首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
Estrogen receptor beta treats Alzheimer’s disease   总被引:1,自引:0,他引:1  
In vitro studies have shown that estrogen receptor β can attenuate the cytotoxic effect of amyloid β protein on PC12 cells through the Akt pathway without estrogen stimulation. In this study, we aimed to observe the effect of estrogen receptor β in Alzheimer’s disease rat models established by intraventricular injection of amyloid β protein. Estrogen receptor β lentiviral particles delivered via intraventricular injection increased Akt content in the hippocampus, decreased interleukin-1β mRNA, tumor necrosis factor α mRNA and amyloid β protein levels in the hippocampus, and improved the learning and memory capacities in Alzheimer’s disease rats. Estrogen receptor β short hairpin RNA lentiviral particles delivered via intraventricular injection had none of the above impacts on Alzheimer’s disease rats. These experimental findings indicate that estrogen receptor β, independent from estrogen, can reduce inflammatory reactions and amyloid β deposition in the hippocampus of Alzheimer’s disease rats, and improve learning and memory capacities. This effect may be mediated through activation of the Akt pathway.  相似文献   

2.
α7 nicotinic acetylcholine receptors (nAChRs) are widely expressed in the brain where they promote fast cholinergic synaptic transmission and serve important neuromodulatory functions. However, their high permeability to Ca2+ also predisposes them to contribute to disease states. Here, using transfected HEK-tsa cells and primary cultured hippocampal neurons from male and female rats, we demonstrate that two proteins called Ly6h and NACHO compete for access to α7 subunits, operating together but in opposition to maintain α7 assembly and activity within a narrow range that is optimal for neuronal function and viability. Using mixed gender human temporal cortex and cultured hippocampal neurons from rats we further show that this balance is perturbed during Alzheimer''s disease (AD) because of amyloid β (Aβ)-driven reduction in Ly6h, with severe reduction leading to increased phosphorylated tau and α7-mediated neurotoxicity. Ly6h release into human CSF is also correlated with AD severity. Thus, Ly6h links cholinergic signaling, Aβ and phosphorylated tau and may serve as a novel marker for AD progression.SIGNIFICANCE STATEMENT One of the earliest and most persistent hypotheses regarding Alzheimer''s disease (AD) attributes cognitive impairment to loss of cholinergic signaling. More recently, interest has focused on crucial roles for amyloid β (Aβ) and phosphorylated tau in Alzheimer''s pathogenesis. Here, we demonstrate that these elements are linked by Ly6h and its counterpart, NACHO, functioning in opposition to maintain assembly of nicotinic acetylcholine receptors (nAChRs) within the physiological range. Our data suggests that Aβ shifts the balance away from Ly6h and toward NACHO, resulting in increased assembly of Ca2+-permeable nAChRs and thus a conversion of basal cholinergic to neurotoxic signaling.  相似文献   

3.

Background and Purpose

Recent studies have demonstrated that resveratrol (RSV) reduces the incidence of age-related macular degeneration, Alzheimer''s disease (AD), and stroke, while melatonin (MEL) supplementation reduces the progression of the cognitive impairment in AD patients. The purpose of this investigation was to assess whether the co-administration of MEL and RSV exerts synergistic effects on their neuroprotective properties against β-amyloid (Aβ)-induced neuronal death.

Methods

The neuroprotective effects of co-treatment with MEL and RSV on Aβ1-42-induced cell death, was measured by MTT reduction assay. Aβ1-42 caused an increase in intracellular levels of reactive oxygen species (ROS), as assessed by H2-DCF-DA dye, and a reduction of total glutathione (GSH) levels and mitochondrial membrane potential, as assessed using monochlorobimane and rhodamine 123 fluorescence, respectively. Western blotting was used to investigate the intracellular signaling mechanism involved in these synergic effects.

Results

We treated a murine HT22 hippocampal cell line with MEL or RSV alone or with both simultaneously. MEL and RSV alone significantly attenuated ROS production, mitochondrial membrane-potential disruption and the neurotoxicity induced by Aβ1-42. They also restored the Aβ1-42-induced depletion of GSH, back to within its normal range and prevented the Aβ1-42-induced activation of glycogen synthase kinase 3β (GSK3β). However, co-treatment with MEL and RSV did not exert any significant synergistic effects on either the recovery of the Aβ1-42-induced depletion of GSH or on the inhibition of Aβ1-42-induced GSK3β activation. Aβ1-42 treatment increased AMP-activated protein kinase (AMPK) activity, which is associated with subsequent neuronal death. We demonstrated that MEL and RSV treatment inhibited the phosphorylation of AMPK.

