首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rationale  Amisulpride is approved for clinical use in treating schizophrenia in a number of European countries and also for treating dysthymia, a mild form of depression, in Italy. Amisulpride has also been demonstrated to be an antidepressant for patients with major depression in many clinical trials. In part because of the selective D2/D3 receptor antagonist properties of amisulpride, it has long been widely assumed that dopaminergic modulation is the proximal event responsible for mediating its antidepressant and antipsychotic properties. Objectives  The purpose of these studies was to determine if amisulpride’s antidepressant actions are mediated by off-target interactions with other receptors. Materials and Methods  We performed experiments that: (1) examined the pharmacological profile of amisulpride at a large number of central nervous system (CNS) molecular targets and, (2) after finding high potency antagonist affinity for human 5-HT7a serotonin receptors, characterized the actions of amisulpride as an antidepressant in wild-type and 5-HT7 receptor knockout mice. Results  We discovered that amisulpride was a potent competitive antagonist at 5-HT7a receptors and that interactions with no other molecular target investigated in this paper could explain its antidepressant actions in vivo. Significantly, and in contrast to their wild-type littermates, 5-HT7 receptor knockout mice did not respond to amisulpride in two widely used rodent models of depression, the tail suspension test and the forced swim test. Conclusions  These results indicate that 5-HT7a receptor antagonism, and not D2/D3 receptor antagonism, likely underlies the antidepressant actions of amisulpride.  相似文献   

2.
The serotonin (5-HT) syndrome occurs in humans after antidepressant overdose or combination of drugs inducing a massive increase in extracellular 5-HT. Several 5-HT receptors are known to participate in this syndrome in humans and animal models. The 5-HT2B receptor has been proposed as a positive modulator of serotonergic activity, but whether it is involved in 5-HT syndrome has not yet been studied.We analyzed here, a putative role of 5-HT2B receptors in this disorder by forced swimming test (FST) and behavioral assessment in the open field. In FST, genetic (5-HT2B−/− mice) or pharmacological (antagonist RS127445 at 0.5 mg/kg) ablation of 5-HT2B receptors facilitated selective 5-HT reuptake inhibitors (SSRI)-induced increase of immobility time as well as expression of other symptoms related to 5-HT syndrome like hind limb abduction and Straub tail. Increase in immobility was also developed in FST by both wild type (WT) and 5-HT2B−/− mice after the administration of 5-HT1A, 5-HT2A or 5-HT2C receptor agonists, 8-OH-DPAT (5 mg/kg), DOI (1 mg/kg), or WAY161503 (5 mg/kg), respectively. In contrast, the 5-HT2B receptor agonist BW723C86 (3 mg/kg) or 5-HT1B receptor agonist CGS12066A (2 mg/kg) decreased immobility time in both genotypes. The 5-HT syndrome induced by fluoxetine at high doses was blocked in WT and 5-HT2B−/− mice by administration of 5-HT1A and 5-HT2C receptor antagonists (WAY100635 0.5 mg/kg and SB242084 0.5 mg/kg) but not by the 5-HT2A receptor antagonist MDL100907 (1 mg/kg). By behavioral assessment, we confirmed that 5-HT2B−/− mice were more prone to develop 5-HT syndrome symptoms after administration of high dose of SSRIs or the 5-HT precursor 5-Hydroxytryptophan, 5-HTP, even if increases in 5-HT plasma levels were similar in both genotypes.This evidence suggests that the presence of 5-HT2B receptors hinders acute 5-HT toxicity once high levels of 5-HT are attained. Therefore, differential agonism/antagonism of 5-HT receptors should be considered in the search of therapeutic targets for treating this serious disorder.  相似文献   

