首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sudden rupture of abdominal aortic aneurysm (AAA), often without prior medical warning, is the 13th leading cause of mortality in the US. The local rupture is triggered when the elusive maximum local wall stress exceeds the patient's yield stress. Employing a validated fluid – structure interaction code, the coupled blood flow and AAA wall dynamics were simulated and analysed for two representative asymmetric AAAs with different neck angles and iliac bifurcations. It turned out that the AAA morphology plays an important role in wall deformation and stress distribution, and hence possible rupture. The neck angle substantially impacts flow fields. A large neck angle may cause strong irregular vortices in the AAA cavity and may influence the wall stress distribution remarkably. The rupture risk of lateral asymmetric AAAs is higher than for the anterior – posterior asymmetric types. The most likely rupture site is located near the anterior distal side for the anterior – posterior asymmetric AAA and the left distal side in the lateral asymmetric AAA.  相似文献   

2.
It is generally believed that knowledge of the wall stress distribution could help to find better rupture risk predictors of abdominal aortic aneurysms (AAAs). Although AAA wall stress results from combined action between blood, wall and intraluminal thrombus, previously published models for patient-specific assessment of the wall stress predominantly did not include fluid-dynamic effects. In order to facilitate the incorporation of fluid–structure interaction in the assessment of AAA wall stress, in this paper, a method for generating patient-specific hexahedral finite element meshes of the AAA lumen and wall is presented. The applicability of the meshes is illustrated by simulations of the wall stress, blood velocity distribution and wall shear stress in a characteristic AAA. The presented method yields a flexible, semi-automated approach for generating patient-specific hexahedral meshes of the AAA lumen and wall with predefined element distributions. The combined fluid/solid mesh allows for simulations of AAA blood dynamics and AAA wall mechanics and the interaction between the two. The mechanical quantities computed in these simulations need to be validated in a clinical setting, after which they could be included in clinical trials in search of risk factors for AAA rupture.  相似文献   

3.
An abdominal aortic aneurysm (AAA) is a balloon-like dilation of the aorta, which is potentially fatal in case of rupture. Computational finite element (FE) analysis is a promising approach to a more accurate and patient-specific rupture risk prediction. AAA wall strength and rupture potential index (RPI) calculation are implemented in our FE software. Static structural FE simulations are performed on n = 30 non-ruptured asymptomatic, n = 9 non-ruptured symptomatic, and n = 14 ruptured AAAs. We calculate maximum values for diameter, wall displacement, strain, stress, and RPI as well as minimum wall strength for every AAA. All investigated quantities, except minimum strength, show statistically significant differences between non-ruptured asymptomatic and symptomatic/ruptured AAAs. Maximum wall stress and especially the RPI are notably increased for symptomatic and ruptured AAAs. The biggest difference is found to be the RPI (Δ = 44.9%, p = 8.0e−5). Lowest RPI obtained for symptomatic or ruptured AAAs is 0.3. The RPI of more than 55% of the investigated asymptomatic AAAs falls below this value. Maximum wall stress and maximum RPI criteria enable a reliable rupture risk evaluation for AAAs. Especially in the diameter range where surgical indication is not obvious, the RPI holds great potential for improvement of clinical decisions.  相似文献   

4.
Calcified deposits exist in almost all abdominal aortic aneurysms (AAAs). The significant difference in stiffness between these hard deposits and the compliant arterial wall may result in local stress concentrations and increase the risk of aneurysm rupture. Calcium deposits may also complicate AAA repair by hindering the attachment of a graft or stent-graft to the arterial wall or cause vessel wall injury at the site of balloon dilation or vascular clamp placement. Knowledge of the composition and properties of calcified deposits helps in understanding the risks associated with their presence. This work presents results of elemental composition, microscopic morphology, and mechanical property measurements of human calcified deposits obtained from within AAAs. The elemental analyses indicate the deposits are composed primarily of calcium phosphate with other assorted constituents. Microscopy investigations show a variety of microstructures within the deposits. The mechanical property measurements indicate an average elastic modulus in the range of cortical bone and an average hardness similar to nickel and iron.  相似文献   