Conclusions

Together, our results suggest that co-administration of MEL and RSV acts as an effective treatment for AD by attenuating Aβ1-42-induced oxidative stress and the AMPK-dependent pathway.  相似文献   

4.
Interleukin-1α and interleukin-1β aggravate neuronal injury by mediating the inflammatory reaction following ischemic/hypoxic brain injury. It remains unclear whether interleukin-1α and interleukin-1β are released by microglia or astrocytes. This study prepared hippocampal slices that were subsequently subjected to oxygen and glucose deprivation. Hematoxylin-eosin staining verified that neurons exhibited hypoxic changes. Results of enzyme-linked immunosorbent assay found that interleukin-1α and interleukin-1β participated in this hypoxic process. Moreover, when hypoxic injury occurred in the hippocampus, the release of interleukin-1α and interleukin-1β was mediated by the P2X4 receptor and P2X7 receptor. Immunofluorescence staining revealed that during ischemia/hypoxia, the P2X4 receptor, P2X7 receptor, interleukin-1α and interleukin-1β expression was detectable in rat hippocampal microglia, but only P2X4 receptor and P2X7 receptor expression was detected in astrocytes. Results suggested that the P2X4 receptor and P2X7 receptor, respectively, mediated interleukin-1α and interleukin-1β released by microglia, resulting in hippocampal ischemic/hypoxic injury. Astrocytes were activated, but did not synthesize or release interleukin-1α and interleukin-1β.  相似文献   

5.
6.
We investigated the role of the Wnt signaling pathway in cerebral ischemia/reperfusion injury by examining β-catenin and glycogen synthase kinase-3β protein expression in the rat hippocampal CA1 region following acute cerebral ischemia/reperfusion. Our results demonstrate that cell apoptosis increases in the CA1 region following ischemia/reperfusion. In addition, β-catenin and glycogen synthase kinase-3β protein expression gradually increases, peaking at 48 hours following reperfusion. Dickkopf-1 administration, after cerebral ischemia/reperfusion injury, results in decreased cell apoptosis, and β-catenin and glycogen synthase kinase-3β expression, in the CA1 region. This suggests that β-catenin and glycogen synthase kinase-3β, both components of the Wnt signaling pathway, participate in cell apoptosis following cerebral ischemia/reperfusion injury.  相似文献   

7.
The A/T/N research framework has been proposed for the diagnosis and prognosis of Alzheimer''s disease (AD). However, the spatial distribution of ATN biomarkers and their relationship with cognitive impairment and neuropsychiatric symptoms (NPS) need further clarification in patients with AD. We scanned 83 AD patients and 38 cognitively normal controls who independently completed the mini‐mental state examination and Neuropsychiatric Inventory scales. Tau, Aβ, and hypometabolism spatial patterns were characterized using Statistical Parametric Mapping together with [18F]flortaucipir, [18F]florbetapir, and [18F]FDG positron emission tomography. Piecewise linear regression, two‐sample t‐tests, and support vector machine algorithms were used to explore the relationship between tau, Aβ, and hypometabolism and cognition, NPS, and AD diagnosis. The results showed that regions with tau deposition are region‐specific and mainly occurred in inferior temporal lobes in AD, which extensively overlaps with the hypometabolic regions. While the deposition regions of Aβ were unique and the regions affected by hypometabolism were widely distributed. Unlike Aβ, tau and hypometabolism build up monotonically with increasing cognitive impairment in the late stages of AD. In addition, NPS in AD were associated with tau deposition closely, followed by hypometabolism, but not with Aβ. Finally, hypometabolism and tau had higher accuracy in differentiating the AD patients from controls (accuracy = 0.88, accuracy = 0.85) than Aβ (accuracy = 0.81), and the combined three were the highest (accuracy = 0.95). These findings suggest tau pathology is superior over Aβ and glucose metabolism to identify cognitive impairment and NPS. Its results support tau accumulation can be used as a biomarker of clinical impairment in AD.  相似文献   

