in the isolated guinea-pig ileum. These three effects of piperine (1 microM) were rapidly desensitized and significantly antagonized by ruthenium red (0.5-1 microM), an inorganic dye known to antagonize the effects of capsaicin. The contractile effect of piperine was abolished by application of tetrodotoxin plus desensitization with substance P or by extrinsic denervation. The inhibitory effect of piperine (1 microM) on the twitch response was antagonized by desensitization with calcitonin gene-related peptide (CGRP). Moreover, cross-tachyphylaxis between piperine and capsaicin was observed, suggesting that a similar mechanism may be involved in the effects of these agents. The contractile effects induced by piperine (10 microM) and the subsequent inhibitory effects on the twitch response were not desensitized and largely persisted after extrinsic denervation. The contractile effects of piperine (10 microM) were not strongly inhibited by tetrodotoxin plus desensitization with substance P. It was concluded that the lower concentration of piperine caused contraction and inhibited the twitch responses by releasing substance P and CGRP, respectively, from sensory nerves, and blocked the response to mesenteric nerve stimulation by a mechanism similar to that of capsaicin. At higher concentrations, piperine had non-specific direct actions on the smooth muscle.  相似文献   

10.
Chemical stimulation of primary afferent nerves in the rat urinary bladder in vivo with topical capsaicin (1 microg in 50 microl saline) determines a dual motor response, consisting of a contractile effect mediated by tachykinins released from sensory nerves in the bladder wall and a transient activation of a bladder-to-bladder micturition reflex organized at the supraspinal level (chemoceptive micturition reflex). Both responses undergo complete desensitization upon repeated applications of capsaicin. The i.v. administration of the novel neuropeptide nociceptin (100 nmol/kg) produced a long-lasting protection from capsaicin desensitization of afferent nerves which mediate the chemoceptive micturition reflex. In fact a chemoceptive micturition reflex could be repeatedly evoked by topical capsaicin in nociceptin-pretreated rats. In sharp contrast, nociceptin did not influence the development of desensitization of the local response to capsaicin, corresponding to the 'efferent' function of capsaicin-sensitive afferent neurons. These results suggest that the afferent and 'efferent' function of capsaicin-sensitive primary afferent neurons (CSPANs) in the rat bladder are differentiated by nociceptin. Alternative mechanisms underlying this phenomenon are discussed.  相似文献   

11.
Ruthenium red (1 microM), an inorganic dye which blocks transmembrane calcium (Ca) fluxes in neural tissues, selectively reduced the capsaicin (1 microM)-induced contraction of the guinea-pig ileum and protected the sensory fibers from capsaicin-induced desensitization. The ruthenium red (0.5-1 microM) antagonism of capsaicin-induced inhibition of responses to mesenteric nerve stimulation or field stimulation in the isolated guinea-pig ileum was an example of a similar antagonism of the effect of capsaicin. In view of the known action of ruthenium red on the depolarization-coupled entry of Ca into synaptosomes and the release of transmitter, our results support the proposal that ruthenium red could antagonize the action of capsaicin on the peripheral terminals of sensory nerves by a similar mechanism, thereby suppressing transmitter release and preventing the establishment of desensitization.  相似文献   

12.
Summary 1. The effects of capsaicin, substance P (SP) and neurokinin A (NKA) on motor activity and vascular permeability was investigated in the rat lower urinary tract (bladder dome and neck, proximal urethra and ureters). 2. Capsaicin produced contractions of the rat bladder dome and neck and of the proximal urethra in vitro, which were unaffected by tetrodotoxin and abolished by ganglionectomy. SP and NKA were almost equipotent in producing a contraction of the rat isolated bladder dome or neck and urethra. However, the maximal response to NKA was about twice that of SP on the urethra and bladder neck. 3. Capsaicin did not affect motility of the unstimulated rat isolated ureter, while NKA or SP activated rhythmic contractions, NKA being about 850 times more potent than SP. Either capsaicin or field stimulation produced a transient inhibition of the NKA-activated rhythmic contractions of the rat isolated ureter which was prevented by capsaicin-desensitization. 4. The capsaicin-(1 M) or field stimulation-induced inhibition of NKA-activated rhythmic contractions of the rat isolated ureter were unaffected by removal of pelvic ganglia but abolished by cold storage (72 h at 4°C). 5. Intravenous capsaicin induced an inflammatory response (Evans blue leakage) in the bladder, proximal urethra and ureters in vivo. Plasma extravasation was greater in the ureters, urethra and bladder neck than in the dome. SP, NKA and histamine produced a dose-dependent dye leakage in all segments of the rat urinary tract, the response being slightly greater in the bladder neck than in the dome. 6. The capsaicin-induced inflammatory response was abolished by systemic capsaicin-desensitization and reduced, to a variable extent, by pelvic ganglionectomy, in the various tissues examined. Topical application of tetrodotoxin on the bladder dome failed to affect the capsaicin-induced plasma extravasation in the urinary bladder. 7. These findings indicate that chemoceptive, capsaicin-sensitive nerves are present throughout the whole rat lower urinary tract and their activation determines a variety of visceromotor responses and an increase of vascular permeability. In various instances the response to capsaicin may be explained by the action of tachykinins but some effects may involve other sensory neuropeptides. Send offprint requests to C. A. Maggi at the above address  相似文献   

