首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Schwann cell precursors and their development.   总被引:10,自引:0,他引:10  
K R Jessen  R Mirsky 《Glia》1991,4(2):185-194
During development of peripheral nerves, an apparently homogeneous pool of embryonic Schwann cells gives rise to two morphologically and antigenically distinct mature Schwann cell types. These are the myelin-forming cells associated with axons of larger diameter and the non-myelin-forming cells associated with axons of smaller diameter. The development of these cells from precursors that can be identified in early embryonic nerves can be followed with the help of antigenic differentiation markers. This development depends on Schwann cells retaining a close association with axons. The effect of axons can be mimicked in vitro by agents that elevate cAMP levels. This has given rise to the idea that the effects of axon-associated signals in Schwann cell development are to a significant extent mediated via elevation in Schwann cell cAMP levels. In vitro, the cAMP induced progression of cells from a premyelination state to a myelination state depends on withdrawal from the cell cycle. It is therefore possible that in vivo, the timing of myelin formation by individual Schwann cells is determined by signals that suppress proliferation.  相似文献   

2.
Neurofibromatosis xenografts. Contribution to pathogenesis   总被引:1,自引:0,他引:1  
We transplanted Schwann cells of 3 patients with neurofibromatosis from neurofibromas, sural nerve, and from a malignant schwannoma into sciatic nerves of immunoincompetent mice. Three and six months later, the grafts and distal nerve segments contained normal myelinated fibers. After rendering host animals immune competent again, neurofibroma and malignant schwannoma Schwann cells were rejected, but grafts retained normally myelinated fibers indicating that these were of mouse origin. Sural nerve Schwann cells from a neurofibromatosis patient were rejected also leaving naked axons in the grafted segments showing that human Schwann cells from the sural nerve of one patient had invested and myelinated the regenerating mouse axons. The nature of putative signals passing between axons and Schwann cells might be elucidated by the combination of human and animal cells in immunoincompetent host nerves. Hypothetical signals for myelination of mouse axons were normally received by sural nerve Schwann cells of a patient with neurofibromatosis, but not by Schwann cells from neurofibromas or malignant schwannomas.  相似文献   

3.
4.
In embryonic rat nerves, we recently identified an early cell in the Schwann cell lineage, the Schwann cell precursor. We found that when these cells were removed from contact with axons they underwent rapid apoptotic death, and that in a proportion of the cells this death could be prevented by basic fibroblast growth factor (bFGF, FGF-2). We now report that 100% of Schwann cell precursors isolated from peripheral nerves of 14-day-old-rat embryos can be rescued by a combination of insulin-like growth factor (IGF) 1 or 2 in combination with either acidic FGF (aFGF, FGF-1), bFGF or Kaposi's sarcoma FGF (K-FGF; FGF-4). The precursors display an absolute requirement for both an IGF and an FGF to achieve maximal survival. Elevation of intracellular levels of cAMP by forskolin does not result in a significant shift in the IGF/FGF dose-response curves. In contrast, the percentage of precursors rescued by FGF in the presence of insulin is dramatically increased by elevation of cAMP. These growth factor combinations did not stimulate DNA synthesis significantly in Schwann cell precursors. These findings show that cooperation between growth factors is required to suppress cell death in Schwann cell precursors, and suggest that survival and DNA synthesis are regulated by distinct growth factor combinations in these cells. The observations are consistent with the idea that survival regulation by FGFs and IGFs plays an important role in the development of glial cells in early embryonic nerves.  相似文献   

5.
Neurons regulate Schwann cell proliferation, but little is known about the molecular basis of this interaction. We have examined the possibility that cyclin D1 is a key regulator of the cell cycle in Schwann cells. Myelinating Schwann cells express cyclin D1 in the perinuclear region, but after axons are severed, cyclin D1 is strongly upregulated in parallel with Schwann cell proliferation and translocates into Schwann cell nuclei. During development, cyclin D1 expression is confined to the perinuclear region of proliferating Schwann cells and the analysis of cyclin D1-null mice indicates that cyclin D1 is not required for this type of Schwann cell proliferation. As in the adult, injury to immature peripheral nerves leads to translocation of cyclin D1 to Schwann cell nuclei and injury-induced proliferation is impaired in both immature and mature cyclin D1-deficient Schwann cells. Thus, our data indicate that the molecular mechanisms regulating proliferation of Schwann cells during development or activated by axonal damage are fundamentally different.  相似文献   