5.
Abdominal Aortic Aneurysms (AAAs) are focal dilation of the aorta that can lead to excessive enlargement and rupture over time. Current practice suggests intervention when the maximum diameter exceeds 5.5 cm, since in this diameter range the annual rupture risk outweighs the operative mortality. However, small AAA (<5.5 cm), though infrequently, may rupture or produce symptoms. Evidence from large randomized studies of small AAAs support the heterogeneity in patterns of growth and rupture potential among small AAAs. Elevated wall stress values have been implicated in AAAs rupture and rapid enlargement. Additionally, many studies have identified a strong correlation between certain geometric factors and elevated stress values. In this article we discuss the possibility that geometrical factors may have a predictive value to identify those small AAAs that have an increased risk of rupture or growth rate either during initial examination or during follow-up, making them amenable for early repair.  相似文献   

6.
目的探讨基于MRA图像进行个体化腹主动脉瘤(abdominal aortic aneurysm,AAA)计算机仿真研究的可行性,并从血流动力学层面探讨AAA的发生、发展和破裂机制。方法基于AAA患者的MRA数据采用逆向建模法建立AAA的三维几何模型;采用FLUENT软件进行数值模拟,假设血管壁为刚性壁,血液为不可压缩牛顿流体,建立瞬态模型。将收敛之后的数据导入到CFD-Post中进行结果分析,输出心动周期内不同时刻的血流流线图、流速分布图、血管壁面切应力分布图以及压力分布图。结果AAA瘤颈处血液流动的方式以层流为主,瘤腔内血流以涡流、湍流为主,且在瘤体膨大处较明显;瘤颈处血液流速快于瘤腔,瘤腔大部分区域在整个心动周期内都处于较低的流速水平,且波动不明显,瘤腔内的高流速区域多位于入口血流直接延续的部位;射血期的壁面切应力的量值及其变化幅度均大于充盈期,壁面切应力较高的区域总是分布于瘤颈附近,瘤腔的切应力在整个心动周期内始终处于较低水平;瘤体的壁面压力量值及其分布范围在射血峰值(t=0.08 s)时最大。加速射血期的壁面压力及其变化范围均较减速射血期及充盈期大。结论基于MRA图像可建立个体化的AAA计算机仿真模型,通过计算机仿真得到的AAA内血流分布规律对AAA的研究和临床个体化的诊治有一定的帮助。  相似文献   

7.
8.
The current clinical management of abdominal aortic aneurysm (AAA) disease is based to a great extent on measuring the aneurysm maximum diameter to decide when timely intervention is required. Decades of clinical evidence show that aneurysm diameter is positively associated with the risk of rupture, but other parameters may also play a role in causing or predisposing the AAA to rupture. Geometric factors such as vessel tortuosity, intraluminal thrombus volume, and wall surface area are implicated in the differentiation of ruptured and unruptured AAAs. Biomechanical factors identified by means of computational modeling techniques, such as peak wall stress, have been positively correlated with rupture risk with a higher accuracy and sensitivity than maximum diameter alone. The objective of this review is to examine these factors, which are found to influence AAA disease progression, clinical management and rupture potential, as well as to highlight on-going research by our group in aneurysm modeling and rupture risk assessment.  相似文献   

9.
Wall stress analysis of abdominal aortic aneurysm (AAA) is a promising method of identifying AAAs at high risk of rupture. However, neglecting residual strains (RS) in the load-free configuration of patient-specific finite element analysis models is a sever limitation that strongly affects the computed wall stresses. Although several methods for including RS have been proposed, they cannot be directly applied to patient-specific AAA simulations. RS in the AAA wall are predicted through volumetric tissue growth that aims at satisfying the homogeneous stress hypothesis at mean arterial pressure load. Tissue growth is interpolated linearly across the wall thickness and aneurysm tissues are described by isotropic constitutive formulations. The total deformation is multiplicatively split into elastic and growth contributions, and a staggered schema is used to solve the field variables. The algorithm is validated qualitatively at a cylindrical artery model and then applied to patient-specific AAAs (n = 5). The induced RS state is fully three-dimensional and in qualitative agreement with experimental observations, i.e., wall strips that were excised from the load-free wall showed stress-releasing-deformations that are typically seen in laboratory experiments. Compared to RS-free simulations, the proposed algorithm reduced the von Mises stress gradient across the wall by a tenfold. Accounting for RS leads to homogenized wall stresses, which apart from reducing the peak wall stress (PWS) also shifted its location in some cases. The present study demonstrated that the homogeneous stress hypothesis can be effectively used to predict RS in the load-free configuration of the vascular wall. The proposed algorithm leads to a fast and robust prediction of RS, which is fully capable for a patient-specific AAA rupture risk assessment. Neglecting RS leads to non-realistic wall stress values that severely overestimate the PWS.  相似文献   