13.
We have investigated the effect of intravaginal application of capsaicin on micturition reflex in female rats. Urinary bladder contractility was measured by transurethral pressure recording at isovolumetric and subthreshold conditions in anaesthetized rats. The intravaginal application of capsaicin (15 mug/50 mul rat) induced reproducible bladder phasic contractions, without desensitization upon repeated applications, that were blocked by intravenous atropine (1 mg/kg) or hexamethonium (5 mg/kg) and prevented by removal of paracervical ganglia or systemic capsaicin pretreatment (125 mg/kg, s.c.). The inhibition of sympathetic transmission by guanethidine (30 mg/kg, s.c.) produced significant increase of the bladder reflex contractions activated by intravaginal capsaicin. Intravenous administration of the TRPV1 antagonist, capsazepine (3 mg/kg), significantly reduced the excitatory reflex response to capsaicin. Intravaginal administration of capsaicin (15 mug/50 mul), during distension-induced reflex bladder contractions, produced a transient block of reflexes, unaffected by guanethidine pretreatment. In conclusion, the stimulation of capsaicin-sensitive sensory nerve endings in the rat cervix-vagina induced a dual excitatory or inhibitory bladder response in anaesthetized female rats depending on the degree of bladder distension.  相似文献   

14.
Either intra-arterial or topical administration of calcitonin gene-related peptide (CGRP) had little effect on motility of the urinary bladder in urethane-anaesthetized rats. Only a high concentration (50 microM) of topical CGRP activated the micturition reflex and potentiated the response to exogenous substance P (SP). In the isolated rat bladder CGRP had inconsistent effects on spontaneous or field-stimulated contractions. CGRP neither produced any significant plasma extravasation (Evans blue leakage) in the rat lower urinary tract, nor potentiated the response to exogenous SP. CGRP inhibited motility in the rat isolated proximal urethra and ureters and counteracted the contractile response to neurokinins. An inhibitory effect of capsaicin on stimulated motility of the urethra was observed in all preparations and a small contractile response was evident in about 40% of cases. Lack of desensitization to the action of CGRP prevented the study of its interaction with capsaicin. The inhibitory effect of CGRP in the ureter exhibited a specific desensitization: if the preparations were pre-exposed to exogenous CGRP, the inhibition of motility produced by antidromic activation of the capsaicin-sensitive nerve terminals (field stimulation) as well as the response to capsaicin (1 microM) was prevented but the inhibitory response to isoprenaline was unaffected. These findings indicate that CGRP is able to influence markedly the motility of the rat lower urinary tract, but exhibits marked regional differences in its action. Endogenous CGRP could be the inhibitory transmitter which, when released from capsaicin-sensitive fibers, participate in the control of ureteral motility.  相似文献   

