首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Adeno-associated virus has been developed for use as a gene transfer vector. To understand the impact of AAV capsid-specific CD8(+) T cells on AAV-mediated gene transfer, we identified CD8(+) T cell epitopes for AAV-2 and AAV-8 capsid in C57BL/6 (H-2(b) MHC haplotype) and BALB/c (H-2(d) MHC haplotype) mice. Mice of both the H-2(b) and the H-2(d) haplotypes recognized epitopes on AAV-2 and AAV-8 capsid. T cells from H-2(b) mice recognized an epitope that was conserved between AAV-2 and AAV-8 capsid. Cross-reactivity of AAV-specific CD8(+) T cells induced by different AAV serotypes may have important implications for gene transfer. Identification of these epitopes will facilitate studies of immune response to AAV capsid in mouse models.  相似文献   

2.
Immune responses directed against viral capsid proteins constitute a main safety concern in the use of adeno-associated virus (AAV) as gene transfer vectors in humans. Pharmacological immunosuppression has been proposed as a solution to the problem; however, the approach suffers from several potential limitations. Using MHC class II epitopes initially identified within human IgG, named Tregitopes, we showed that it is possible to modulate CD8+ T cell responses to several viral antigens in vitro. We showed that incubation of peripheral blood mononuclear cells with these epitopes triggers proliferation of CD4+CD25+FoxP3+ T cells that suppress killing of target cells loaded with MHC class I antigens in an antigen-specific fashion, through a mechanism that seems to require cell-to-cell contact. Expression of a construct encoding for the AAV capsid structural protein fused to Tregitopes resulted in reduction of CD8+ T cell reactivity against the AAV capsid following immunization with an adenoviral vector expressing capsid. This was accompanied by an increase in frequency of CD4+CD25+FoxP3+ T cells in spleens and lower levels of inflammatory infiltrates in injected tissues. This proof-of-concept study demonstrates modulation of CD8+ T cell reactivity to an antigen using regulatory T cell epitopes is possible.  相似文献   

3.
DNA recombination of the immunoglobulin (Ig) or T cell receptor (TCR) gene loci is an essential step in the production of lymphocytes bearing antigen-specific receptors. Mice that lack the ability to rearrange their Ig and TCR gene loci are devoid of mature B and T cells. Complete rearrangement and expression of the TCR-beta chain has been suggested to allow immature thymocytes to switch from the CD4-/CD8- to the CD4+/CD8+ stage of thymic development. Thus, thymocytes from severe combined immune deficient (SCID) mice or mice deficient in recombinase activation genes (RAG), which do not undergo proper DNA rearrangement, are arrested at the early CD4-/CD8- stage of development. B cell precursors in SCID or RAG mice do not progress from the B220+/sIgM- /heat stable antigen (HSA)+/CD43+ to the B220+/sIgM-/HSA+/CD43- stage. In an attempt to reconstitute RAG-2-/- mice with bone marrow- or fetal liver-derived progenitor cells, we subjected these mice to sublethal doses of gamma-radiation. It is surprising that in the absence of donor cells, irradiated RAG-2-/- mice revealed a dramatic change in their lymphoid phenotype. 14 d after irradiation, the majority of thymocytes had advanced to the CD4+/CD8+ stage of T cell development and a small number of bone marrow precursors had progressed to the CD43-, HSAhi stage of B cell development. Analysis of the resulting CD4+/CD8+ thymocytes revealed no surface expression of the TCR/CD3 complex and no V-D-J rearrangement of the TCR-beta gene locus. Our findings provide evidence for a novel pathway that allows the transition of thymocytes from the CD4-/CD8- to the CD4+/CD8+ stage and that does not appear to require TCR-beta chain rearrangement.  相似文献   

4.
NVX-CoV2373 is an adjuvanted recombinant full-length SARS-CoV-2 spike trimer protein vaccine demonstrated to be protective against COVID-19 in efficacy trials. Here we demonstrate that vaccinated individuals made CD4+ T cell responses after 1 and 2 doses of NVX-CoV2373, and a subset of individuals made CD8+ T cell responses. Characterization of the vaccine-elicited CD8+ T cells demonstrated IFN-γ production. Characterization of the vaccine-elicited CD4+ T cells revealed both circulating T follicular helper (cTfh) cells and Th1 cells (IFN-γ+, TNF-α+, and IL-2+) were detectable within 7 days of the primary immunization. Spike-specific CD4+ T cells were correlated with the magnitude of the later SARS-CoV-2–neutralizing antibody titers, indicating that robust generation of CD4+ T cells, capable of supporting humoral immune responses, may be a key characteristic of NVX-CoV2373 that utilizes Matrix-M adjuvant.  相似文献   