10.
Abdominal aortic aneurysm (AAA) represents a degenerative disease process of the abdominal aorta that results in dilation and permanent remodeling of the arterial wall. A fluid structure interaction (FSI) parametric study was conducted to evaluate the progression of aneurysmal disease and its possible implications on risk of rupture. Two parametric studies were conducted using (i) the iliac bifurcation angle and (ii) the AAA neck angulation. Idealized streamlined AAA geometries were employed. The simulations were carried out using both isotropic and anisotropic wall material models. The parameters were based on CT scans measurements obtained from a population of patients. The results indicate that the peak wall stresses increased with increasing iliac and neck inlet angles. Wall shear stress (WSS) and fluid pressure were analyzed and correlated with the wall stresses for both sets of studies. An adaptation response of a temporary reduction of the peak wall stresses seem to correlate to a certain extent with increasing iliac angles. For the neck angulation studies it appears that a breakdown from symmetric vortices at the AAA inlet into a single larger vortex significantly increases the wall stress. Our parametric FSI study demonstrates the adaptation response during aneurysmal disease progression and its possible effects on the AAA risk of rupture. This dependence on geometric parameters of the AAA can be used as an additional diagnostic tool to help clinicians reach informed decisions in establishing whether a risky surgical intervention is warranted.  相似文献   

11.
目的分别采用纯流体模型和流固耦合模型来计算腹主动脉瘤的血流动力学特征,比较两种数值模型的不同,并讨论在研究腹主动脉瘤中的应用。方法使用Gambit 2.2.30和COMSOL Multiphysics 4.2建立腹主动脉瘤的理想模型,分别基于有限体的方法分析纯流体模型,基于任意拉格朗日-欧拉算法(Arbitrary Lagrangian-Eulerian)计算流固耦合模型。结果同样的入口速度下,纯流体模型出现4个涡流和6个局部压力集中;流固耦合模型只有2个涡流和局部压力集中,且涡流中心更接近腹主动脉瘤的远端。在边界层分离点、血流回帖位置以及腹主动脉瘤的近端和远端,两种模型均出现壁剪切力极值。血管壁的最大形变和最大壁应力出现在腹主动脉瘤的近端和远端。结论两种模型的涡流个数和涡流中心的位置均不一样,与瘤体的生长有着密切的关联;流固耦合模型中的最大壁剪切力比纯流体模型要小36%;最大壁应力和最大血管壁的形变量与出口血压呈正相关。在研究血管瘤生长与血流动力学的关系时需要考虑使用流固耦合模型。  相似文献   

12.
The spatial distributions of both wall stress and wall strength are required to accurately evaluate the rupture potential for an individual abdominal aortic aneurysm (AAA). The purpose of this study was to develop a statistical model to non-invasively estimate the distribution of AAA wall strength. Seven parameters–namely age, gender, family history of AAA, smoking status, AAA size, local diameter, and local intraluminal thrombus (ILT) thickness–were either directly measured or recorded from the patients hospital chart. Wall strength values corresponding to these predictor variables were calculated from the tensile testing of surgically procured AAA wall specimens. Backwards–stepwise regression techniques were used to identify and eliminate insignificant predictors for wall strength. Linear mixed-effects modeling was used to derive a final statistical model for AAA wall strength, from which 95% confidence intervals on the model parameters were formed. The final statistical model for AAA wall strength consisted of the following variables: sex, family history, ILT thickness, and normalized transverse diameter. Demonstrative application of the model revealed a unique, complex wall strength distribution, with strength values ranging from 56 N/cm2 to 133 N/cm2. A four-parameter statistical model for the noninvasive estimation of patient-specific AAA wall strength distribution has been successfully developed. The currently developed model represents a first attempt towards the noninvasive assessment of AAA wall strength. Coupling this model with our stress analysis technique may provide a more accurate means to estimate patient-specific rupture potential of AAA.  相似文献   