15.
Summary Capsaicin-induced stimulation and desensitization of neuropeptide release from primary afferent neurons was investigated in the rat urinary bladder in-vitro. The capsaicin (5 min contact time)-evoked release of calcitonin gene-related peptide-like immunoreactivity (CGRP-IR) was dose-dependent; threshold to produce detectable release was 0.1 μmol/l, the EC50 was 0.17 μmol/l. Pre-exposure of tissues to capsaicin (0.1–1.0 μmol/l, 5 min contact time) caused a dose-dependent reduction of the amount of CGRP-IR which was released by a second exposure to capsaicin. At 0.1 and 0.3 μmol/l, capsaicin was less effective to inhibit the subsequent K+-evoked release than that evoked by a second capsaicin exposure. Pre-exposure to 1 μmol/l capsaicin completely prevented subsequent K+- or capsaicin-evoked release of CGRP-IR. Exposure of the preparation to capsaicin (0.3μmol/l) in a Ca2+-free, EDTA-containing medium did not produce release of CGRP-IR. A subsequent stimulation with capsaicin in a 2.5 mmol/l Ca2+-containing superfusion solution was not less effective to release CGRP-IR than in tissues which had not been pre-exposed to capsaicin. At 18°C, the capsaicin-evoked release of CGRP-IR was reduced to 20% of the value obtained by the same dose (0.3 μmol/l for 5 min) of capsaicin at 37°C. Comparison of the desensitizing effect of 0.3 and 0.1 μmol/l capsaicin at 18°C and 37°C, respectively, showed significant inhibition of desensitization at 18°C. Inhibition of desensitization was also observed when the amount of CGRP-IR, which was released during preexposure to capsaicin (0.3 μmol/l for 10 min) at 18°C, was 3-fold higher than that produced by pre-exposure to capsaicin (0.1 μmol/l for 5 min) at 37°C. The present results show that in a narrow range of concentrations, capsaicin induces “selective” desensitization which is entirely dependent on the presence of external Ca2+ — and which is attenuated at low temperature.  相似文献   

16.
Transient receptor potential ion channel of the vanilloid type 1 (TRPV1)-dependent pathway, consisting of capsaicin-sensitive tachykininergic primary afferent and myenteric nitrergic neurons, has been suggested to mediate the inhibitory effect of capsaicin on vagally mediated striated muscle contractions in the rat esophagus. In a recent study, similar but also different effects of capsaicin and piperine on TRPV1 were demonstrated. Therefore, this study aimed to compare the effects of these two drugs on vagally induced contractions in the mouse esophagus. Capsaicin and piperine inhibited vagally induced contractions of a thoracic esophageal segment in a concentration-dependent manner. Ruthenium red (10 microM; a non-selective blocker of transient receptor potential cation channels) and SB-366791 (10 microM; a novel selective antagonist of TRPV1) blocked the inhibitory effect of capsaicin but not that of piperine. Piperine inhibited the vagally mediated contractions in esophagi of adult mice neonatally injected with capsaicin, while capsaicin failed to do so. Desensitization of TRPV1 in the mouse esophagus by in vitro pretreatment with capsaicin failed to affect the inhibitory effect of piperine, whereas the piperine effect was cross-desensitized by capsaicin pretreatment in rat and hamster esophagi. Additionally, a tachykinin NK(1) receptor antagonist, L-732,138 (1 microM), as well as a nitric oxide synthase inhibitor, NG-nitro-L-arginine methyl ester (L-NAME 200 microM), blocked the inhibitory effect of capsaicin but not that of piperine. Taken together, the results suggest that piperine inhibits the vagally mediated striated muscle contraction in the mouse esophagus through its action on a TRPV1-dependent pathway as well as a TRPV1-independent site.  相似文献   

17.
In primary sensory neurons, the capsaicin receptor TRPV1 functions as a molecular integrator for a broad range of seemingly unrelated chemical and physical noxious stimuli, including heat and altered pH. Indeed, TRPV1 is thought to be a major transducer of the thermal hyperalgesia that follows inflammation and tissue injury as this response is impaired in TRPV1-deficient mice. Following the molecular cloning of TRPV1 in 1997, over a dozen companies embarked on efforts to find clinically useful TRPV1 antagonists, but side-effects and limited efficacy have thus far prevented any compounds from progressing beyond phase II. This has rekindled interest in desensitization of nociceptive neurons to TRPV1 agonists (e.g. capsaicin and its ultrapotent analog resiniferatoxin) as an alternative pharmacological approach to block pain in the periphery where it is generated. The clinical value of capsaicin is, however, limited by its unfavorable irritancy to desensitization ratio. In animal experiments, resiniferatoxin treatment is a powerful approach to achieve long-lasting analgesia. In patients with overactive bladder, intravesical resiniferatoxin improves bladder function (or even restores continence) without significant irritancy and/or toxicity. In this review, we argue that resiniferatoxin is an attractive alternative to capsaicin in that it achieves lasting desensitization without the side effects that complicate capsaicin therapy.  相似文献   

