首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Bacteriophage T7 DNA polymerase (gene 5 protein, gp5) interacts with its processivity factor, Escherichia coli thioredoxin, via a unique loop at the tip of the thumb subdomain. We find that this thioredoxin-binding domain is also the site of interaction of the phage-encoded helicase/primase (gp4) and ssDNA binding protein (gp2.5). Thioredoxin itself interacts only weakly with gp4 and gp2.5 but drastically enhances their binding to gp5. The acidic C termini of gp4 and gp2.5 are critical for this interaction in the absence of DNA. However, the C-terminal tail of gp4 is not required for binding to gp5 when the latter is bound to a primer/template. We propose that the thioredoxin-binding domain is a molecular switch that regulates the interaction of T7 DNA polymerase with other proteins of the replisome.  相似文献   

2.
Gene 4 protein (gp4) encoded by bacteriophage T7 contains a C-terminal helicase and an N-terminal primase domain. After synthesis of tetraribonucleotides, gp4 must transfer them to the polymerase for use as primers to initiate DNA synthesis. In vivo gp4 exists in two molecular weight forms, a 56-kDa form and the full-length 63-kDa form. The 56-kDa gp4 lacks the N-terminal Cys4 zinc-binding motif important in the recognition of primase sites in DNA. The 56-kDa gp4 is defective in primer synthesis but delivers a wider range of primers to initiate DNA synthesis compared to the 63-kDa gp4. Suppressors exist that enable the 56-kDa gp4 to support the growth of T7 phage lacking gene 4 (T7Δ4). We have identified 56-kDa DNA primases defective in primer delivery by screening for their ability to support growth of T7Δ4 phage in the presence of this suppressor. Trp69 is critical for primer delivery. Replacement of Trp69 with lysine in either the 56- or 63-kDa gp4 results in defective primer delivery with other functions unaffected. DNA primase harboring lysine at position 69 fails to stabilize the primer on DNA. Thus, a primase subdomain not directly involved in primer synthesis is involved in primer delivery. The stabilization of the primer by DNA primase is necessary for DNA polymerase to initiate synthesis.  相似文献   

3.
DNA primases provide oligoribonucleotides for DNA polymerase to initiate lagging strand synthesis. A deficiency in the primase of bacteriophage T7 to synthesize primers can be overcome by genetic alterations that decrease the expression of T7 gene 5.5, suggesting an alternative mechanism to prime DNA synthesis. The product of gene 5.5 (gp5.5) forms a stable complex with the Escherichia coli histone-like protein H-NS and transfer RNAs (tRNAs). The 3'-terminal sequence (5'-ACCA-3') of tRNAs is identical to that of a functional primer synthesized by T7 primase. Mutations in T7 that suppress the inability of primase reduce the amount of gp5.5 and thus increase the pool of tRNA to serve as primers. Alterations in T7 gene 3 facilitate tRNA priming by reducing its endonuclease activity that cleaves at the tRNA-DNA junction. The tRNA bound to gp5.5 recruits H-NS. H-NS alone inhibits reactions involved in DNA replication, but the binding to gp5.5-tRNA complex abolishes this inhibition.  相似文献   

4.
The three-dimensional structure of bacteriophage T7 DNA polymerase reveals the presence of a loop of 4 aa (residues 401-404) within the DNA-binding groove; this loop is not present in other members of the DNA polymerase I family. A genetically altered T7 DNA polymerase, T7 polDelta401-404, lacking these residues, has been characterized biochemically. The polymerase activity of T7 polDelta401-404 on primed M13 single-stranded DNA template is one-third of the wild-type enzyme and has a 3'-to-5' exonuclease activity indistinguishable from that of wild-type T7 DNA polymerase. T7 polDelta401-404 polymerizes nucleotides processively on a primed M13 single-stranded DNA template. T7 DNA polymerase cannot initiate de novo DNA synthesis; it requires tetraribonucleotides synthesized by the primase activity of the T7 gene 4 protein to serve as primers. T7 primase-dependent DNA synthesis on single-stranded DNA is 3- to 6-fold less with T7 polDelta401-404 compared with the wild-type enzyme. Furthermore, the altered polymerase is defective (10-fold) in its ability to use preformed tetraribonucleotides to initiate DNA synthesis in the presence of gene 4 protein. The location of the loop places it in precisely the position to interact with the tetraribonucleotide primer and, presumably, with the T7 gene 4 primase. Gene 4 protein also provides helicase activity for the replication of duplex DNA. T7 polDelta401-404 and T7 gene 4 protein catalyze strand-displacement DNA synthesis at nearly the same rate as does wild-type polymerase and T7 gene 4 protein, suggesting that the coupling of helicase and polymerase activities is unaffected.  相似文献   