3.
The serotonin receptor agonist mCPP induces hyperlocomotion in 5-HT2C receptor knockout (KO) mice or in the presence of a 5-HT2C receptor antagonist. In the present group of experiments, we evaluate the role of 5-HT1A, 5-HT1B and 5-HT2A receptors in mCPP-induced hyperactivity in 5-HT2C KO mice. We also assess the ability of agonists at these receptors to induce hyperactivity in wildtype (WT) mice pre-treated with a selective 5-HT2C receptor antagonist. As previously reported, mCPP (3 mg/kg) induced hyperactivity in 5-HT2C KO mice. A combination of the 5-HT1B receptor agonist CP-94,253 (20 mg/kg) and the 5-HT1A receptor agonist 8-OH-DPAT (0.5 mg/kg) induced marked hyperactivity in WT but not in 5-HT2C KO mice, nor in mice treated with the selective 5-HT2C receptor antagonist, SB 242084 (1.5 mg/kg). Neither CP-94,253 nor 8-OH-DPAT had any intrinsic effect on locomotion in WTs. mCPP-induced hyperactivity was attenuated in 5-HT2C KO mice by the 5-HT1B receptor antagonist SB 224289 (2.5 mg/kg), and the 5-HT2A receptor antagonists ketanserin (0.3 mg/kg) and M100907 (0.01 mg/kg) but not by the 5-HT1A receptor antagonist WAY 100635 (1 mg/kg). The 5-HT(2A/2B/2C) receptor agonist, Ro 60-0175 (3 mg/kg), induced a modest increase in locomotor activity in WT mice pre-treated with SB 242084. However, the combination of Ro 60-0175 with CP-94,253 induced a substantial increase in activity in 5-HT2C KO mice, an effect comparable to mCPP-induced hyperactivity. Thus, joint activation of 5-HT1A and 5-HT1B receptors stimulates locomotion in WT mice but this response is dependent on a functional 5-HT2C receptor population and hence is absent in 5-HT2C KO mice. By contrast, mCPP-induced hyperactivity depends on the inactivation of a separate 5-HT2C receptor population and is mediated by 5-HT2A and 5-HT1B receptor activation.  相似文献   

4.
5-Hydroxytryptamine 3 (5-HT(3)) and alpha 7 nicotinic receptors share high sequence homology and pharmacological cross-reactivity. An assessment of the potential role of alpha 7 receptors in many neurophysiological processes, and hence their therapeutic value, requires the development of selective alpha 7 receptor agonists. We used a recently reported selective alpha 7 receptor agonist, (R)-(-)-5'Phenylspiro[1-azabicyclo[2.2.2] octane-3,2'-(3'H)furo[2,3-b]pyridine (PSAB-OFP) and confirmed its activity on human recombinant alpha 7 receptors. However, PSAB-OFP also displayed high affinity binding to 5-HT(3) receptors. To assess the functional activity of PSAB-OFP on 5-HT(3) receptors we studied recombinant human 5-HT(3) receptors expressed in Xenopus oocytes, as well as native mouse 5-HT(3) receptors expressed in N1E-115 neuroblastoma cells, using whole-cell patch clamp and Ca(2+) imaging. Our results show that PSAB-OFP is an equipotent, partial agonist of both alpha 7 and 5-HT(3) receptors. We conclude that it will be necessary to identify the determinant of this overlapping pharmacology in order to develop more selective alpha 7 receptor ligands.  相似文献   

5.
The aim of the present study was to examine the effect of the selective 5-HT7 receptor antagonist SB 269970 (0.25-20 mg/kg) in the behavioral tests commonly used for predicting anxiolytic- and antidepressant-like activity. Diazepam and imipramine were used as standard drugs. SB 269970 (in one medium dose of 0.5 or 1 mg/kg) exerted a specific antianxiety-like effect in the Vogel drinking test in rats, in the elevated plus-maze test in rats and in the four-plate test in mice. Moreover, SB 269970 (in one medium dose of 5 or 10 mg/kg) showed antidepressant-like activity in the forced swimming and the tail suspension tests in mice. At the same time, the tested compound at doses of 1-20 mg/kg did not change the spontaneous locomotor activity of mice. The potential anxiolytic and antidepressant effects produced by SB 269970 were weaker than those of the reference drugs employed. It is noteworthy that the active doses of SB 269970 were devoid of any visible motor side-effects. In conclusion, the results of our studies indicate that 5-HT7 receptor antagonists may play a role in the therapy of both anxiety and depression.  相似文献   