18.
Summary The distribution of immunoreactive substance P (I-SP), somatostatin (I-SRIF), and neurotensin (I-NT) and the effect of capsaicin treatment on the concentration of these peptides was studied in the peripheral and central nervous system of the rat.Neonatal capsaicin treatment (50 mg/kg s.c.) caused a depletion of I-SRIF as well as of I-SP in sensory nerves and in the dorsal half of the spinal cord. No recovery of the peptide content was found when examined 4 months later suggesting an irrerersible effect. I-NT, not a constituent of primary sensory neurons, was not changed in the spinal cord. None of the peptides studied was depleted in the hypothalamus or preoptic area.Capsaicin treatment of adult rats also led to a decrease of I-SRIF and I-SP in primarh sensory neurons. The highest dose used (950 mg/kg s.c.) induced no greater depletion than the lowest one (50 mg/kg), except for I-SP in dorsal root ganglia. Intraperitoneal injection of capsaicin led to a higher degree of depletion than subcutaneous administration as examined 1 week after treatment. In contrast to neonatal treatment, the I-SRIF content was completely restored within 4 months after treatment of adult rats. The I-SP content, however, did not completely recover in all areas but remained reduced in cornea, vagus nerve, dorsal spinal cord, and medulla oblongata for up to 9 months.Intraventricular administration of capsaicin (200 g) caused a depletion of I-SP in the medulla oblongata but had no effect on the content of all 3 peptides in hypothalamus or preoptic area. In contrast to systemic treatment, no depletion of I-SP or I-SRIF was found in the trigeminal ganglion. Chemosensitivity of the eye was abolished after intraventricular or systemic treatment. Repeated topical application of a capsaicin solution (10 mg/ml) to the eye led within 4 h to a nearly complete depletion of I-SP in the cornea.These experiments show that capsaicin treatment of rats caused a depletion of both I-SRIF and I-SP in primary sensory neurons. While topical or systemic capsaicin administration causes depletion in terminals, the failure of intraventricular injections of capsaicin to deplete the peptides in the trigeminal ganglion suggests that depletion of the entire neuron requires an action of capsaicin on the peripheral branch and/or the cell body.  相似文献   

19.
Specificity of the effect is a crucial factor in using antagonists for detecting the physiological/pathophysiological roles of receptors. Here we examined the capsaicin receptor antagonist effects of three commercially-available substances, capsazepine, iodo-resiniferatoxin (I-RTX) and BCTC, on isolated smooth muscle preparations, including the human intestine. Care was taken to observe possible non-specific effects, to find out safe and effective concentrations. Capsazepine appeared to have a low margin of safety. I-RTX (up to 1μM) specifically inhibited capsaicin-induced contractions in the guinea-pig ileum and urinary bladder. I-RTX showed agonist activity on the rat urinary bladder. BCTC (1μM) abolished the contractile effects of capsaicin (1 or 2μM) on all preparations tested (guinea-pig ileum, bladder, trachea, as well as rat and mouse bladder), and on the guinea-pig renal pelvis, where it failed to influence capsaicin-sensitive, sensory neuron-mediated positive inotropy in response to field stimulation. On human intestinal preparations BCTC prevented the relaxant effect of capsaicin. It is concluded that of the three antagonists tested BCTC seems the safest one for inhibiting TRPV-1 receptors. The effect of capsazepine may be complicated by non-specific inhibition of smooth muscle contractility and that of I-RTX by agonist activity. The "local efferent" function of capsaicin-sensitive sensory neurons is not influenced by BCTC, as shown by the results obtained in the renal pelvis. In conclusion, of the TRPV-1 receptor antagonists studied, BCTC (1μM) seems the most reliable in isolated organ experiments. This substance is also effective in the human intestine.  相似文献   

20.
The systemic anti-inflammatory effect induced by antidromic sensory nerve stimulation was investigated in rats and guinea-pigs. In atropine-pretreated rats, bilateral antidromic stimulation of vagal afferent fibres (8 Hz, 20 min, at C-fibre strength) inhibited plasma extravasation induced by 1% mustard oil on the acutely denervated hindlegs by 36.45+/-3.95%. Both the prevention of this inhibitory effect by cysteamine pretreatment and the stimulation-evoked rise of plasma somatostatin-like immunoreactivity in the two species suggest a mediator role of neural somatostatin. Since this response was blocked by systemic capsaicin pretreatment and slightly reduced after subdiaphragmal vagotomy, participation of thoracic capsaicin-sensitive afferents is indicated. In guinea-pigs pretreated with guanethidine and pipecuronium, antidromic sciatic nerve stimulation induced 45.46+/-5.08% inhibition on the contralateral leg and increased plasma somatostatin-like immunoreactivity. It is concluded that somatostatin released from the activated vagal capsaicin-sensitive sensory nerve terminals of the rat and somatic nerves of the guinea-pigs exerts a systemic humoral function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号