8.
Amyloid β peptide binding alcohol dehydrogenase (ABAD) decoy peptide (DP) can competitively antagonize binding of amyloid β peptide to ABAD and inhibit the cytotoxic effects of amyloid β peptide. Based on peptide aptamers, the present study inserted ABAD-DP into the disulfide bond of human thioredoxin (TRX) using molecular cloning technique to construct a fusion gene that can express the TRX1-ABAD-DP-TRX2 aptamer. Moreover, adeno-associated virus was used to allow its stable expression. Immunofluorescent staining revealed the co-expression of the transduced fusion gene TRX1-ABAD-DP-TRX2 and amyloid β peptide in NIH-3T3 cells, indicating that the TRX1-ABAD-DP-TRX2 aptamer can bind amyloid β peptide within cells. In addition, cell morphology and MTT results suggested that TRX1-ABAD-DP-TRX2 attenuated amyloid β peptide-induced SH-SY5Y cell injury and improved cell viability. These findings confirmed the possibility of constructing TRX-based peptide aptamer using ABAD-DP. Moreover, TRX1-ABAD-DP-TRX2 inhibited the cytotoxic effect of amyloid β peptide.  相似文献   

9.

Background

The membrane permeability transition of mitochondria has been suggested to be involved in toxic and oxidative forms of cell injury. Mitochondrial dysfunction is considered to play a critical role in neurodegeneration in Parkinson''s disease. Despite the suggestion that indole β-carbolines may be neurotoxic, these compounds provide a protective effect against cytotoxicity of other neurotoxins. In addition, the effect of indole β-carbolines on change in the mitochondrial membrane permeability due to reactive nitrogen species (RNS), which may lead to cell death, has not been clarified.

Methods

Differentiated PC12 cells were used as the experimental culture model for the investigation of neuronal cell injury, which occurs in Parkinson''s disease. The effect of indole β-carbolines (harmalol and harmine) on differentiated PC12 cells against toxicity of S-nitroso-N-acetyl-DL-penicillamine (SNAP) was determined by measuring the effect on the change in transmembrane potential, cytochrome c release, formation of ROS, GSH contents, caspase-3 activity and cell viability, and was compared to that of R-(-)-deprenyl.

Results

Specific inhibitors of caspases (z-LEHD.fmk, z-DQMD.fmk) and antioxidants (N-acetylcysteine, dithiothreitol, melatonin, carboxy-PTIO and uric acid) depressed cell death in PC12 cells due to SNAP. β-Carbolines and R-(-)-deprenyl attenuated the SNAP-induced cell death and GSH depletion concentration dependently with a maximal inhibitory effect at 25-50 µM. The compounds inhibited the nuclear damage, decrease in mitochondrial transmembrane potential, cytochrome c release and formation of reactive oxygen species caused by SNAP in PC12 cells. β-Carbolines and R-(-)-deprenyl attenuated the H2O2-induced cell death and depletion of GSH.

Conclusions

The results suggest that indole β-carbolines attenuate the SNAP-induced viability loss in PC12 cells by inhibition of change in the mitochondrial membrane permeability, which may be caused by free radicals. Indole β-carbolines appear to exert a protective effect against the nitrogen species-mediated neuronal cell injury in Parkinson''s disease comparable to R-(-)-deprenyl.  相似文献   

10.
The deposition of amyloid-beta is a pathological hallmark of Alzheimer’s disease. Amyloid-beta is derived from amyloid precursor protein through sequential proteolytic cleavages by β-secretase (beta-site amyloid precursor protein-cleaving enzyme 1) and γ-secretase. To further elucidate the roles of beta-site amyloid precursor protein-cleaving enzyme 1 in the development of Alzheimer’s disease, a yeast two-hybrid system was used to screen a human embryonic brain cDNA library for proteins directly interacting with the intracellular domain of beta-site amyloid precursor protein-cleaving enzyme 1. A potential beta-site amyloid precursor protein-cleaving enzyme 1- interacting protein identified from the positive clones was divalent cation tolerance protein. Immunoprecipitation studies in the neuroblastoma cell line N2a showed that exogenous divalent cation tolerance protein interacts with endogenous beta-site amyloid precursor protein-cleaving enzyme 1. The overexpression of divalent cation tolerance protein did not affect beta-site amyloid precursor protein-cleaving enzyme 1 protein levels, but led to increased amyloid precursor protein levels in N2a/APP695 cells, with a concomitant reduction in the processing product amyloid precursor protein C-terminal fragment, indicating that divalent cation tolerance protein inhibits the processing of amyloid precursor protein. Our experimental findings suggest that divalent cation tolerance protein negatively regulates the function of beta-site amyloid precursor protein-cleaving enzyme 1. Thus, divalent cation tolerance protein could play a protective role in Alzheimer’s disease.  相似文献   