6.
5-HT(7) receptor mRNA and protein are localised in the dorsal raphe nucleus (DRN) on non-serotonergic neurones. The effect of 5-HT(7) receptor antagonism on 5-HT efflux was measured from guinea-pig DRN slices, using the technique of fast cyclic voltammetry. The 5-HT(7) receptor antagonist, SB-269970-A, significantly inhibited 5-HT efflux. The GABA(A) receptor agonist, muscimol, significantly inhibited 5-HT efflux, to a similar degree as SB-269970-A. In contrast, the GABA(A) receptor antagonist, bicuculline, significantly increased 5-HT efflux and attenuated the muscimol-induced inhibition. The muscimol and SB-269970-A effects were not additive and in the presence of bicuculline the SB-269970-A-induced inhibition of 5-HT efflux was attenuated. These data suggest that 5-HT(7) receptor antagonist-induced inhibition of 5-HT efflux occurs indirectly via activation of GABA(A) receptors. That is, 5-HT(7) receptors may be located on GABA interneurones and when activated decrease GABA release and hence decrease the inhibitory tone on 5-HT neurones, increasing 5-HT efflux in the DRN. Therefore, in the presence of GABAergic tone 5-HT(7) receptor antagonists would decrease 5-HT release from the DRN.  相似文献   

7.
Using the forced swimming test in mice, we examined the effect of the following antidepressants: citalopram, imipramine, desipramine and moclobemide (which are characterized by different mechanisms of action), administered in combination with the selective 5-HT7 receptor antagonist (2R)-1-[(3-hydroxyphenyl)sulfonyl]-2-[2-(4-methyl-1-piperidinyl)ethyl]-pyrrolidine (SB 269970). All those drugs were given in doses which did not shorten the immobility time of mice. Citalopram (1.25 mg/kg), imipramine (10 mg/kg), desipramine (5 mg/kg) or moclobemide (10 mg/kg) administered jointly with SB 269970 (5 mg/kg), produced a significant antidepressant-like effect. None of the compounds studied, given alone or in combination, increased the spontaneous locomotor activity of mice. The obtained results indicate that blockade of 5-HT7 receptors may facilitate the anti-immobility effect of antidepressants in mice.  相似文献   

8.
LB50016 was characterized as a selective and potent 5-HT1A receptor agonist and evaluate its anxiolytic and antidepressant activities. It shows high affinity for 5-HT1A receptor, moderate affinity for alpha 2 adrenergic and 5-HT2A receptors and no significant affinity for other receptors tested. Hypothermia and increased serum corticosterone level were observed in LB50016-treated rats, which are mediated mostly by post synaptic 5-HT1A receptor activation. In the mouse forced swim model for depression, LB50016-elicited dose-dependent reductions in immobility time, showing ED50 of approximately 3 mg/kg i.p., which was blocked by pretreatment of NAN-190, 5-HT1A antagonist. In face-to-face test for anxiolytic activity in mice, estimated ED50 was 2 mg/kg, i.p. In isolation-induced aggression test with mice, fifty-fold increases in latency to attack were observed at 30 min and last up to 4 h after LB50016 treatment (3 mg/kg, i.p.). Taken together, LB50016-induced pharmacological activities are mediated by activation of 5-HT1A receptors, offering an effective therapeutic candidate in the management of anxiety and depression in humans.  相似文献   

9.
Clinical studies have shown that triiodothyronine (T3) both augments and accelerates the therapeutic response to antidepressant drugs, particularly tricyclics. There is evidence that this effect is mediated by the serotonergic system. We show here that T3 administered daily for 7 days over the range 0.02-0.5 mg/kg increases basal serotonin (5-hydroxytryptamine, 5-HT) levels, as measured by in vivo microdialysis in rat cortex, in a dose-dependent fashion. All the doses of T3 examined reduced 5-HT(1A) autoreceptor activity, as measured by the effect of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT, 0.05 mg/kg s.c.) to decrease 5-HT levels in frontal cortex. T3 administered daily for 14 days at 0.02 mg/kg also reduced 5-HT(1B) autoreceptor activity, as measured by the effect of locally administered 3-(1,2,5,6-tetrahydropyrid-4-yl)pyrrolo[3,2-b]pyrid-5-one (CP 93129, 10 microM) to decrease 5-HT levels. In animals administered imipramine (10 mg/kg/day by osmotic minipump) concurrently with T3 injections, no further changes in either 5-HT(1A) or 5-HT(1B) autoreceptor activity were seen. We suggest that the effect of T3 to accelerate the therapeutic actions of antidepressant drugs may be due to a combination of the actions of T3 at autoreceptors and the actions of the drugs at postsynaptic 5-HT(1A) receptors.  相似文献   