5.
6.
7.
8.
Although stable repression of CD4 and CD8 genes is a central feature of T cell lineage commitment, we lack detailed information about the timing and mechanism of this repression. Stable gene repression has been linked to the position of genes within the nucleus. Therefore, information about the nuclear position of CD4 and CD8 genes during T cell development could provide insights into both the mechanism of regulation of CD4 and CD8 genes, and the process of lineage commitment. Here, we report that lineage-specific repression of CD4 and CD8 genes is associated with the repositioning of alleles close to heterochromatin. We also provide evidence that the relocalization of CD4 and CD8 genes to heterochromatin can occur as an early response to positive selection signals. We discuss our results in terms of our current knowledge of CD4 and CD8 gene regulation and CD4 versus CD8 lineage commitment.  相似文献   

9.
CD8 is required during positive selection of CD4-/CD8+ T cells   总被引:2,自引:1,他引:2       下载免费PDF全文
Interactions between self-MHC molecules and T cells are necessary for the proper development of mature T cells, in part due to an absolute requirement for self-MHC-TCR interactions. Recently, we showed that CD4-mediated interactions also participate in shaping the T cell repertoire during thymic maturation. We now examine the possible role of the CD8 molecule during in vivo T cell development. Our results demonstrate that perinatal thymi treated with intact anti-CD8 mAb fail to generate CD8 single-positive T cells, while the generation of the other main phenotypes remains unchanged. Most importantly, the use of F(ab')2 anti-CD8 mAb fragments gave identical results, i.e., lack of generation of CD4-/CD8+ cells, with no effect on the generation of CD4+/CD8+. Furthermore, selective blocking of one CD8 allele with F(ab')2 mAbs in F1 mice expressing both CD8 alleles did not interfere with the development of CD4-/CD8+ cells, demonstrating that the absence of CD8+ T cells in homozygous mice is not due to depletion, but rather is caused by a lack of positive selection. This is most likely attributable to a deficient CD8-MHC class I interaction. Our findings strongly advocate that CD8 molecules are vital to the selection process that leads to the development of mature single-positive CD8 T cells.  相似文献   

10.
Analyses of TCR-bearing murine and human T cells have defined a unique subpopulation of T cells that express the TCR-gamma/delta proteins. The specificity of TCR-gamma/delta T cells and their role in the immune response have not yet been elucidated. Here we examine alloreactive TCR-gamma/delta T cell lines and clones that recognize MHC-encoded antigens. A BALB/c nu/nu (H-2d)-derived H-2k specific T cell line and derived clones were both cytolytic and released lymphokines after recognition of a non-classical H-2 antigen encoded in the TL region of the MHC. These cells expressed the V gamma 2/C gamma 1 protein in association with a TCR-delta gene product encoded by a Va gene segment rearranged to two D delta and one J delta variable elements. A second MHC-specific B10 nu/nu (H-2b) TCR-gamma/delta T cell line appeared to recognize a classical H-2D-encoded MHC molecule and expressed a distinct V gamma/C gamma 4-encoded protein. These data suggest that many TCR-gamma/delta-expressing T cells may recognize MHC-linked antigens encoded within distinct subregions of the MHC. The role of MHC-specific TCR-gamma/delta cells in immune responses and their immunological significance are discussed.  相似文献   

11.
Opportunistic viral infections can cause serious morbidity and mortality in immunocompromised patients after allogeneic stem cell transplantation. Clinical studies have shown that adoptive transfer of donor-derived T cells specific for cytomegalovirus (CMV), Epstein-Barr virus (EBV), or human adenovirus (HAdV) can be a safe and effective treatment of infections with these major viral pathogens. The aim of this study was to develop a method for the simultaneous isolation of coordinated CD8(+) and CD4(+) memory T-cell responses against a broad repertoire of viral epitopes. To ensure that the method was applicable to a wide variety of virus-specific T cells that may differ in phenotypic and functional properties, we focused on T cells specific for the persistent viruses, CMV and EBV, and T cells specific for HAdV and influenza (FLU), which are not repetitively activated in vivo after initial viral clearance. Following in vitro activation, nearly all T cells specific for these viruses produced interferon γ (IFN-γ) and tumor necrosis factor α, and expressed CD137, whereas the populations varied in the production of interleukin-2, degranulation, and expression of phenotypic markers. Different kinetics of IFN-γ production were observed in CMV/EBV-specific T cells and HAdV/FLU-specific T cells. However, after the stimulation of peripheral blood from seropositive donors with viral protein-spanning peptide pools, the activated virus-specific CD8(+) and CD4(+) T cells could be simultaneously isolated by either IFN-γ-based or CD137-based enrichment. This study provides an efficient and widely applicable strategy for the isolation of virus-specific T cells, which may be used for the reconstitution of virus-specific immunity in allogeneic stem cell transplantation recipients.  相似文献   