13.
Abdominal aortic aneurysms (AAAs) are focal dilations of the aorta that develop from degenerative changes in the media and adventitia of the vessel. Ruptured AAAs have a mortality of up to 85%, thus it is important to identify patients with AAA at increased risk for rupture who would benefit from increased surveillance and/or surgical repair. Although the exact genetic and epigenetic mechanisms regulating AAA formation are not completely understood, Mendelian cases of AAA, which result from pathologic variants in a single gene, have helped provide a basic understanding of AAA pathophysiology. More recently, genome wide associated studies (GWAS) have identified additional variants, termed single nucleotide polymorphisms, in humans that may be associated with AAAs. While some variants may be associated with AAAs and play causal roles in aneurysm pathogenesis, it should be emphasized that the majority of SNPs do not actually cause disease. In addition to GWAS, other studies have uncovered epigenetic causes of disease that regulate expression of genes known to be important in AAA pathogenesis. This review describes many of these genetic and epigenetic contributors of AAAs, which altogether provide a deeper insight into AAA pathogenesis.  相似文献   

14.
The local dilation of the infrarenal abdominal aorta, termed an abdominal aortic aneurysm (AAA), is often times asymptomatic and may eventually result in rupture—an event associated with a significant mortality rate. The estimation of in-vivo stresses within AAAs has been proposed as a useful tool to predict the likelihood of rupture. For the current work, a previously-derived anisotropic relation for the AAA wall was implemented into patient-specific finite element simulations of AAA. There were 35 AAAs simulated in the current work which were broken up into three groups: elective repairs (n = 21), non-ruptured repairs (n = 5), and ruptured repairs (n = 9). Peak stresses and strains were compared using the anisotropic and isotropic constitutive relations. There were significant increases in peak stress when using the anisotropic relationship (p < 0.001), even in the absence of the ILT (p = 0.014). Rutpured AAAs resulted in elevated peak stresses as compared to non-ruptured AAAs when using both the isotropic and anisotropic simulations, however these comparisons did not reach significance (p ani = 0.55, p iso = 0.73). While neither the isotropic or anisotropic simulations were able to significantly discriminate ruptured vs. non-ruptured AAAs, the lower p-value when using the anisotropic model suggests including it into patient-specific AAAs may help better identify AAAs at high risk.  相似文献   

15.
在临床上,部分腹主动脉瘤(abdominal aortic aneurysm,AAA)行腔内修复术后由于内漏以及内张力的原因还会继续膨大(再生长),甚至破裂。内漏和内张力的存在会显著影响瘤体内的力学/血流动力学环境,从而改变动脉瘤管壁的应力、应变,同时更会影响瘤体内及管壁中物质输运,如低密度脂蛋白(LDL)、氧气、一氧化氮(NO)等,进而改变动脉管壁的生化环境和生理特性。综述引起AAA术后再膨大的生物力学原因及最新研究进展,并指出生物力学环境恶化(如管壁张应力升高)及生化环境异常(LDL沉积增加、氧气浓度变化等)引起的血管管壁强度下降可能是瘤体继续膨大的根源。在总结已有研究的基础上,提出从生物力学和力生物学角度系统研究AAA术后再膨大问题,将有助于更全面认识AAA术后再膨大的机制,同时也有助于腔内修复手术的改进及植介入器械的优化,具有重要的研究价值和临床意义。  相似文献   

16.
目的 应用两维对称模型模拟腹主动肪血管瘤的定常流动。方法 运用计算力学软件(FLUENTv4.3.2)进行数值模拟。结果 该研究给出了各种情况下的流动状态、流线分布、壁面剪切力和壁面压降的分布。结论 结果表明,腹主动脉血管瘤的形状和大小对流动状态影响不大,而雷诺数的增大会增大腹主动脉血管瘤内涡的强度。  相似文献   