6.
Three cases are described in which neuromas composed of non-myelinated axons were present within central nervous tissues in areas of tissue destruction, together with neuromas of peripheral myelinated axons. The non-myelinated neuromas were larger than the myelinated, but contained very much fewer Schwann cells and less connective tissue fibers. It is suggested that they took origin from heterotopic non-myelinated peripheral nerves, just as the myelinated neuromas are thought to take origin from heterotopic myelinated peripheral nerves. The non-myelinated neuromas are very much less common than the myelinated neuromas, and the inference may be drawn that their nerves of origin may be very much less common, a malformational rarity. Because of their rarity, and the very limited proliferation of Schwann cells which follow their injury, these non-myelinated perivascular nerves are not likely to provide the Schwann cells which produce the regenerated peripheral myelin about some denuded but perserved central axons in myltiple sclerosis. These may take origin from multipotential primitive reticular cells within the central nervous tissues, as is consistent with the thesis perviously offered that Schwann cells are mesenchymal in character. It may also be inferred that any neurogenic control of cerebral circulation would be limited to an effect on the larger, extracerebral vessels in the subarachnoid space.  相似文献   

7.
Peripheral myelin formation depends on axonal signals that tightly control proliferation and differentiation of the associated Schwann cells. Here we demonstrate that the molecular program controlling proliferation of Schwann cells switches at birth. We have analyzed the requirements for three members of the cyclin-dependent kinase (cdk) family in Schwann cells using cdk-deficient mice. Mice lacking cdk4 showed a drastic decrease in the proliferation rate of Schwann cells at postnatal days 2 and 5, but proliferation was unaffected at embryonic day 18. In contrast, ablation of cdk2 and cdk6 had no significant influence on postnatal Schwann cell proliferation. Taken together, these findings indicate that postnatal Schwann cell proliferation is uniquely controlled by cdk4. Despite the lack of the postnatal wave of Schwann cell proliferation, axons were normally myelinated in adult cdk4-deficient sciatic nerves. Following nerve injury, Schwann cells lacking cdk4 were unable to re-enter the cell cycle, while Schwann cells deficient in cdk2 or cdk6 displayed proliferation rates comparable to controls. We did not observe compensatory effects such as elevated cdk4 levels in uninjured or injured nerves of cdk2 or cdk6-deficient mice. Our data demonstrate that prenatal and postnatal Schwann cell proliferation are driven by distinct molecular cues, and that postnatal proliferation is not a prerequisite for the generation of Schwann cell numbers adequate for correct myelination.  相似文献   

8.
Chernousov MA  Yu WM  Chen ZL  Carey DJ  Strickland S 《Glia》2008,56(14):1498-1507
Laminins and collagens are extracellular matrix proteins that play essential roles in peripheral nervous system development. Laminin signals regulate Schwann cell proliferation and survival as well as actin cytoskeleton dynamics, which are essential steps for radial sorting and myelination of peripheral axons by Schwann cells. Collagen and their receptors promote Schwann cell adhesion, spreading, and myelination as well as neurite outgrowth. In this article, we will review the recent advances in the studies of laminin and collagen function in Schwann cell development.  相似文献   

9.
The ability of immature central nervous system (CNS) glia to promote axonal regeneration was studied by grafting segments of embryonic and neonatal rat optic nerves into the sciatic nerves of adult rats. Unexpectedly, very few axons regenerated through these grafts. The majority of the axons bypassed the grafts and were associated with Schwann cells. These results were similar to those obtained with grafts of adult rat optic nerves. The failure of immature CNS glia to promote axonal regeneration under these conditions suggests that they may be less effective than Schwann cells in promoting the regeneration and growth of axons.  相似文献   

10.
Information from the brain travels back and forth along peripheral nerves in the form of electrical impulses generated by neurons and these impulses have repetitive patterns. Schwann cells in peripheral nerves receive molecular signals from axons to coordinate the process of myelination. There is evidence, however,that non-molecular signals play an important role in myelination in the form of patterned electrical impulses generated by neuronal activity. The role of patterned electrical impulses has been investigated in the literature using co-cultures of neurons and myelinating cells. The co-culturing method, however, prevents the uncoupling of the direct effect of patterned electrical impulses on myelinating cells from the indirect effect mediated by neurons. To uncouple these effects and focus on the direct response of Schwann cells,we developed an in vitro model where an electroconductive carbon fiber acts as an artificial axon. The fiber provides only the biophysical characteristics of an axon but does not contribute any molecular signaling.In our "suspended wire model", the carbon fiber is suspended in a liquid media supported by a 3D printed scaffold. Patterned electrical impulses are generated by an Arduino 101 microcontroller. In this study, we describe the technology needed to set-up and eventually replicate this model. We also report on our initial in vitro tests where we were able to document the adherence and ensheath of human Schwann cells to the carbon fiber in the presence of patterned electrical impulses(hSCs were purchased from ScienCell Research Laboratories, Carlsbad, CA, USA; ScienCell fulfills the ethic requirements, including donor's consent). This technology will likely make feasible to investigate the response of Schwann cells to patterned electrical impulses in the future.  相似文献   