12.
IL-2-dependent cell lines were established from normal peripheral blood T lymphocytes that express neither CD4 nor CD8 differentiation antigens. CD3+,4-,8- cell lines from 15 different donors failed to react with WT31, an mAb directed against the T cell antigen receptor alpha/beta heterodimer. Anti-Leu-4 mAb was used to isolate the CD3/T cell antigen receptor complex from 125I-labeled CD3+,4-,8- (WT31-) T cells. Using detergent conditions that preserved the CD3/T cell antigen receptor complex, an approximately 90 kD disulfide-linked heterodimer, composed of approximately 45- and approximately 40- (or approximately 37-) kD subunits, was coimmunoprecipitated with the invariant 20-29-kD CD3 complex. Analysis of these components by nonequilibrium pH gradient electrophoresis indicated that the approximately 40-kD and approximately 37-kD subunits were similar, and quite distinct from the more basic approximately 45-kD subunit. None of these three subunits reacted with an antibody directed against a beta chain framework epitope. Heteroantiserum against a T cell receptor gamma chain peptide specifically reacted with both the approximately 37- and approximately 40-kD CD3-associated proteins, but not with the approximately 45-kD subunit. CD3+,4-,8- cells failed to transcribe substantial amounts of functional 1.3-kb beta or 1.6-kb alpha mRNA, but produced abundant 1.6-kb gamma mRNA. Southern blot analysis revealed that these CD3+,4-,8- cell lines rearranged both gamma and beta genes, and indicated that the populations were polyclonal. The expression of a CD3-associated disulfide-linked heterodimer on CD3+,4-,8- T cell lines established from normal, adult peripheral blood contrasts with prior reports describing a CD3-associated non-disulfide-linked heterodimer on CD3+/WT31- cell lines established from thymus and peripheral blood obtained from patients with immunodeficiency diseases. We propose that this discrepancy may be explained by preferential usage of the two C gamma genes in T lymphocytes.  相似文献   

13.
To identify the maturational stage(s) during which T cell receptor (TCR)-mediated positive and negative selection occurs, we followed the development of CD4+8- and CD4-8+ T cells from TCRlo CD4+8+ thymic blasts in the presence of different positive and negative selecting (major histocompatibility complex or Mls) elements. We describe novel lineage-committed transitional intermediates that are TCRmed CD4+8lo or TCRmed CD4lo8+, and that show evidence of having been positively selected. Furthermore, negative selection is not evident until after cells have attained one of the TCRmed transitional phenotypes. Accordingly, we propose that negative selection in normal mice occurs only after TCRlo CD4+8+ precursors have been positively selected into either the CD4 or CD8 lineage.  相似文献   

14.
Epstein-Barr virus (EBV)-encoded nuclear antigen (EBNA)1 is thought to escape cytotoxic T lymphocyte (CTL) recognition through either self-inhibition of synthesis or by blockade of proteasomal degradation by the glycine-alanine repeat (GAr) domain. Here we show that EBNA1 has a remarkably varied cell type-dependent stability. However, these different degradation rates do not correspond to the level of major histocompatibility complex class I-restricted presentation of EBNA1 epitopes. In spite of the highly stable expression of EBNA1 in B cells, CTL epitopes derived from this protein are efficiently processed and presented to CD8+ T cells. Furthermore, we show that EBV-infected B cells can readily activate EBNA1-specific memory T cell responses from healthy virus carriers. Functional assays revealed that processing of these EBNA1 epitopes is proteasome and transporter associated with antigen processing dependent. We also show that the endogenous presentation of these epitopes is dependent on the newly synthesized protein rather than the long-lived stable EBNA1. Based on these observations, we propose that defective ribosomal products, not the full-length antigen, are the primary source of endogenously processed CD8+ T cell epitopes from EBNA1.  相似文献   

15.
16.
Regulatory CD4+CD25+ T cells restrict memory CD8+ T cell responses   总被引:16,自引:0,他引:16       下载免费PDF全文
CD4+ T cell help is important for the generation of CD8+ T cell responses. We used depleting anti-CD4 mAb to analyze the role of CD4+ T cells for memory CD8+ T cell responses after secondary infection of mice with the intracellular bacterium Listeria monocytogenes, or after boost immunization by specific peptide or DNA vaccination. Surprisingly, anti-CD4 mAb treatment during secondary CD8+ T cell responses markedly enlarged the population size of antigen-specific CD8+ T cells. After boost immunization with peptide or DNA, this effect was particularly profound, and antigen-specific CD8+ T cell populations were enlarged at least 10-fold. In terms of cytokine production and cytotoxicity, the enlarged CD8+ T cell population consisted of functional effector T cells. In depletion and transfer experiments, the suppressive function could be ascribed to CD4+CD25+ T cells. Our results demonstrate that CD4+ T cells control the CD8+ T cell response in two directions. Initially, they promote the generation of a CD8+ T cell responses and later they restrain the strength of the CD8+ T cell memory response. Down-modulation of CD8+ T cell responses during infection could prevent harmful consequences after eradication of the pathogen.  相似文献   