5.
Physical biochemical techniques are used to establish the structure, subunit stoichiometry, and assembly pathway of the primosome complex of the bacteriophage T4 DNA replication system. Analytical ultracentrifugation and fluorescence anisotropy methods show that the functional T4 primosome consists of six gp41 helicase subunits that assemble into a hexagon, driven by the binding of six NTPs (or six nonhydrolyzable GTPγS analogues) that are located at and stabilize the intersubunit interfaces, together with a single tightly bound gp61 primase subunit. Assembling the components of the primosome onto a model DNA replication fork is a multistep process, but equilibrium cannot be reached along all mixing pathways. Producing a functional complex requires that the helicase hexamer be assembled in the presence of the DNA replication fork construct prior to the addition of the primase to avoid the formation of metastable DNA-protein aggregates. The gp41 helicase hexamer binds weakly to fork DNA in the absence of primase, but forms a much more stable primosome complex that expresses full and functional helicase (and primase) activities when bound to a gp61 primase subunit at a helicase:primase subunit ratio of 61. The presence of additional primase subunits does not change the molecular mass or helicase activity of the primosome, but significantly inhibits its primase activity. We develop both an assembly pathway and a minimal mechanistic model for the structure and function of the T4 primosome that are likely to be relevant to the assembly and function of the replication primosome subassemblies of higher organisms as well.  相似文献   

6.
The DNA replication complex of bacteriophage T4 has been assembled as a single unit on a minicircle substrate with a replication fork that permits an independent measurement of the amount of DNA synthesis on both the leading and lagging strands. The assembled replisome consists of the T4 polymerase [gene product 43 (gp43)], clamp protein (gp45), clamp loader (gp44/62), helicase (gp41), helicase accessory factor (gp59), primase (gp61), and single-stranded DNA binding protein (gp32). We demonstrate that on the minicircle the synthesis of the leading and lagging strands are coordinated and that the C-terminal domain of the gp32 protein regulates this coordination. We show that the reconstituted replisome encompasses two coupled holoenzyme complexes and present evidence that this coupling might include a gp43 homodimer interaction.  相似文献   