11.
A study has been made of the development of limb and muscle nerves in relation to the first appearance of Schwann cells in the flexor digitorum profundus (fdp) and flexor carpi ulnaris (fcu) muscles of the avian forelimb. Schwann cells were identified by immunofluorescent techniques with antibodies to the glycoprotein HNK-1. Myotubes and nerves were identified by using antibodies to myosin and to neurofilament, respectively. At stage 24/25 the brachialis longus inferior (Bli n) and superior (Bls n) nerve trunks within proximal regions of the forelimb were surrounded by Schwann cells. These cells extended in a column for a distance of approximately 100 microns beyond the growing ends of nerves. At stage 26 both interosseus nerve (in n) and the medial-ulnar nerve (m-u n) had formed from the Bli n; each of these branches was surrounded by Schwann cells, which again extended approximately 100 microns beyond the growing ends of the nerves. By stage 26/27 the fdp and fcu muscles were clearly delineated by groups of myotubes. No nerves were detected within these groups; however, Schwann cells were observed between the myotubes. At stage 27 axons had left the in n and m-u n and grown into the fdp and fcu muscles, respectively. These axons were surrounded by Schwann cells. The present observations show that Schwann cells are located ahead of the main limb and muscle nerves as they grow into the fdp and fcu muscles of the limb. It is possible that these Schwann cells play a role in guiding nerves to their correct muscles in the developing chick forelimb.  相似文献   

12.
The regulation of motoneuron survival is only partially elucidated. We have sought new survival factors for motoneuron by analyzing which receptors they produce. We report here that the type II bone morphogenetic receptor (BMPRII) mRNA is one of the most abundant receptor mRNAs in laser microdissected motoneurons. Motoneurons were intensely stained by an anti-BMPRII antibody, indicating the presence of BMPRII protein. One of its ligands (BMP6) supported the survival of motoneurons in vitro. BMP6 was produced by myotubes and mature Schwann cells and was retrogradely transported in mature motor axons. BMP6 thus joins a list of known Schwann-cell-derived regulators of motoneurons, which includes GDNF, CNTF, LIF and TGF-beta2. The control of the production of these factors by Schwann cells and the direction of their movement in motor axons is diverse. This suggests that the multiplicity of motoneuron factors is because cells use different factors to regulate different aspects of motoneuron function.  相似文献   

13.
An important prerequisite to myelination in peripheral nerves is the establishment of one-to-one relationships between axons and Schwann cells. This patterning event depends on immature Schwann cell proliferation, apoptosis, and morphogenesis, which are governed by coordinated changes in gene expression. Here, we found that the RNA-binding protein human antigen R (HuR) was highly expressed in immature Schwann cells, where genome-wide identification of its target mRNAs in vivo in mouse sciatic nerves using ribonomics showed an enrichment of functionally related genes regulating these processes. HuR coordinately regulated expression of several genes to promote proliferation, apoptosis, and morphogenesis in rat Schwann cells, in response to NRG1, TGFβ, and laminins, three major signals implicated in this patterning event. Strikingly, HuR also binds to several mRNAs encoding myelination-related proteins but, contrary to its typical function, negatively regulated their expression, likely to prevent ectopic myelination during development. These functions of HuR correlated with its abundance and subcellular localization, which were regulated by different signals in Schwann cells.  相似文献   