11.
Alzheimer''s disease (AD) is a neurodegenerative disorder characterized by a progressive deterioration of cognitive abilities, amyloid-β peptide (Aβ) accumulation and synaptic alterations. Previous studies indicated that hyperforin, a component of the St John''s Wort, prevents Aβ neurotoxicity and some behavioral impairments in a rat model of AD. In this study we examined the ability of tetrahydrohyperforin (IDN5607), a stable hyperforin derivative, to prevent the cognitive deficit and synaptic impairment in an in vivo model of AD. In double transgenic APPswe/PSEN1ΔE9 mice, IDN5706 improves memory and prevents the impairment of synaptic plasticity in a dose-dependent manner, inducing a recovery of long-term potentiation. In agreement with these findings, IDN5706 prevented the decrease in synaptic proteins in hippocampus and cortex. In addition, decreased levels of tau hyperphosphorylation, astrogliosis, and total fibrillar and oligomeric forms of Aβ were determined in double transgenic mice treated with IDN5706. In cultured cells, IDN5706 decreased the proteolytic processing of the amyloid precursor protein that leads to Aβ peptide generation. These findings indicate that IDN5706 ameliorates AD neuropathology and could be considered of therapeutic relevance in AD treatment.  相似文献   

12.
The central noradrenergic (NA) system is critical for the maintenance of attention, behavioral flexibility, spatial navigation, and learning and memory, those cognitive functions lost first in early Alzheimer''s disease (AD). In fact, the locus coeruleus (LC), the sole source of norepinephrine (NE) for >90% of the brain, is the first site of pathologic tau accumulation in human AD with axon loss throughout forebrain, including hippocampus. The dentate gyrus is heavily innervated by LC–NA axons, where released NE acts on β-adrenergic receptors (ARs) at excitatory synapses from entorhinal cortex to facilitate long-term synaptic plasticity and memory formation. These synapses experience dysfunction in early AD before cognitive impairment. In the TgF344-AD rat model of AD, degeneration of LC–NA axons in hippocampus recapitulates human AD, providing a preclinical model to investigate synaptic and behavioral consequences. Using immunohistochemistry, Western blot analysis, and brain slice electrophysiology in 6- to 9-month-old wild-type and TgF344-AD rats, we discovered that the loss of LC–NA axons coincides with the heightened β-AR function at medial perforant path–dentate granule cell synapses that is responsible for the increase in LTP magnitude at these synapses. Furthermore, novel object recognition is facilitated in TgF344-AD rats that requires β-ARs, and pharmacological blockade of β-ARs unmasks a deficit in extinction learning only in TgF344-AD rats, indicating a greater reliance on β-ARs in both behaviors. Thus, a compensatory increase in β-AR function during prodromal AD in TgF344-AD rats heightens synaptic plasticity and preserves some forms of learning and memory.SIGNIFICANCE STATEMENT The locus coeruleus (LC), a brain region located in the brainstem which is responsible for attention and arousal, is damaged first by Alzheimer''s disease (AD) pathology. The LC sends axons to hippocampus where released norepinephrine (NE) modulates synaptic function required for learning and memory. How degeneration of LC axons and loss of NE in hippocampus in early AD impacts synaptic function and learning and memory is not well understood despite the importance of LC in cognitive function. We used a transgenic AD rat model with LC axon degeneration mimicking human AD and found that heightened function of β-adrenergic receptors in the dentate gyrus increased synaptic plasticity and preserved learning and memory in early stages of the disease.  相似文献   

