首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The surface molecule CD4 plays a key role in initiating cellular entry by the human immunodeficiency virus type 1 (HIV-1), and it is now recognized as acting synergistically with select chemokine receptors (coreceptors) in the infection process. The present study was undertaken to determine whether the extracellular region of CD4 is sufficient to induce fusion of HIV-1 virions with target cells in the absence of its anchoring function. Using pseudotype reporter viruses to quantitate infection, soluble CD4 (sCD4) was tested for its ability to induce fusion by viruses utilizing CCR5 as their coreceptor. We found that sCD4 was competent to replace membrane-bound CD4 to trigger infection mediated by several HIV-1 envelopes. Furthermore, in a comparison of the envelopes of HIV-1 NL4-3 and a chimera containing the gp120 V3 loop of Ba-L, the V3 region was found to be one factor affecting susceptibility to induction by sCD4. In addition, using truncated and mutant derivatives of sCD4, the amino-terminal D1 domain of CD4 was found to be necessary and sufficient for induction of fusion and to require an intact gp120-binding site for this activity. These results delineate determinants on CD4 and gp120 required for fusion induction in collaboration with a coreceptor, and suggest a mechanism whereby CD4 may contribute to viral infection in trans.  相似文献   

2.
Human immunodeficiency virus type 1 (HIV-1) uses the chemokine receptors CCR5 and CXCR4 as coreceptors for entry. It was recently demonstrated that HIV-1 glycoprotein 120 (gp120) elevated calcium and activated several ionic signaling responses in primary human macrophages, which are important targets for HIV-1 in vivo. This study shows that chemokine receptor engagement by both CCR5-dependent (R5) and CXCR4-dependent (X4) gp120 led to rapid phosphorylation of the focal adhesion-related tyrosine kinase Pyk2 in macrophages. Pyk2 phosphorylation was also induced by macrophage inflammatory protein-1beta (MIP-1beta) and stromal cell-derived factor-1alpha, chemokine ligands for CCR5 and CXCR4. Activation was blocked by EGTA and by a potent blocker of calcium release-activated Ca++ (CRAC) channels, but was insensitive to pertussis toxin (PTX), implicating CRAC-mediated extracellular Ca++ influx but not Galpha(i) protein-dependent mechanisms. Coreceptor engagement by gp120 and chemokines also activated 2 members of the mitogen-activated protein kinase (MAPK) superfamily, c-Jun amino-terminal kinase/stress-activated protein kinase and p38 MAPK. Furthermore, gp120-stimulated macrophages secreted the chemokines monocyte chemotactic protein-1 and MIP-1beta in a manner that was dependent on MAPK activation. Thus, the gp120 signaling cascade in macrophages includes coreceptor binding, PTX-insensitive signal transduction, ionic signaling including Ca++ influx, and activation of Pyk2 and MAPK pathways, and leads to secretion of inflammatory mediators. HIV-1 Env signaling through these pathways may contribute to dysregulation of uninfected macrophage functions, new target cell recruitment, or modulation of macrophage infection.  相似文献   

3.
CC chemokine receptor 5 (CCR5) is a receptor for chemokines and the coreceptor for R5 HIV-1 entry into CD4+ T lymphocytes. Chemokines exert anti–HIV-1 activity in vitro, both by displacing the viral envelope glycoprotein gp120 from binding to CCR5 and by promoting CCR5 endocytosis, suggesting that they play a protective role in HIV infection. However, we showed here that different CCR5 conformations at the cell surface are differentially engaged by chemokines and gp120, making chemokines weaker inhibitors of HIV infection than would be expected from their binding affinity constants for CCR5. These distinct CCR5 conformations rely on CCR5 coupling to nucleotide-free G proteins (NFG proteins). Whereas native CCR5 chemokines bind with subnanomolar affinity to NFG protein-coupled CCR5, gp120/HIV-1 does not discriminate between NFG protein-coupled and uncoupled CCR5. Interestingly, the antiviral activity of chemokines is G protein independent, suggesting that “low-chemokine affinity” NFG protein-uncoupled conformations of CCR5 represent a portal for viral entry. Furthermore, chemokines are weak inducers of CCR5 endocytosis, as is revealed by EC50 values for chemokine-mediated endocytosis reflecting their low-affinity constant value for NFG protein-uncoupled CCR5. Abolishing CCR5 interaction with NFG proteins eliminates high-affinity binding of CCR5 chemokines but preserves receptor endocytosis, indicating that chemokines preferentially endocytose low-affinity receptors. Finally, we evidenced that chemokine analogs achieve highly potent HIV-1 inhibition due to high-affinity interactions with internalizing and/or gp120-binding receptors. These data are consistent with HIV-1 evading chemokine inhibition by exploiting CCR5 conformational heterogeneity, shed light into the inhibitory mechanisms of anti–HIV-1 chemokine analogs, and provide insights for the development of unique anti–HIV molecules.  相似文献   