14.
H. Li  C. Wigley  S.M. Hall 《Glia》1998,24(3):290-303
C-erbB receptor/neuregulin signalling plays a significant role in Schwann cell function. In vivo, Schwann cells up-regulate expression of c-erbB receptors in the first month after injury, but receptor expression is down-regulated with time to levels that are not detectable immunohistochemically. The inability of chronically denervated Schwann cells to respond adequately to signals derived from regenerating axons may be one reason why delayed repair of an injured peripheral nerve frequently fails. We have examined the effects of GGF on denervated Schwann cells in vitro. A modified delayed dissociation technique was used to obtain adult rat Schwann cells from the distal stumps of transected sciatic nerves which had been acutely (7 days) or chronically (2–6 month) denervated. We found that in vitro denervated Schwann cells invariably expressed p75NTR and c-erbB receptors. There was a progressive decrease in total cell yield and the percentage of cells with Schwann cell phenotype (p75NTR and/S-100 or/laminin or /GFAP or/c-erbB positive); proliferation rate; migratory potential; and expression of the cell adhesion molecules N-CAM and N-cadherin, with increasing time of denervation. Addition of GGF2 had a significant stimulatory effect upon Schwann cell proliferation and migration, and an increased proportion of Schwann cells expressed N-CAM and N-cadherin, suggesting that these responses were mediated via GGF/c-erbB signalling. Our results support the view that it may be possible to manipulate chronically denervated Schwann cells so that they become more responsive to signals derived from regrowing axons. GLIA 24:290–303, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
A study has been made of the effects of neural crest and neural tube removal at the brachial level on the migration of Schwann cells and axons into the flexor digitorum profundus (fdp) and flexor carpi ulnaris (fcu) muscles of the avian forelimb. The identification of Schwann cells was based on the assumption that antibody HNK-1 uniquely labels these cells at the growing end of limb nerves. Myotubes and nerves were identified by using antibodies to myosin and to neurofilament protein, respectively. The removal of neural crest cells at stage 13 gave a complete Schwann cell-free embryo at the brachial level. Motor axons only grew to the base of the forelimb, forming a rudimentary plexus by stage 27, and failed to penetrate the limb. Removal of the neural tube at stage 13 did not prevent sensory axons from forming a plexus at the base of the limb; these axons subsequently developed into the brachialis longus inferior (bli n) and superior (bls n) nerves. By stage 27 the bli n had branched into the interosseus nerve (in n) and the medial-ulnar nerve (m-u n) trunks. However, unlike the result in control embryos, no nerves were detected amongst the developing fdp and fcu muscles, thus indicating that sensory axons do not grow into the muscles in the absence of motor axons. In contrast, Schwann cells were observed amongst the myotubes at the level of the in n and m-u nerve trunks. The present observations show that motor axons do not enter the limb bud and innervate limb muscles in the absence of Schwann cells. Furthermore, in the absence of motor axons (neural-tube-removed embryos) sensory axons still enter the limb (behind migrating Schwann cells) but fail to innervate developing muscles even though Schwann cells are present among the developing myotubes.  相似文献   

16.
Two proximal branches of the rat facial nerve were transected and anastomosed end-to-end within a silicone tube, each of them being exposed to a massive invasion of ascending regenerating axons. The proximal nerves contained extremely large bundles of regenerated fibers, often associated with preexistent "parent fibers." The bundles showed many signs of rash and disordered cell proliferation and myelination. These included multiple Schwann cells surrounded by a common basement membrane, occurrence of different phases of myelination and even myelination of two axons by one Schwann cell. There was no evidence of mitogenic signals for fibrocytes. This model may be used for studying the mitogenic effect of axons on Schwann cells. It also suggests that so-called "groups of regenerating fibers" in neuropathy are caused by Schwann cell recruitment.  相似文献   

17.
In the peripheral nervous system, the vast majority of axons are accommodated within the fibre bundles that constitute the peripheral nerves. Axons within the nerves are in close contact with myelinating glia, the Schwann cells that are ideally placed to respond to, and possibly shape, axonal activity. The mechanisms of intercellular communication in the peripheral nerves may involve direct contact between the cells, as well as signalling via diffusible substances. Neurotransmitter glutamate has been proposed as a candidate extracellular molecule mediating the cross-talk between cells in the peripheral nerves. Two types of experimental findings support this idea: first, glutamate has been detected in the nerves and can be released upon electrical or chemical stimulation of the nerves; second, axons and Schwann cells in the peripheral nerves express glutamate receptors. Yet, the studies providing direct experimental evidence that intercellular glutamatergic signalling takes place in the peripheral nerves during physiological or pathological conditions are largely missing. Remarkably, in the central nervous system, axons and myelinating glia are involved in glutamatergic signalling. This signalling occurs via different mechanisms, the most intriguing of which is fast synaptic communication between axons and oligodendrocyte precursor cells. Glutamate receptors and/or synaptic axon-glia signalling are involved in regulation of proliferation, migration, and differentiation of oligodendrocyte precursor cells, survival of oligodendrocytes, and re-myelination of axons after damage. Does synaptic signalling exist between axons and Schwann cells in the peripheral nerves? What is the functional role of glutamate receptors in the peripheral nerves? Is activation of glutamate receptors in the nerves beneficial or harmful during diseases? In this review, we summarise the limited information regarding glutamate release and glutamate receptors in the peripheral nerves and speculate about possible mechanisms of glutamatergic signalling in the nerves. We highlight the necessity of further research on this topic because it should help to understand the mechanisms of peripheral nervous system development and nerve regeneration during diseases.  相似文献   