13.
Studies suggest that tau deposition starts in the anterolateral entorhinal cortex (EC) with normal aging, and that the presence of β-amyloid (Aβ) facilitates its spread to neocortex, which may reflect the beginning of Alzheimer''s disease (AD). Functional connectivity between the anterolateral EC and the anterior-temporal (AT) memory network appears to drive higher tau deposition in AT than in the posterior-medial (PM) memory network. Here, we investigated whether this differential vulnerability to tau deposition may predict different cognitive consequences of EC, AT, and PM tau. Using 18F-flortaucipir (FTP) and 11C-Pittsburgh compound-B (PiB) positron emission tomography (PET) imaging, we measured tau and Aβ in 124 cognitively normal human older adults (74 females, 50 males) followed for an average of 2.8 years for prospective cognition. We found that higher FTP in all three regions was individually related to faster memory decline, and that the effects of AT and PM FTP, but not EC, were driven by Aβ+ individuals. Moreover, when we included all three FTP measures competitively in the same model, only AT FTP significantly predicted memory decline. Our data support a model whereby tau, facilitated by Aβ, transits from EC to cortical regions that are most closely associated with the anterolateral EC, which specifically affects memory in the initial stage of AD. Memory also appears to be affected by EC tau in the absence of Aβ, which may be less clinically consequential. These findings may provide clarification of differences between normal aging and AD, and elucidate the transition between the two stages.SIGNIFICANCE STATEMENT Tau and β-amyloid (Aβ) are hallmarks of Alzheimer''s disease (AD) but are also found in cognitively normal people. It is unclear whether, and how, this early deposition of tau and Aβ may affect cognition in normal aging and the asymptomatic stage of AD. We show that tau deposition in the entorhinal cortex (EC), which is common in advanced age, predicts memory decline in older adults independent of Aβ, likely reflecting normal, age-related memory loss. In contrast, tau in anterior-temporal (AT) regions is most predictive of memory decline in Aβ+ individuals. These data support the idea that tau preferentially spreads to specific cortical regions, likely through functional connections, which plays a primary role in memory decline in the early stage of AD.  相似文献   

14.
Metabolic brain imaging is widely used to evaluate brain function and disease, and quantitative assays require local retention of compounds used to register changes in cellular activity. As labeled metabolites of [1- and 6-14C]glucose are rapidly released in large quantities during brain activation, this study evaluated release of metabolites and proteins through perivascular fluid flow, a pathway that carries solutes from brain to peripheral lymphatic drainage sites. Assays with [3,4-14C]glucose ruled out local oxidation of glucose-derived lactate as a major contributor of label loss. Brief infusion of [1-14C]glucose and -[14C]lactate into the inferior colliculus of conscious rats during acoustic stimulation labeled the meninges, consistent with perivascular clearance of [14C]metabolites from interstitial fluid. Microinfusion of Evans blue albumin and amyloid-β1−40 (Aβ) caused perivascular labeling in the inferior colliculus, labeled the surrounding meninges, and Aβ-labeled-specific blood vessels in the caudate and olfactory bulb and was deposited in cervical lymph nodes. Efflux of extracellular glucose, lactate, and Aβ into perivascular fluid pathways is a normal route for clearance of material from the inferior colliculus that contributes to underestimates of brain energetics. Convergence of ‘watershed'' drainage to common pathways may facilitate perivascular amyloid plaque formation and pathway obstruction in Alzheimer''s disease.  相似文献   

15.
Postmenopausal women with Alzheimer’s disease (AD) exhibit dramatically reduced sensitivity to estrogen replacement therapy, which is though to be related to an estrogen receptor (ER)α/ERβ ratio imbalance arising from a significantly decreased level of ERs of the brain. The aim of our study was to investigate whether valproic acid (VPA) can enhance the beneficial effects of estrogen on cognitive function through restoration of ERα and ERβ expression in the brain. We removed the ovaries of female APP/PS1 mice to simulate the low estrogen levels present in postmenopausal women and then administered VPA (30 mg/kg, intraperitoneal injection, once daily), 17β-estradiol (E2) (2.4 μg, intraperitoneal injection, once daily), liquiritigenin (LG) (50 μg/kg, intragastric infusion, once daily), VPA + E2, or VPA + LG for 4 successive weeks. Compared with treatment with a single drug, treatment with VPA + E2 or VPA + LG significantly increased the level of glycogen synthase kinase 3β, increased the expression of estrogen receptor α, reduced the expression of small ubiquitin-like modifiers, and increased the level of estrogen receptor β. This resulted in enhanced sensitivity to estrogen therapy, reduced amyloid β aggregation, reduced abnormal phosphorylation of the tau protein, reduced neuronal loss, increased dendritic spine and postsynaptic density, and significantly alleviated memory loss and learning impairment in mice. This study was approved by the Chongqing Medical University Animal Protection and Ethics Committee, China on March 6, 2013.