7.
DNA replication occurs semidiscontinuously due to the antiparallel DNA strands and polarity of enzymatic DNA synthesis. Although the leading strand is synthesized continuously, the lagging strand is synthesized in small segments designated Okazaki fragments. Lagging-strand synthesis is a complex event requiring repeated cycles of RNA primer synthesis, transfer to the lagging-strand polymerase, and extension effected by cooperation between DNA primase and the lagging-strand polymerase. We examined events controlling Okazaki fragment initiation using the bacteriophage T7 replication system. Primer utilization by T7 DNA polymerase is slower than primer formation. Slow primer release from DNA primase allows the polymerase to engage the complex and is followed by a slow primer handoff step. The T7 single-stranded DNA binding protein increases primer formation and extension efficiency but promotes limited rounds of primer extension. We present a model describing Okazaki fragment initiation, the regulation of fragment length, and their implications for coordinated leading- and lagging-strand DNA synthesis.Replicative DNA polymerases require a primer for initiation (1, 2). Although various priming strategies exist, the most ubiquitous involves use of short RNAs synthesized by DNA primases. Although the leading strand is synthesized continuously in the direction of replication fork movement, the lagging strand is synthesized in small segments called Okazaki fragments that are later joined together. Initiation of Okazaki fragment synthesis is a complex, tightly regulated process involving multiple enzymatic events and molecular interactions (1, 3).The replication machinery of bacteriophage T7 is among the simplest replication systems (4, 5). Only four proteins are required to reconstitute coordinated DNA synthesis in vitro: gene 4 primase-helicase (gp4) unwinds the DNA duplex to provide the template for DNA synthesis. T7 DNA polymerase (gp5), in complex with its processivity factor, Escherichia coli thioredoxin (Trx), is responsible for synthesis of leading and lagging strands. Finally, gene 2.5 single-stranded (ss)DNA-binding protein (gp2.5) stabilizes ssDNA replication intermediates and is essential for coordination of DNA synthesis on both strands. The elegant simplicity of the T7 replication machinery makes it an attractive system for investigating molecular and enzymatic events occurring during DNA replication.In T7-infected E. coli, Okazaki fragments are initiated by synthesis of tetraribonucleotides by the primase activity of gp4 (6) (Fig. 1A). Gp4 catalyzes the formation of tetraribonucleotides at specific template sequences, designated “primase recognition sites” (PRSs) (7). On encountering a 5′-GTC-3′ sequence, gp4 catalyzes the synthesis of the dinucleotide pppAC. The “cryptic” cytosine in the recognition site is not copied into the oligoribonucleotide. The dinucleotide is extended to a trinucleotide, and finally, to the functional tetraribonucleotide primers, pppACCC, pppACCA, or pppACAC if the appropriate complementary sequence is present (8). Once primers are synthesized, they are delivered to the lagging-strand polymerase (911). T7 DNA polymerase alone cannot efficiently use primers shorter than 15 nt in vitro. However, in the presence of gp4, it uses tetramers as primers for DNA synthesis. Therefore, gp4 is critical not only for primer formation, but also for enabling the use of short oligoribonucleotides by T7 DNA polymerase. Critically, the primase domain also fulfills two additional roles apart from primer synthesis: it prevents dissociation of the extremely short tetramer, stabilizing it with the template, and it secures it in the polymerase active site (10, 12).Open in a separate windowFig. 1.Primer synthesis and extension by gp4 and T7 DNA polymerase. (A) gp4 unwinds dsDNA, using its C-terminal helicase domain. At PRSs, the gp4 primase domain synthesizes a short RNA, stabilizing it on the template and mediates its transfer to T7 DNA polymerase. (B) Gp4 enables T7 DNA polymerase to extend tetraribonucleotides; 0.1 µM gp4 hexamer or 0.2–25 µM gp4 primase fragment (PF) was incubated with ssDNA in the absence or presence of T7 DNA polymerase for 5 min at 25 °C. Products are indicated to the right of the gel image. Pentamers are likely not extended efficiently (37, 38). (C) Klenow fragment of E. coli DNA polymerase I and T4 DNA polymerase cannot extend short RNAs synthesized by gp4. Reactions were initiated by adding 10 mM MgCl2, and samples were taken at 10-s intervals. The 0 time point corresponds to a sample of the reaction before MgCl2 addition.Here we show that the rate-limiting step in initiation of Okazaki fragments by the T7 replisome is primer release from the primase domain of gp4. In the absence of gp2.5, an additional step, distinct from primer release, also limits primer extension. The presence of gp2.5 promotes efficient primer formation and primer utilization. Finally, we propose a model for events controlling Okazaki fragment initiation, length, and coordination with synthesis of the leading strand.  相似文献   

8.
Primase and helicase activities of bacteriophage T7 are present in a single polypeptide coded by gene 4. Because the amino terminal region of the gene 4 protein contributes to primase activity, we constructed a truncated gene 4 encoding the N-terminal 271-aa residues. The truncated protein, purified from cells overexpressing the protein, is a dimer in solution; the full-length protein is a hexamer. Although the fragment is devoid of dTTPase and helicase activities, it catalyzes template-directed synthesis of di-, tri-, and tetranucleotides. The rates for tetraribonucleotide synthesis and for dinucleotide extension on a 20-nucleotide template are similar for the full-length and truncated proteins. However, the activity of the primase fragment is unaffected by dTTP whereas the primase activity of the full-length protein is stimulated >14-fold. The primase fragment is defective in the interaction with T7 DNA polymerase in that primer synthesis cannot be coupled to DNA synthesis.  相似文献   

9.
Interactions between gene 4 helicase and gene 5 DNA polymerase (gp5) are crucial for leading-strand DNA synthesis mediated by the replisome of bacteriophage T7. Interactions between the two proteins that assure high processivity are known but the interactions essential to initiate the leading-strand DNA synthesis remain unidentified. Replacement of solution-exposed basic residues (K587, K589, R590, and R591) located on the front surface of gp5 with neutral asparagines abolishes the ability of gp5 and the helicase to mediate strand-displacement synthesis. This front basic patch in gp5 contributes to physical interactions with the acidic C-terminal tail of the helicase. Nonetheless, the altered polymerase is able to replace gp5 and continue ongoing strand-displacement synthesis. The results suggest that the interaction between the C-terminal tail of the helicase and the basic patch of gp5 is critical for initiation of strand-displacement synthesis. Multiple interactions of T7 DNA polymerase and helicase coordinate replisome movement.  相似文献   