4.
Signal transductions by the dual-function CXCR4 and CCR5 chemokine receptors/HIV type 1 (HIV-1) coreceptors were electrophysiologically monitored in Xenopus laevis oocytes that also coexpressed the viral receptor CD4 and a G protein-coupled inward-rectifying K+ channel (Kir 3.1). Large Kir 3.1-dependent currents generated in response to the corresponding chemokines (SDF-1α for CXCR4 and MIP-1α; MIP-1β and RANTES for CCR5) were blocked by pertussis toxin, suggesting involvement of inhibitory guanine nucleotide-binding proteins. Prolonged exposures to chemokines caused substantial but incomplete desensitization of responses with time constants of 5–7 min and recovery time constants of 12–19 min. CXCR4 and CCR5 exhibited heterologous desensitization in this oocyte system, suggesting possible inhibition of a common downstream step in their signaling pathways. In contrast to chemokines, perfusion with monomeric or oligomeric preparations of the glycoprotein of Mr 120,000 (gp120) derived from several isolates of HIV-1 did not activate signaling by CXCR4 or CCR5 regardless of CD4 coexpression. However, adsorption of the gp120 from a T-cell-tropic virus resulted in CD4-dependent antagonism of CXCR4 response to SDF-1α, whereas gp120 from macrophage-tropic viruses caused CD4-dependent antagonism of CCR5 response to MIP-1α. These antagonisms could be partially overcome by high concentrations of chemokines and were specific for coreceptors of the corresponding HIV-1 isolates, suggesting that they resulted from direct interactions of gp120–CD4 complexes with coreceptors and that they did not involve the desensitization pathway. These results indicate that monomeric or oligomeric gp120s specifically antagonize CXCR4 and CCR5 signaling in response to chemokines, but they do not exclude the possibility that gp120s might also function as weak agonists in some cells. The gp120-mediated disruption of CXCR4 and CCR5 signaling may contribute to AIDS pathogenesis.  相似文献   

5.
The entry of human immunodeficiency virus (HIV-1) into target cells typically requires the sequential binding of the viral exterior envelope glycoprotein, gp120, to CD4 and a chemokine receptor. CD4 binding exposes gp120 epitopes recognized by CD4-induced (CD4i) antibodies, which can block virus binding to the chemokine receptor. We identified three new CD4i antibodies from an HIV-1-infected individual and localized their epitopes. These epitopes include a highly conserved gp120 beta-strand encompassing residues 419-424, which is also important for binding to the CCR5 chemokine receptor. All of the CD4i antibodies inhibited the binding of gp120-CD4 complexes to CCR5. CD4i antibodies and CD4 reciprocally induced each other's binding, suggesting that these ligands recognize a similar gp120 conformation. The CD4i antibodies neutralized laboratory-adapted HIV-1 isolates; primary isolates were more resistant to neutralization by these antibodies. Thus, all known CD4i antibodies recognize a common, conserved gp120 element overlapping the binding site for the CCR5 chemokine receptor.  相似文献   