Chinese Library Classification No. R453; R741; Q579.1+3  相似文献   

16.
AimsThe peptidyl‐prolyl cis/trans isomerase, Pin1, has a protective role in age‐related neurodegeneration by targeting different phosphorylation sites of tau and the key proteins required to produce Amyloid‐β, which are the well‐known molecular signatures of Alzheimer''s disease (AD) neuropathology. The direct interaction of miR‐140‐5p with Pin1 mRNA and its inhibitory role in protein translation has been identified. The main purpose of this study was to investigate the role of miRNA‐140‐5p inhibition in promoting Pin1 expression and the therapeutic potential of the AntimiR‐140‐5p in the Aß oligomer (AßO)‐induced AD rat model.MethodsSpatial learning and memory were assessed in the Morris water maze. RT‐PCR, western blot, and histological assays were performed on hippocampal samples at various time points after treatments. miRNA‐140‐5p inhibition enhanced Pin1 and ADAM10 mRNA expressions but has little effect on Pin1 protein level.ResultsThe miRNA‐140‐5p inhibitor markedly ameliorated spatial learning and memory deficits induced by AßO, and concomitantly suppressed the mRNA expression of inflammatory mediators TNFα and IL‐1β, and phosphorylation of tau at three key sites (thr231, ser396, and ser404) as well as increased phosphorylated Ser473‐Akt.ConclusionAccording to our results, Antimir‐140‐mediated improvement of AβO‐induced neuronal injury and memory impairment in rats may provide an appropriate rationale for evaluating miR‐140‐5p inhibitors as a promising agent for the treatment of AD.  相似文献   

17.

Objective

The interaction between MK-801, a model of psychosis and KCl-induced depolarization or electroconvulsive shock (ECS), a therapeutic model of electroconvulsive therapy (ECT), was investigated in SH-SY5Y cells and the rat frontal cortex.

Methods

SH-SY5Y cells were pretreated with 1 µM MK-801 for 15 min, followed by cotreatment with 100 mM KCl for 5 min. MK-801 was reintroduced after the KCl was washed out, and the samples were incubated before harvesting. For the experiments in rats, male Sprague-Dawley rats were treated with MK-801 followed by ECS. Immunoblot analyses of glycogen synthase kinase 3β (GSK3β) (Ser9), AKT (Ser473) and extracellular legulated kinase (ERK)1/2 in SH-SY5Y cells and the rat frontal cortex were performed.

Results

KCl-induced neuronal depolarization resulted in the transient dephosphorylation of AKT (Ser473) and GSK3β (Ser9), followed by increased phosphorylation of the enzymes in SH-SY5Y cells. Cotreatment with MK-801 and KCl inhibited the initial dephosphorylation of AKT and GSK3β produced by KCl-induced neuronal depolarization. Similarly, ECS resulted in the transient dephosphorylation of AKT (Ser473) and GSK3β (Ser9), whereas cotreatment with MK-801 inhibited the initial dephosphorylation of AKT (Ser473) and GSK3β (Ser9) produced by ECS in the rat frontal cortex. No significant interaction was observed between MK-801 and KCl in the dephosphorylation of ERK1/2.

Conclusion

These results suggest that an antagonistic interplay between MK-801 and neuronal depolarization by KCl or ECS is involved the regulation of AKT (Ser473) and GSK3β (Ser9) phosphorylation.  相似文献   

18.
Alzheimer''s disease is associated with poor sleep, but the impact of tau and β-amyloid (Aβ) pathology on sleep remains largely unknown. Here, we test the hypothesis that tau and Aβ predict unique impairments in objective and self-perceived human sleep under real-life, free-living conditions. Eighty-nine male and female cognitively healthy older adults received 18F-FTP-tau and 11C-PIB-Aβ PET imaging, 7 nights of sleep actigraphy and questionnaire measures, and neurocognitive assessment. Tau burden, but not Aβ, was associated with markedly worse objective sleep. In contrast, Aβ and tau were associated with worse self-reported sleep quality. Of clinical relevance, Aβ burden predicted a unique perceptual mismatch between objective and subject sleep evaluation, with individuals underestimating their sleep. The magnitude of this mismatch was further predicted by worse executive function. Thus, early-stage tau and Aβ deposition are linked with distinct phenotypes of real-world sleep impairment, one that includes a cognitive misperception of their own sleep health.SIGNIFICANCE STATEMENT Alzheimer''s disease is associated with sleep disruption, often before significant memory decline. Thus, real-life patterns of sleep behavior have the potential to serve as a window into early disease progression. In 89 cognitive healthy older adults, we found that tau burden was associated with worse wristwatch actigraphy-measured sleep quality, and that both tau and β-amyloid were independently predictive of self-reported sleep quality. Furthermore, individuals with greater β-amyloid deposition were more likely to underestimate their sleep quality, and sleep quality underestimation was associated with worse executive function. These data support the role of sleep impairment as a key marker of early Alzheimer''s disease, and offer the possibility that actigraphy may be an affordable and scalable tool in quantifying Alzheimer''s disease-related behavioral changes.  相似文献   

19.