10.
5-HT7 receptors are involved in REM sleep and possibly in mood disorders. REM sleep suppression and antidepressant-like behavior is observed in 5-HT7−/− mice and in rats treated with 5-HT7 receptor antagonists. We recently demonstrated that pharmacological blockade of 5-HT7 receptors enhances REM sleep suppression and antidepressant-like behavior induced by citalopram in rodents. It has been hypothesized that the effect of citalopram on sleep is essentially mediated by the activation of 5-HT1A receptors. The present study investigates the impact of 5-HT7 receptor gene deletion on the effect of various reuptake inhibitors on REM sleep and probes the role of 5-HT1A receptors in this response. Three SSRIs (citalopram, fluoxetine and paroxetine) but not the tricyclic antidepressant desipramine had a significantly stronger REM sleep suppressive effect in 5-HT7−/− mice compared to 5-HT7+/+ mice. In contrast, REM sleep was similarly reduced in 5-HT7+/+ mice and 5-HT7−/− mice after treatment with the 5-HT1A receptor agonist ipsapirone. Furthermore, both 5-HT7+/+ and 5-HT7−/− mice displayed the same increase in REM sleep duration produced by the 5-HT1A receptor antagonist WAY-100635. These findings indicate that 5-HT7 receptor deletion augments the effect of various SSRIs on REM sleep suppression and that this effect is distinct from those mediated via 5-HT1A receptors.  相似文献   

11.
5-HT2C receptor agonists have considerable therapeutic potential, however there is little in vivo data to compare the potency and selectivity of 5-HT2C receptor agonists. Since 5-HT2C receptor agonists reduce locomotor activity and food intake, changes in these drug-induced behaviours in 5-HT2C receptor knockout mice could provide a means to examine receptor selectivity in-vivo. Initially this study compared older 5-HT2C agonists mCPP and MK212, to newer, apparently more selective compounds: Ro 60-0175, WAY161503, CP809,101 and lorcaserin (APD356) on motor activity in wild-type, and 5-HT2C receptor knockout mice. Two 5-HT2C receptor antagonists SB242084 and SDZ SER 082 were also examined. mCPP did not significantly alter activity in wild-type mice, but enhanced activity in knockout animals. MK212 (3 and 10 mg/kg) and Ro 60-0175 (1 and 3 mg/kg) reduced activity in wild-type but not knockout animals. At 10 mg/kg, Ro 60-0175 reduced activity in knockout animals, suggesting loss of 5-HT2C receptor selectivity. CP809,101 and lorcaserin reduced activity in wild-type but not knockout mice. In subsequent feeding studies, Ro 60-0175 and lorcaserin reduced food intake in wild-type animals only. Selectivity of effect for mCPP was marginal. The antagonist SB242084 increased activity in wild-type animals but not in knockout mice; SB242084 did not alter feeding in either genotype. SDZ SER 082 reduced activity in both genotypes implying poor selectivity for 5-HT2C receptors. The data demonstrate that studying food intake, and particularly motor behaviour, in the 5-HT2C receptor knockout mouse is a useful and relatively simple approach for screening 5-HT2C receptor ligands in vivo.  相似文献   

12.
The aim of this study was to determine whether electroconvulsive shock (ECS, an established antidepressant treatment), like acute and chronic antidepressant drug treatments, produces similar differential effects on the behavioural profile of resident rats expressed during social encounters with unfamiliar intruder conspecifics (resident-intruder paradigm). Thirty minute pretreatment with a single ECS suppressed both investigation and aggression directed at intruders concomitant with increased flight behaviour and marked sedation. Behavioural disruption subsided over the following 24 h. In contrast, resident rats subjected to bi-daily ECS treatment expressed elevated aggression at days 7 (four shocks) and 14 (eight shocks). Eight days after the last ECS treatment the behaviour of the resident rats had returned to pretreatment values. Additional studies showed that bi-daily ECS treatment nearly abolished 5-HT(2C) receptor-mediated hypolocomotion induced by acute m-chlorophenylpiperazine (mCPP, 2.5 mg/kg sc) challenge 24 h following 2 ECSs, while 4 ECSs only enhanced 5-HT(2A) receptor-mediated head shakes induced by 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI, 2.0 mg/kg sc). These studies demonstrate that repeated ECS treatment increases the aggressive behaviour of resident rats which may be associated with adaptive changes in 5-HT(2C) and 5-HT(2A) receptor-mediated function. It remains to be seen whether adaptive changes in 5-HT(2C) receptor function represent a common mechanism of clinical antidepressant efficacy.  相似文献   