6.
The recently cloned human chemoattractant receptor-like (CMKRL)1, which is expressed in vivo in CD4-positive immune cells, has structural homology with the two chemokine receptors C-C chemokine receptor (CCR)5 and C-X-C chemokine receptor (CXCR)4, which serve as the major coreceptors necessary for fusion of the HIV-1 envelope with target cells. In view of the structural similarity, CMKRL1 was tested for its possible function as another HIV-1 coreceptor after stable expression in murine fibroblasts bearing the human CD4 receptor. The cells were infected with 10 primary clinical isolates of HIV-1, and entry was monitored by semiquantitative PCR of viral DNA. The efficiency of the entry was compared with the entry taking place in CD4-positive cells expressing either CCR5 or CXCR4. Seven of the isolates used CMKRL1 for viral entry; they were mainly of the syncytium-inducing phenotype and also used CXCR4. Entry efficiency was higher with CMKRL1 than with CXCR4 for more than half of these isolates. Three of the ten isolates did not use CMKRL1; instead, entry was mediated by both CCR5 and CXCR4. The experiments thus indicate that CMKRL1 functions as a coreceptor for the entry of HIV-1 into CD4-positive cells. In the course of this study, leukotriene B4 was shown to be the natural ligand for this receptor (now designated BLTR), which therefore represents a novel type of HIV-1 coreceptor along with the previously identified chemokine receptors. BLTR belongs to the same general chemoattractant receptor family as the chemokine receptors but is structurally more distant from them than are any of the previously described HIV-1 coreceptors.  相似文献   

7.
HIV type 1 (HIV-1) uses the chemokine receptors CCR5 and CXCR4 as coreceptors for entry into target cells. Here we show that the HIV-1 envelope gp120 (Env) activates multiple ionic signaling responses in primary human macrophages, which are important targets for HIV-1 in vivo. Env from both CCR5-dependent JRFL (R5) and CXCR4-dependent IIIB (X4) HIV-1 opened calcium-activated potassium (K(Ca)), chloride, and calcium-permeant nonselective cation channels in macrophages. These signals were mediated by CCR5 and CXCR4 because macrophages lacking CCR5 failed to respond to JRFL and an inhibitor of CXCR4 blocked ion current activation by IIIB. MIP-1beta and SDF-1alpha, chemokine ligands for CCR5 and CXCR4, respectively, also activated K(Ca) and Cl(-) currents in macrophages, but nonselective cation channel activation was unique to gp120. Intracellular Ca(2+) levels were also elevated by gp120. The patterns of activation mediated by CCR5 and CXCR4 were qualitatively similar but quantitatively distinct, as R5 Env activated the K(Ca) current more frequently, elicited Cl(-) currents that were approximately 2-fold greater in amplitude, and elevated intracellular Ca(+2) to higher peak and steady-state levels. Env from R5 and X4 primary isolates evoked similar current responses as the corresponding prototype strains. Thus, the interaction of HIV-1 gp120 with CCR5 or CXCR4 evokes complex and distinct signaling responses in primary macrophages, and gp120-evoked signals differ from those activated by the coreceptors' chemokine ligands. Intracellular signaling responses of macrophages to HIV-1 may modulate postentry steps of infection and cell functions apart from infection.  相似文献   

8.
Human saliva contains multiple components that inhibit HIV-1 infection in vitro, which may contribute to low oral HIV-1 transmission. Salivary agglutinin (SAG) is a high-molecular-weight glycoprotein encoded by DMBT-1 and identical to gp340, a member of the lung scavange receptor, cysteine-rich receptor family. gp340 binds to surfactants A and D, which is believed to function in the clearance of microorganisms from the lung, as part of the innate immune response. Previously we reported that SAG (gp340) specifically inhibits HIV-1 infection with broad activity against diverse HIV-1 isolates. This gp340 inhibitory activity is mediated by binding to viral gp120 and involves a region different from the CD4-binding site on gp120. Here, we report that the gp340-binding region is localized to a linear, highly conserved sequence near the stem of the V3 loop that is critical for chemokine receptor interaction during viral binding and infection. The interaction of gp340 with gp120 is enhanced by prebinding of sCD4 to gp120, suggesting that gp340 inhibitory activity is mediated by blocking access of the gp120 to the chemokine receptor.  相似文献   