10.
11.
Bacteriophage T7 gene 4 protein, purified from phage-infected cells, consists of a mixture of 56- and 63-kDa species that provides helicase and primase activities required for T7 DNA replication. The 56-kDa species has been purified independently of the colinear 63-kDa species. Like a mixture of the two proteins, the 56-kDa protein binds single-stranded DNA in the presence of dTTP, catalyzes DNA-dependent hydrolysis of dTTP, and has helicase activity. In contrast to the mixture, the 56-kDa protein cannot catalyze template-dependent RNA primer synthesis. In the absence of a DNA template, both the 56-kDa protein and the mixture of the two species synthesize low levels of diribonucleotide. A putative "zinc finger" present near the amino terminus of the 63-kDa protein but absent from the 56-kDa protein may play a major role in the recognition of primase sites in the template.  相似文献   

12.
The ring-shaped helicase of bacteriophage T7 (gp4), the product of gene 4, has basic β-hairpin loops lining its central core where they are postulated to be the major sites of DNA interaction. We have altered multiple residues within the β-hairpin loop to determine their role during dTTPase-driven DNA unwinding. Residues His-465, Leu-466, and Asn-468 are essential for both DNA unwinding and DNA synthesis mediated by T7 DNA polymerase during leading-strand DNA synthesis. Gp4-K467A, gp4-K471A, and gp4-K473A form fewer hexamers than heptamers compared to wild-type helicase and alone are deficient in DNA unwinding. However, they complement for the growth of T7 bacteriophage lacking gene 4. Single-molecule studies show that these three altered helicases support rates of leading-strand DNA synthesis comparable to that observed with wild-type gp4. Gp4-K467A, devoid of unwinding activity alone, supports leading-strand synthesis in the presence of T7 DNA polymerase. We propose that DNA polymerase limits the backward movement of the helicase during unwinding as well as assisting the forward movement necessary for strand separation.  相似文献   

13.
The distribution of termination and initiation sites in a 5081-nucleotide minute virus of mice DNA template being copied by a highly purified mouse DNA polymerase alpha-DNA primase complex in the presence of GTP has been examined. The 3'-hydroxyl termini (17 in all) were clustered at six sites that were located 2-14 nucleotides upstream of C2A2C2, C2AC3, or C2A2T2 sequences. When either [alpha-32P]- or [gamma-32P]GTP was included in the DNA polymerase reaction mixtures, nascent DNA became radiolabeled. Analysis of the 32P-labeled material following treatment of the DNA with tobacco acid pyrophosphatase, bacterial alkaline phosphatase, or ribonuclease T1 revealed the presence of oligoribonucleotide chains averaging 5-7 nucleotides long and beginning with 5' GTP residues. Eight presumptive DNA primase initiation sites were located opposite C4 or C5 sequences 3-9 nucleotides upstream of one of the three closely related hexanucleotides C2A2C2, C2AC3, and C2A2T2. RNA-DNA junctions were found 3-10 nucleotides downstream of DNA primase initiation sites. The results indicate that hexanucleotides having the general formula C2A1-2(C2-3/T2), herein referred to as psi, are involved in promoting termination of DNA synthesis and/or de novo initiation of RNA-primed DNA chains by DNA polymerase alpha-primase.  相似文献   

14.
We previously used changes in the near-UV circular dichroism and fluorescence spectra of DNA base analogue probes placed site specifically to show that the first three base pairs at the fork junction in model replication fork constructs are significantly opened by "breathing" fluctuations under physiological conditions. Here, we use these probes to provide mechanistic snapshots of the initial interactions of the DNA fork with a tight-binding replication helicase in solution. The primosome helicase of bacteriophage T4 was assembled from six (gp41) helicase subunits, one (gp61) primase subunit, and nonhydrolyzable GTPγS. When bound to a DNA replication fork construct this complex advances one base pair into the duplex portion of the fork and forms a stably bound helicase "initiation complex." Replacement of GTPγS with GTP permits the completion of the helicase-driven unwinding process. Our spectroscopic probes show that the primosome in this stable helicase initiation complex binds the DNA of the fork primarily via backbone contacts and holds the first complementary base pair of the fork in an open conformation, whereas the second, third, and fourth base pairs of the duplex show essentially the breathing behavior that previously characterized the first three base pairs of the free fork. These spectral changes, together with dynamic fluorescence quenching results, are consistent with a primosome-binding model in which the lagging DNA strand passes through the central hole of the hexagonal helicase, the leading strand binds to the "outside" surfaces of subunits of the helicase hexamer, and the single primase subunit interacts with both strands.  相似文献   