13.
Serotonin (5-HT) enhances the neurogenic contractile response induced by electrical field stimulation (EFS) in the rat isolated urinary bladder. The aim of this study was to functionally characterize the receptors involved in this effect by using a range of 5-HT receptor subtype selective agonists and antagonists. 5-HT produced a concentration-dependent potentiation of contractile responses to EFS with a pEC50 value of 6.86 ± 0.24. SB-269970 (0.01, 0.1 and 1 μM), a selective 5-HT7 receptor antagonist, caused a concentration-dependent rightward shift of the 5-HT-induced response. The pA2 value was 8.16 with a slope of 0.46 ± 0.08. Neither ketanserine nor SB-204741, 5-HT2A and 5-HT2B receptors antagonists, respectively, affected the concentration–response curve to 5-HT. However, 5-HT response was antagonized by the selective 5-HT2C receptor antagonist SB-242084 (0.1 and 1 μM). In the presence of 1 μM of both antagonists SB-269970 and SB-242084, 5-HT response was almost fully inhibited. 5-CT, a 5-HT7 receptor agonist, induced a biphasic concentration-dependent potentiation of neurogenic contractions. SB-269970 concentration-dependently antagonized the first phase of 5-CT response with a pA2 value of 8.77 and a slope not significantly different from unity (0.91 ± 0.11) that suggests a competitive antagonism. WAY-161503, a 5-HT2C receptor agonist (0.01–10 μM), induced a concentration-dependent potentiation of contractile response to EFS while DOI (a selective 5-HT2A agonist) had no effect. SB-242084 (0.1 and 1 μM) antagonized the effect of WAY-161503 in a concentration-dependent manner. The current results demonstrate that 5-HT potentiates neurogenic contractions of rat isolated detrusor muscle through both 5-HT7 and 5-HT2c receptors.  相似文献   

14.
Serotonin (5-HT) and 5-HT agonists have various resetting effects on the master clock, located in the suprachiasmatic nucleus (SCN), depending on the species. In rats, they induce photic-like effects on both locomotor activity rhythms and gene expression in the SCN. The 5-HT receptor(s) mediating these effects at circadian time 22 are localized in the SCN, most likely at a presynaptic level, on the retinohypothalamic terminals (RHT) known to convey photic information by releasing glutamate. Indeed, RHT degeneration blocks photic-like effects of a non-specific 5-HT agonist, quipazine. However, the 5-HT receptor subtype(s) involved is still unknown, although 5-HT(3) receptor activation is known to induce glutamate release. We thus analyzed the effects of selective 5-HT(3) agonist and antagonist, as well as a specific NMDA receptor antagonist, on different parameters of the clock. This study shows that the 5-HT(3) receptor mediates the resetting effects of quipazine on locomotor activity rhythms. The 5-HT(3) receptor is only partially implicated in quipazine-induced expression of c-FOS, while NMDA receptor inhibition blocks quipazine photic-like effects on both parameters. Taken together, photic-like responses produced by 5-HT stimulation in rats are likely mediated by (presynaptic?) 5-HT(3) receptor activation followed by NMDA receptor activation.  相似文献   

15.
This study evaluated the possible involvement of 5-HT(2B) receptors in long-lasting hypotension to 5-hydroxytryptamine (5-HT), which is predominantly mediated by 5-HT7 receptors, in anaesthetised vagosympathectomized rats. Intravenous injections of 5-HT and 5-carboxamidotryptamine (5-CT) elicited a dose-dependent hypotension that was dose-dependently antagonised by (R)-1-[(3-hydroxyphenyl)sulfonyl]-2-[2-(4-methyl-1-piperidinyl) ethyl] pyrrolidine (SB-269970; a selective 5-HT7 receptor antagonist), but not by saline. Interestingly, alpha-methyl-5-(2-thienylmethoxy)-1H-indole-3-ethanamine (BW723C86; a 5-HT(2B) receptor agonist) produced vasopressor responses without affecting hypotension to 5-HT. These results suggest that hypotension to 5-HT and 5-CT is mainly mediated by 5-HT7 receptors, whilst the role of 5-HT(2B) receptors seems unlikely.  相似文献   