9.
The identification of the chemokine receptors as receptors for HIV-1 has boosted interest in these molecules, raising expectations for the development of new strategies to prevent HIV-1 infection. The discovery that chemokines block HIV-1 replication has focused attention on identifying their mechanism of action. Previous studies concluded that this inhibitory effect may be mediated by steric hindrance or by receptor down-regulation. We have identified a CCR5 receptor-specific mAb that neither competes with the chemokine for binding nor triggers signaling, as measured by Ca(2+) influx or chemotaxis. The antibody neither triggers receptor down-regulation nor interferes with the R5 JRFL viral strain gp120 binding to CCR5, but blocks HIV-1 replication in both in vitro assays using peripheral blood mononuclear cells as HIV-1 targets, as well as in vivo using human peripheral blood mononuclear cell-reconstituted SCID (severe combined immunodeficient) mice. Our evidence shows that the anti-CCR5 mAb efficiently prevents HIV-1 infection by inducing receptor dimerization. Chemokine receptor dimerization also is induced by chemokines and is required for their anti-HIV-1 activity. In addition to providing a molecular mechanism through which chemokines block HIV-1 infection, these results illustrate the prospects for developing new tools that possess HIV-1 suppressor activity, but lack the undesired inflammatory side effects of the chemokines.  相似文献   

10.
HIV-1 entry into CD4(+) cells requires the sequential interactions of the viral envelope glycoproteins with CD4 and a coreceptor such as the chemokine receptors CCR5 and CXCR4. A plausible approach to blocking this process is to use small molecule antagonists of coreceptor function. One such inhibitor has been described for CCR5: the TAK-779 molecule. To facilitate the further development of entry inhibitors as antiviral drugs, we have explored how TAK-779 acts to prevent HIV-1 infection, and we have mapped its site of interaction with CCR5. We find that TAK-779 inhibits HIV-1 replication at the membrane fusion stage by blocking the interaction of the viral surface glycoprotein gp120 with CCR5. We could identify no amino acid substitutions within the extracellular domain of CCR5 that affected the antiviral action of TAK-779. However, alanine scanning mutagenesis of the transmembrane domains revealed that the binding site for TAK-779 on CCR5 is located near the extracellular surface of the receptor, within a cavity formed between transmembrane helices 1, 2, 3, and 7.  相似文献   

11.
It has been previously shown that the HIV-1 envelope glycoprotein 120 (gp120) activates cell signaling by CXCR4, independently of CD4. The present study examines the involvement of different intracellular signaling pathways and their physiopathologic consequences following the CD4-independent interaction between CXCR4 or CCR5 and gp120 in different cell types: primary T cells, CD4(-)/CXCR4(+)/CCR5(+) T cells, or glioma cells. These interactions were compared with those obtained with natural ligands, stromal cell-derived factor 1 alpha (SDF-1alpha) (CXCL12) and macrophage inflammatory protein 1 beta (MIP-1beta) (CCL4) of their respective coreceptors. Thus, both p38 and SAPK/Jun N-terminal kinase mitogen-activated protein kinases (MAPKs) are activated on stimulation of these cells with either T- or M-tropic gp120, as well as with SDF-1alpha or MIP-1beta. In contrast, extracellular signal-related kinase 1 and 2 MAPKs are only activated by MIP-1beta but not by M-tropic gp120. Importantly, T- and M-tropic gp120 are able to induce the secretion of matrix metalloproteinase 9 (MMP-9), an extracellular metalloproteinase present in cerebrospinal fluid of patients with HIV-1 by T cells or glioma cells. Specific inhibition of MAPK p38 activation resulted in a complete abrogation of the induction of the MMP-9 pathogenic factor expression by gp120 or chemokines in both cell types. Because neurodegenerative features in acquired immune deficiency syndrome dementia may involve demyelinization by MMP-9, the specific targeting of p38 could provide a novel means to control HIV-induced cytopathogenic effects and cell homing to viral replication sites. (Blood. 2001;98:541-547)  相似文献   