17.
腹主动脉瘤中定常流动的三维数值模拟   总被引:1,自引:1,他引:1  
目的讨论定常流动情况下,三维腹主动脉瘤模型内的流动情况。方法应用三维非对称模型进行数值模拟。结果结果表明,在对称面上有一个涡而横截面上有两对涡的存在。壁面切应力在动脉瘤的出口处数值较高且变化大。结论流动和壁面切应力分布反应动脉瘤出口处为破裂的危险区域。  相似文献   

18.
Abdominal aortic aneurysm (AAA) is a local, progressive dilation of the distal aorta that risks rupture until treated. Using the law of Laplace, in vivo assessment of AAA surface geometry could identify regions of high wall tensions as well as provide critical dimensional and shape data for customized endoluminal stent grafts. In this study, six patients with AAA underwent spiral computed tomography imaging and the inner wall of each AAA was identified, digitized, and reconstructed. A biquadric surface patch technique was used to compute the local principal curvatures, which required no assumptions regarding axisymmetry or other shape characteristics of the AAA surface. The spatial distribution of AAA principal curvatures demonstrated substantial axial asymmetry, and included adjacent elliptical and hyperbolic regions. To determine how much the curvature spatial distributions were dependent on tortuosity versus bulging, the effects of AAA tortuosity were removed from the three-dimensional (3D) reconstructions by aligning the centroids of each digitized contour to the z axis. The spatial distribution of principal curvatures of the modified 3D reconstructions were found to be largely axisymmetric, suggesting that much of the surface geometric asymmetry is due to AAA bending. On average, AAA surface area increased by 56% and abdominal aortic length increased by 27% over those for the normal aorta. Our results indicate that AAA surface geometry is highly complex and cannot be simulated by simple axisymmetric models, and suggests an equally complex wall stress distribution. © 1999 Biomedical Engineering Society. PAC99: 8719Rr, 8759Fm, 8757Gg  相似文献   

19.
Since the introduction of endovascular techniques in the early 1990s for the treatment of abdominal aortic aneurysms (AAAs), the insertion of an endovascular graft (EVG) into the affected artery segment has been greatly successful for a certain group of AAA patients and is continuously evolving. However, although minimally invasive endovascular aneurysm repair (EVAR) is very attractive, post-operative complications may occur. Typically, they are the result of excessive fluid-structure interaction dynamics, possibly leading to EVG migration. Considering a 3D stented AAA, a coupled fluid flow and solid mechanics solver was employed to simulate and analyze the interactive dynamics, i.e., pulsatile blood flow in the EVG lumen, pressure levels in the stagnant blood filling the AAA cavity, as well as stresses and displacements in the EVG and AAA walls. The validated numerical results show that a securely placed EVG shields the diseased AAA wall from the pulsatile blood pressure and hence keeps the maximum wall stress 20 times below the wall stress value in the non-stented AAA. The sac pressure is reduced significantly but remains non-zero and transient, caused by the complex fluid-structure interactions between luminal blood flow, EVG wall, stagnant sac blood, and aneurysm wall. The time-varying drag force on the EVG exerted by physiological blood flow is unavoidable, where for patients with severe hypertension the risk of EVG migration is very high.  相似文献   

20.
Abdominal aortic aneurysm (AAA) disease is a degenerating process whose ultimate event is the rupture of the vessel wall. Rupture occurs when the stresses acting on the wall rise above the strength of the AAA wall tissue. The complex mechanical interaction between blood flow and wall dynamics in a three dimensional custom model of a patient AAA was studied by means of computational coupled fluid-structure interaction analysis. Real 3D AAA geometry is obtained from CT scans image processing. The results provide a quantitative local evaluation of the stresses due to local structural and fluid dynamic conditions. The method accounts for the complex geometry of the aneurysm, the presence of a thrombus and the interaction between solid and fluid. A proven clinical efficacy may promote the method as a tool to determine factual aneurysm risk of rupture and aid the surgeon to refer elective surgery patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号