17.
The goal of these studies was to test whether adeno-associated virus (AAV) capsid-specific CD8(+) T cells cause loss of hepatic AAV-mediated gene expression in experimental animals. Mice immunized with adenoviral vectors expressing AAV capsid or with AAV vectors developed CD8(+) T cells in blood, lymphatic tissues, and liver to epitopes shared between AAV2 and AAV8, and serotype-specific neutralizing antibodies. At the height of the T cells' effector phase, mice were infused with a heterologous AAV vector expressing human factor IX under a hepatocyte-specific promoter. Despite the presence of lytic CD8(+) T cells in the liver, hepatic Factor IX expression was sustained and comparable in AAV-preimmune and na?ve animals. These results suggest that, in mice, pre-existing CD8(+) T cells to AAV capsid do not affect the longevity of AAV-mediated hepatic gene transfer. These results are in contrast to the outcome of a recent gene therapy trial of hemophilia B patients who were treated by hepatic gene transfer of AAV2 vectors expressing Factor IX. The loss of Factor IX expression, accompanied by a rise in liver enzymes and detectable frequencies of circulating AAV capsid-specific T cells, suggested T-cell-mediated destruction of transduced hepatocytes following reactivation of AAV-specific T cells upon AAV transfer.  相似文献   

18.
We analyzed the T cell receptor (TCR) rearrangements of 100 TCR- alpha/beta CD4-CD8- (double negative [DN]) T cell clones from normal individuals. We found that in four out of six donors this subset contains expanded clones that often account for 0.5% and, in one individual, even 7% of all peripheral blood lymphocytes. By combining limiting dilution analysis and N region oligotyping of polymerase chain reaction amplified TCR cDNA, we could measure the clonal size and show that two of these expanded clones remain stable in size for up to 4 yr in peripheral blood. The expanded clones analyzed ex vivo are not cycling and CD45 RAhi ROlo, but express high levels of alpha 4/beta 1 integrins, suggesting that they may have reverted to resting cells after activation. One of these expanded DN clones proliferates in vitro in response to Escherichia coli presented by monocytes cultured in GM- CSF plus IL-4 and kills CD1a+ Molt-4 cells. In contrast to what was found in the alpha/beta DN subset, alpha/beta CD4+ T cell clones specific for a tetanus toxin epitope showed a very small clonal size (< 1 in 10(7)) and could not be reisolated after 2 yr. Taken together, these results indicate that large clonal size and persistence are distinctive features of alpha/beta DN cells specific for bacterial antigens. These cells may use antigen-presenting cells, restriction molecules, and selection routes different from those used by antigen- specific CD4+ T cells.  相似文献   

19.
20.
Four clones were derived from human peripheral blood T lymphocytes from which CD4+ and CD8+ cells had been removed by treatment with specific mAbs and complement. All expressed the CD2+, 3+, 4-, 8-, T44- phenotype, and did not react with the WT31 mAb, which is specific for a framework determinant of the CD3-associated alpha/beta heterodimer which serves as receptor for antigen on most human T lymphocytes. Surface iodination followed by crosslinking with dithiobis-succinimidyl propionate (DSP) and immunoprecipitation with anti-CD3 mAbs indicated that, in all four clones, the CD3-associated molecules consisted of a major 45 kD band and a minor band of 43 kD. Northern blot analysis showed that mRNA for the gamma chain was expressed at high levels, whereas mRNA for the alpha chain was missing; beta chain mRNA was present in a defective form (1 kb instead of 1.3 kb). These data support the concept that these clones may express, in association with CD3, the molecular product of the T cell receptor gamma genes instead of the typical alpha/beta heterodimer. CD3+, WT31- clones lysed the NK-sensitive K562 target cells and produced IL-2 upon stimulation with PHA. In addition, they released IL-2 after triggering with soluble anti-CD3 mAbs or with an appropriate combination of anti-CD2 mAbs (in the presence of adherent cells). When CD3+, WT31- clones were incubated with an anti-CD3 producing hybridoma as triggering target, the latter was efficiently lysed. Target cell lysis also occurred when a suitable combination of anti-CD2 mAbs-producing hybridomas was used. Therefore, CD3+, WT31- cells appear to use two pathways of cell activation that function also in conventional CD3+, WT31+ T cells, but they lack a third putative pathway initiated by T44 surface molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号