12.
13.
Roles of chemokines and chemokine receptors in HIV-1 infection   总被引:6,自引:0,他引:6  
Human immunodeficiency virus type 1 (HIV-1) uses a coreceptor together with CD4 to enter CD4+ target cells. The chemokine receptors CXCR4 and CCR5 have been found to be the major coreceptors for T-cell line-tropic and macrophage-tropic HIV-1 strains, respectively, although many other chemokine and orphan receptors have also been identified as potential coreceptors for HIV-1. Genetic analyses has revealed the importance of chemokine and chemokine receptor genes in disease progression. The discovery of coreceptors provides a more defined scheme for virus entry in which the HIV-1 envelope glycoprotein sequentially binds CD4 and coreceptor, leading to a membrane fusion reaction between the viral envelope and the plasma membrane of the target cell. It also provides the basis for HIV-1 cell tropism. The identification of HIV coreceptors provides new opportunities for the development of anti-HIV therapy. Many coreceptor-based therapeutic approaches have been developed, some of which are currently in clinical trials.  相似文献   

14.
15.
The third variable region (V3 loop) of gp120, the HIV-1 surface envelope glycoprotein, plays a key role in HIV-1 infection and pathogenesis. Recently, we reported that a synthetic multibranched peptide (SPC3) containing eight V3-loop consensus motifs (GPGRAF) inhibited HIV-1 infection in both CD4+ and CD4- susceptible cells. In the present study, we investigated the mechanisms of action of SPC3 in these cell types--i.e., CD4+ lymphocytes and CD4- epithelial cells expressing galactosylceramide (GalCer), an alternative receptor for HIV-1 gp120. We found that SPC3 was a potent inhibitor of HIV-1 infection in CD4+ lymphocytes when added 1 h after initial exposure of the cells to HIV-1, whereas it had no inhibitory effect when present only before and/or during the incubation with HIV-1. These data suggested that SPC3 did not inhibit the binding of HIV-1 to CD4+ lymphocytes but interfered with a post-binding step necessary for virus entry. In agreement with this hypothesis, SPC3 treatment after HIV-1 exposure dramatically reduced the number of infected cells without altering gp120-CD4 interaction or viral gene expression. In contrast, SPC3 blocked HIV-1 entry into CD4-/GalCer+ human colon epithelial cells when present in competition with HIV-1 but had no effect when added after infection. Accordingly, SPC3 was found to inhibit the binding of gp120 to the GalCer receptor. Thus, the data suggest that SPC3 affects HIV-1 infection by two distinct mechanisms: (i) prevention of GalCer-mediated HIV-1 attachment to the surface of CD4-/GalCer+ cells and (ii) post-binding inhibition of HIV-1 entry into CD4+ lymphocytes.  相似文献   

16.
HIV-1 entry into cells involves formation of a complex between gp120 of the viral envelope glycoprotein (Env), a receptor (CD4), and a coreceptor. For most strains of HIV, this coreceptor is CCR5. Here, we provide evidence that CD4 is specifically associated with CCR5 in the absence of gp120 or any other receptor-specific ligand. The amount of CD4 coimmunoprecipitated with CCR5 was significantly higher than that with the other major HIV coreceptor, CXCR4, and in contrast to CXCR4 the CD4-CCR5 coimmunoprecipitation was not significantly increased by gp120. The CD4-CCR5 interaction probably takes place via the second extracellular loop of CCR5 and the first two domains of CD4. It can be inhibited by CCR5- and CD4-specific antibodies that interfere with HIV-1 infection, indicating a possible role in virus entry. These findings suggest a possible pathway of HIV-1 evolution and development of immunopathogenicity, a potential new target for antiretroviral drugs and a tool for development of vaccines based on Env-CD4-CCR5 complexes. The constitutive association of a seven-transmembrane-domain G protein-coupled receptor with another receptor also indicates new possibilities for cross-talk between cell surface receptors.  相似文献   