16.
S-(-)-2-[[4-(napht-1-yl)piperazin-1-yl]methyl]-1,4-dioxoperhydropyrrolo[1,2-alpha]-pyrazine (CSP-2503) is a serotonin (5-HT) receptor ligand with selectivity and high affinity for 5-HT1A, 5-HT2A and 5-HT3 receptors. CSP-2503 reduced rectal temperature and 5-HT neuronal hypothalamic activity in mice, decreased electrical activity of raphe nuclei cells in rats and blocked the enhancement of adenylate cyclase activity induced by forskolin in HeLa cells transfected with the human 5-HT1A receptor. This compound also blocked head-twitches induced by the 5-HT(2A/2C) receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI). Contractions of guinea pig ileum induced by the 5-HT3 receptor agonist 2-methyl-5-HT were prevented by CSP-2503. Moreover, it reduced the bradycardia reflex induced by 2-methyl-5-HT in anaesthetized rats. In the light/dark box and social interaction tests, CSP-2503 presented anxiolytic activity, an action shared by 5-HT1 agonists and 5-HT3 antagonists. Taken together, these results suggest that CSP-2503 is a new 5-HT1 receptor agonist with 5-HT2A and 5-HT3)receptor antagonist activities that might be useful in a number of conditions associated with anxiety.  相似文献   

17.
5-Hydroxytryptamine (5-HT) and the 5-HT(1A/7) receptor agonist (+)-8-hydroxy-2-(di-n-propylamino) tetralinHBr (8-OH-DPAT), injected into the zona incerta (an area in the dorsal hypothalamus) of the female rat, inhibit the release of luteinizing hormone (LH) and the effects of both are blocked by the 5-HT(2/7) receptor antagonist, ritanserin. As both 8-OH-DPAT and ritanserin have moderate activity at the 5-HT7 receptor subtype, the possibility that this subtype might mediate their effects in the zona incerta has been investigated. Ovariectomised rats were primed with 5 microg oestradiol benzoate followed at 48 h by 0.5 mg progesterone, which induces an LH surge. 5-Carboxamidotryptamine (5-CT), a potent but non-selective agonist at 5-HT7 receptors, like 5-HT and 8-OH-DPAT, inhibited the LH surge at 5 and 1.25 nmol injected bilaterally into the zona incerta. The non-selective 5-HT(2/7) receptor antagonist ritanserin and the selective 5-HT7 receptor antagonist, (R)-3-(2-(2-(4-methyl-piperidin-1-yl)-pyrrolidine-1-sulfonyl)-phenol (SB-269970-A) at 0.5 microg/side blocked all three receptor agonists when injected concurrently into the zona incerta. However, lower (0.2 microg) and higher doses (2 and 5 microg) of SB-269970-A were less effective, indicating a bell-shaped dose-response curve. SB-269970-A was also inhibitory when administered systemically (1 mg/kg intraperitoneally (i.p.)). When LH release was suppressed by 5 microg oestradiol benzoate, SB-269970-A (0.5 and 2 microg) did not elevate levels, indicating it is unlikely that 5-HT7 receptors mediate a tonic inhibition on release but rather are involved in terminating the pre-ovulatory LH surge. These data demonstrate that 5-HT7 receptors play a role in the regulation of LH by the zona incerta in rat brain.  相似文献   

18.

BACKGROUND AND PURPOSE

5-HT is known to be a potent vasospasmogenic agonist in various arteries. However, in veins the vasomodulating actions of 5-HT, and the underlying mechanisms, remain to be fully clarified. Here, we characterized the actions by which 5-HT affects electrical and mechanical activities in the rabbit jugular vein.

EXPERIMENTAL APPROACH

Membrane potential and isometric tension were measured in endothelium-intact and -denuded preparations. Localization of 5-HT receptor subtypes was examined immunohistochemically.