18.
The ability of Schwann cells to induce the regeneration of severed olivocerebellar and Purkinje cell axons across an injury up to their deafferented targets was tested by transplanting freshly dissociated cells from newborn rat sciatic nerves into surgically lesioned adult cerebella. The grafted glial cells consistently filled the lesion gap and migrated into the host parenchyma. Transected olivocerebellar axons vigorously regenerated into the graft, where their growth pattern and direction followed the arrangement of Schwann cell bundles. Although some of these axons terminated within the transplant, many of them rejoined the cerebellar parenchyma beyond the lesion. Here, their fate depended on the territory encountered. No growth occurred in the white matter. Numerous fibres penetrated into the granular layer and formed terminal branches that remained confined within this layer. A few of them, however, regenerated up to the molecular layer and formed climbing fibres on Purkinje cell dendrites. By contrast, the growth of transected Purkinje cell axons into the grafts was very poor. These results underscore the different intrinsic responsiveness of Purkinje cell and olivocerebellar axons to the growth-promoting action of Schwann cells, and show that the development and outcome of the regenerative phenomena is strongly conditioned by the spatial organization and specific features of the environmental cues encountered by the outgrowing axons along the course they follow. However, Schwann cells effectively bridge the lesion gap, induce the regeneration of olivocerebellar axons, and direct their growth up to the deafferented host cortex, where some of them succeed in reinnervating their natural targets.  相似文献   

19.
Iron is an essential cofactor for several metabolic processes, including the generation of ATP in mitochondria, which is required for axonal function and regeneration. However, it is not known how mitochondria in long axons, such as those in sciatic nerves, acquire iron in vivo. Because of their close proximity to axons, Schwann cells are a likely source of iron for axonal mitochondria in the PNS. Here we demonstrate the critical role of iron in promoting neurite growth in vitro using iron chelation. We also show that Schwann cells express the molecular machinery to release iron, namely, the iron exporter, ferroportin (Fpn) and the ferroxidase ceruloplasmin (Cp). In Cp KO mice, Schwann cells accumulate iron because Fpn requires to partner with Cp to export iron. Axons and Schwann cells also express the iron importer transferrin receptor 1 (TfR1), indicating their ability for iron uptake. In teased nerve fibers, Fpn and TfR1 are predominantly localized at the nodes of Ranvier and Schmidt-Lanterman incisures, axonal sites that are in close contact with Schwann cell cytoplasm. We also show that lack of iron export from Schwann cells in Cp KO mice reduces mitochondrial iron in axons as detected by reduction in mitochondrial ferritin, affects localization of axonal mitochondria at the nodes of Ranvier and Schmidt-Lanterman incisures, and impairs axonal regeneration following sciatic nerve injury. These finding suggest that Schwann cells contribute to the delivery of iron to axonal mitochondria, required for proper nerve repair.SIGNIFICANCE STATEMENT This work addresses how and where mitochondria in long axons in peripheral nerves acquire iron. We show that Schwann cells are a likely source as they express the molecular machinery to import iron (transferrin receptor 1), and to export iron (ferroportin and ceruloplasmin [Cp]) to the axonal compartment at the nodes of Ranvier and Schmidt-Lanterman incisures. Cp KO mice, which cannot export iron from Schwann cells, show reduced iron content in axonal mitochondria, along with increased localization of axonal mitochondria at Schmidt-Lanterman incisures and nodes of Ranvier, and impaired sciatic nerve regeneration. Iron chelation in vitro also drastically reduces neurite growth. These data suggest that Schwann cells are likely to contribute iron to axonal mitochondria needed for axon growth and regeneration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号