15.
The T4 bacteriophage encodes eight proteins, which are sufficient to carry out coordinated leading and lagging strand DNA synthesis. These purified proteins have been used to reconstitute DNA synthesis in vitro and are a well-characterized model system. Recent work on the T4 replisome has yielded more detailed insight into the dynamics and coordination of proteins at the replication fork. Since the leading and lagging strands are synthesized in opposite directions, coordination of DNA synthesis as well as priming and unwinding is accomplished by several protein complexes. These protein complexes serve to link catalytic activities and physically tether proteins to the replication fork. Essential to both leading and lagging strand synthesis is the formation of a holoenzyme complex composed of the polymerase and a processivity clamp. The two holoenzymes form a dimer allowing the lagging strand polymerase to be retained within the replisome after completion of each Okazaki fragment. The helicase and primase also form a complex known as the primosome, which unwinds the duplex DNA while also synthesizing primers on the lagging strand. Future studies will likely focus on defining the orientations and architecture of protein complexes at the replication fork.  相似文献   

16.
T7 gene 5 DNA polymerase (gp5) and its processivity factor, Escherichia coli thioredoxin, together with the T7 gene 4 DNA helicase, catalyze strand displacement synthesis on duplex DNA processively (>17,000 nucleotides per binding event). The processive DNA synthesis is resistant to the addition of a DNA trap. However, when the polymerase-thioredoxin complex actively synthesizing DNA is challenged with excess DNA polymerase-thioredoxin exchange occurs readily. The exchange can be monitored by the use of a genetically altered T7 DNA polymerase (gp5-Y526F) in which tyrosine-526 is replaced with phenylalanine. DNA synthesis catalyzed by gp5-Y526F is resistant to inhibition by chain-terminating dideoxynucleotides because gp5-Y526F is deficient in the incorporation of these analogs relative to the wild-type enzyme. The exchange also occurs during coordinated DNA synthesis in which leading- and lagging-strand synthesis occur at the same rate. On ssDNA templates with the T7 DNA polymerase alone, such exchange is not evident, suggesting that free polymerase is first recruited to the replisome by means of T7 gene 4 helicase. The ability to exchange DNA polymerases within the replisome without affecting processivity provides advantages for fidelity as well as the cycling of the polymerase from a completed Okazaki fragment to a new primer on the lagging strand.  相似文献   

17.
18.
Priming of phage phi X174 DNA synthesis is effected simply by dnaB protein and primase when the DNA is not coated by single-strand binding protein (SSB). The five prepriming proteins (n,n',n',i, and dnaC protein) required for priming a SSB-coated phi X174 DNA circle are dispensable. The dnaB protein-primase priming system is also active on uncoated phage G4 and M13 DNAs and on poly(dT). Multiple RNA primers, 10--60 nucleotides long, are transcribed with patterns distinctive for each DNA template. Formation of a stable dnaB protein.DNA complex in the presence of primase and ATP supports the hypothesis that dnaB protein provides a mobile replication promoter signal for primase.  相似文献   

19.
Replication of DNA requires helicase and primase activities as part of a primosome assembly. In bacteriophage T4, helicase and primase are separate polypeptides for which little structural information is available and whose mechanism of association within the primosome is not yet understood. Three-dimensional structural information is provided here by means of reconstructions from electron microscopic images. Structures have been calculated for complexes of each of these proteins with ssDNA in the presence of MgATPgammaS. Both the helicase (gp41) and primase (gp61) complexes are asymmetric hexagonal rings. The gp41 structure suggests two distinct forms that have been termed "open" and "closed." The gp61 structure is clearly a six-membered ring, which may be a trimer of dimers or a traditional hexamer of monomers. This structure provides conclusive evidence for an oligomeric primase-to-ssDNA stoichiometry of 6:1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号