KEY RESULTS

5-HT induced a transient then a small, sustained smooth muscle cell hyperpolarization in endothelium-intact strips. In endothelium-denuded strips, 5-HT induced only a sustained hyperpolarization, and this was changed to a depolarization by the selective 5-HT7 receptor inhibitor SB269970. This depolarization was inhibited by the 5-HT2A receptor blocker sarpogrelate. 5-HT induced a relaxation of PGF-induced contracted strips that was similar in endothelium-intact and -denuded preparations. The latter relaxation was changed to contraction by SB269970 and this contraction was inhibited by sarpogrelate. Immunoreactive responses against endothelial and smooth muscle 5-HT2A receptors and smooth muscle 5-HT7 receptors were identified in the vein. The 5-HT-induced relaxation of the PGF contraction was inhibited by the cAMP-dependent protein kinase inhibitor Rp-cAMPS and by the AC inhibitor SQ22536.

CONCLUSIONS AND IMPLICATIONS

These results indicate that 5-HT activates both smooth muscle 5-HT7 receptors (to produce relaxation) and smooth muscle 5-HT2A receptors (to produce contraction) in rabbit jugular vein. We suggest that in this particular vein, the 5-HT2A receptor-induced depolarization and contraction are masked by the 5-HT7 receptor-induced responses, possibly via actions mediated by cAMP.  相似文献   

19.
Anxiety disorders are the most common psychiatric disorders. Typical medications used to treat patients are benzodiazepines or antidepressants that target serotonin (5-HT) activity. The ionotropic 5-HT(3) receptor has emerged as a potential therapeutic target because selective antagonist compounds reduce anxiety in rodents, primates, and humans. 5-HT binds to the extracellular N-terminus of the 5-HT(3A) receptor subunit, but receptor activation is also enhanced by distinct allosteric sites. It is not known if specific molecular subunits of the 5-HT(3) receptor modulate anxiety. To address this issue, we characterized anxiety-like behavior of mice with a targeted deletion of the 5-HT(3A) receptor subunit gene in the light/dark box, elevated plus maze, and novelty interaction animal models of anxiety. 5-HT(3A) null mice exhibited an anxiolytic behavioral phenotype that was highly correlated across behavioral measures. This evidence indicates that the 5-HT(3A) molecular subunit influences anxiety-like behavior. Pharmacotherapy that targets specifically the 5-HT(3A) receptor subunit may provide a novel treatment for anxiety disorders.  相似文献   

20.
The present study examined whether serotonin (5-hydroxytryptamine; 5-HT)7 receptors play a role in the modulation of emotionality in mice using the selective 5-HT7 receptor antagonist 2a-[4-(4-phenyl-1,2,3,6-tetrahydropyridyl)butyl]-2a,3,4,5-tetrahydrobenzo (c,d)indol-2-(1H)-one (DR4004). The emotionality of mice was evaluated in terms of exploratory activity in the hole-board test. The mice treated with DR4004 (2.5-10 mg/kg, i.p.) displayed a dose-dependent decrease in locomotor activity by moving less distance in the hole-board, and statistically significant decreases were observed at 5 and 10 mg/kg. On the other hand, DR4004 (10 mg/kg, i.p.) did not affect spontaneous motor activity. In a neurochemical study, decreases in amygdaloid dopamine and 5-HT turnover were observed in mice in which locomotor activity in the hole-board test was attenuated following the administration of DR4004 (10 mg/kg, i.p.). Also, a simple linear regression analysis revealed that locomotor activity on the hole-board was significantly correlated with dopamine and 5-HT turnover in amygdala. Furthermore, co-injection of the selective dopamine reuptake inhibitor 1-(2-[bis(4-fluorophenyl)methoxy]ethyl)-4-(3-phenylpropyl)piperazine (GBR12909; 1.25-5 mg/kg, i.p.) or the selective 5-HT reuptake inhibitor fluvoxamine (20 mg/kg, i.p.) significantly reversed the DR4004 (10 mg/kg, i.p.)-induced decrease in locomotor activity in the hole-board test. These findings constitute the behavioral evidence that 5-HT7 receptors may play a role in the modulation of emotionality. Furthermore, it is also suggested that amygdaloid dopamine and 5-HT neuronal systems may be involved in this modulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号