17.
Tuberculosis (TB) is the major opportunistic infection of HIV-1-infected patients in developing countries. Concurrent infection with TB results in immune cells having enhanced susceptibility to HIV-1 infection, which facilitates entry and replication of the virus. Cumulative data from earlier studies indicate that TB provides a milieu of continuous cellular activation and irregularities in cytokine and chemokine circuits that favor viral replication and disease progression. To better understand the interaction of the host with HIV-1 during active tuberculosis, we investigated in vivo expression of the HIV-1 coreceptors, CCR5 and CXCR4, and circulating levels of the inhibitory beta-chemokines, macrophage inflammatory protein-1-alpha (MIP-1alpha), macrophage inflammatory protein-1-beta (MIP-1beta), and regulated upon activation T cell expressed and secreted (RANTES), in HIV-positive individuals with and without active pulmonary tuberculosis. We found a significant decrease from normal in the fraction of CD4+ T cells expressing CCR5 and CXCR4 in individuals infected with HIV. However, CCR5 and CXCR4 expression did not differ significantly between HIV patients with and without tuberculosis. Higher amounts of MIP-1alpha, MIP-1beta, and RANTES were detected in plasma of HIV-1-positive individuals, particularly those with dual infection, although the increase was not found to be statistically significant.  相似文献   

18.
Macrophages, microglia, and other mononuclear phagocytes serve as cellular reservoirs for viral persistence in patients with acquired immunodeficiency syndrome. To understand host mechanisms that affect human immunodeficiency virus type 1 (HIV-1) pathogenesis by modulating expression of coreceptors, cytokine regulation of CC chemokine receptor 5 (CCR5) and CD4 expression on monocytes, monocyte-derived macrophages (MDMs), and microglia was investigated. Interleukin (IL)-4 and IL-10 enhanced the entry and replication of HIV-1 in microglia through up-regulation of CD4 and CCR5 expression, respectively. IL-4 stimulated HIV-1 replication in MDMs but down-regulated CD4 and CCR5 expression and inhibited virus entry, whereas IL-10 had the opposite effects. Thus, mechanisms independent of CCR5 and CD4 expression levels are involved in pathways that regulate HIV-1 replication in MDMs. CCR5 up-regulation by IL-10 was associated with increased migration of microglia in response to macrophage inflammatory protein-1beta. These findings suggest that increased production of T helper type 2 cytokines in the later stages of disease can enhance virus entry and replication in mononuclear phagocytes and facilitate chemotactic migration.  相似文献   

19.
Human immunodeficiency virus-1 (HIV-1) Tat, a nuclear transactivator of viral gene expression, has the unusual property of being released by infected cells. Recent studies suggest that extracellular Tat is partially sequestered by heparan sulfate proteoglycans. As a consequence, Tat is concentrated on the cell surface and protected from proteolytic degradation, thus remaining in a biologically active form. We show that Tat binds the surfaces of both HIV-1-infected and surrounding uninfected cells. We provide evidence for a specific interaction between Tat and the HIV-1 glycoprotein 120 (gp120) envelope protein, which enhances virus attachment and entry into cells. We map the interacting sites of both Tat and gp120 and show that synthetic peptides mimicking the gp120 site inhibit HIV-1 infection. Our data demonstrate that membrane-associated Tat is a novel modulator of virus entry and suggest that the Tat-gp120 interaction represents a critical step in HIV-1 spreading during the course of infection.  相似文献   

20.
CCL2 (MCP-1) has been shown to enhance HIV-1 replication. The expression of this chemokine by macrophages is up-modulated as a consequence of viral infection or gp120 exposure. In this study, we show for the first time that the phosphatidylcholine-specific phospholipase C (PC-PLC) is required for the production of CCL2 triggered by gp120 in human monocyte-derived macrophages (MDMs). Using a combination of pharmacologic inhibition, confocal laser-scanner microscopy, and enzymatic activity assay, we demonstrate that R5 gp120 interaction with CCR5 activates PC-PLC, as assessed by a time-dependent modification of its subcellular distribution and a concentration-dependent increase of its enzymatic activity. Furthermore, PC-PLC is required for NF-kB-mediated CCL2 production triggered by R5 gp120. Notably, PC-PLC activation through CCR5 is specifically induced by gp120, since triggering CCR5 through its natural ligand CCL4 (MIP-1beta) does not affect PC-PLC cellular distribution and enzymatic activity, as well as CCL2 secretion, thus suggesting that different signaling pathways can be activated through CCR5 interaction with HIV-1 or chemokine ligands. The identification of PC-PLC as a critical mediator of well-defined gp120-mediated effects in MDMs unravels a novel mechanism involved in bystander activation and may contribute to define potential therapeutic targets to block Env-triggered pathologic responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号