Objective

Glycogen synthase kinase-3β (GSK-3β) has become recognized as a broadly influential enzyme affecting diverse range of biological functions, including gene expression, cellular architecture, and apoptosis. The results of previous studies suggest that GSK-3β activity may be increased in the brain of patients with major depressive disorders (MDD). A recent animal study reported increased GSK-3β messenger ribonucleic acid (mRNA) level in the hippocampus of those with depression. However, few studies have investigated GSK-3β activity in the brain of patients with MDD.

Methods

In order to test whether patients with MDD have an increase in GSK-3β activity in the brain compared to normal controls, we explored GSK-3β expression level in all brain regions by using the Stanley Neuropathology Consortium Integrative Database (SNCID), which is a web-based method of integrating the Stanley Medical Research Institute data sets.

Results

The level of GSK-3β mRNA expression in the hippocampus was significantly increased in the MDD group (n=8) compared with the control group (n=12, p<0.05). Spearman''s test also reveals that GSK-3β mRNA expression levels were significantly correlated with nitric oxide synthase 1 (NOS1)(ρ=0.70, p<0.0001) and stathmin-like 3 (STMN3)(ρ=0.70, p<0.0001) in the hippocampus.

Conclusion

Our results correspond with the results of previous animal studies that reported increased GSK-3β activity in the hippocampus of those with depression. Our findings also suggest that oxidative stress-induced neuronal cell death and abnormal synaptic plasticity in the hippocampus may play important roles in the pathophysiology of major depression.  相似文献   

20.
Mechanisms underlying the initial accumulation of tau pathology across the human brain are largely unknown. We examined whether baseline factors including age, amyloid-β (Aβ), and neural activity predicted longitudinal tau accumulation in temporal lobe regions that reflect distinct stages of tau pathogenesis. Seventy cognitively normal human older adults (77 ± 6 years, 59% female) received two or more 18F-flortaucipir (FTP) and 11C-Pittsburgh Compound B (PiB) PET scans (mean follow-up, 2.5 ± 1.1 years) to quantify tau and (Aβ). Linear mixed-effects models were used to calculate the slopes of FTP change in entorhinal cortex (EC), parahippocampal cortex (PHC), and inferior temporal gyrus (IT), and slopes of global PiB change. Thirty-seven participants underwent functional MRI to measure baseline activation. Older age predicted EC tau accumulation, and baseline EC tau levels predicted subsequent tau accumulation in EC and PHC. In IT, however, baseline EC tau interacted with Aβ to predict IT tau accumulation. Higher baseline local activation predicted tau accumulation within EC and PHC, and higher baseline hippocampal activation predicted EC tau accumulation. Our findings indicate that factors predicting tau accumulation vary as tau progresses through the temporal lobe. Older age is associated with initial tau accumulation in EC, while baseline EC tau and neural activity drive tau accumulation within medial temporal lobe. Aβ subsequently facilitates tau spread from medial to lateral temporal lobe. Our findings elucidate potential drivers of tau accumulation and spread in aging, which are critical for understanding Alzheimer''s disease pathogenesis.SIGNIFICANCE STATEMENT To further understand the mechanisms leading to tau pathogenesis and spread, we tested whether baseline factors such as age, amyloid-β pathology, and activation predicted longitudinal tau accumulation in cognitively normal older adults. We found that distinct mechanisms contribute to tau accumulation as tau progresses across the temporal lobe, with initial tau accumulation in entorhinal cortex driven by age and subsequent spread driven by neural activity and amyloid-β. We demonstrate that higher baseline activation predicts increased longitudinal tau accumulation, providing novel evidence that activation-dependent tau production may occur in the human brain. Our findings support major hypotheses generated from preclinical research, and have important translational implications, suggesting that the reduction of hyperactivation may help prevent the development of tau pathology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号