首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
BRAF mutations are frequently observed in melanoma and hairy‐cell leukemia. Currently approved rapidly accelerated fibrosarcoma (RAF) kinase inhibitors targeting oncogenic BRAF V600 mutations have shown remarkable efficacy in the clinic, but their therapeutic benefits are occasionally hampered by acquired resistance due to RAF dimerization–dependent reactivation of the downstream MAPK pathway, which is known as paradoxical activation. There is also a concern that paradoxical activation of the MAPK pathway may trigger secondary cancer progression. In this study, we developed chimeric compounds, proteolysis targeting chimeras (PROTACs), that target BRAFV600E protein for degradation. CRBN(BRAF)‐24, the most effective chimera, potently degraded BRAFV600E in a ubiquitin‐proteasome system (UPS)‐dependent manner and inhibited the proliferation of BRAFV600E‐driven cancer cells. In BRAF wild‐type cells, CRBN(BRAF)‐24 induced neither BRAFWT degradation nor paradoxical activation of the MAPK pathway. Biochemical analysis revealed that CRBN(BRAF)‐24 showed more potent and sustained suppression of MAPK signaling than a BRAFV600E inhibitor, PLX‐8394, in BRAFV600E‐driven cancer cells. Targeted degradation of BRAFV600E by CRBN(BRAF)‐24 could be a promising strategy to evade paradoxical activation of the RAF‐MAPK pathway.  相似文献   

2.
Variable clinical responses, tumor heterogeneity, and drug resistance reduce long-term survival outcomes for metastatic melanoma patients. To guide and accelerate drug development, we characterized tumor responses for five melanoma patient derived xenograft models treated with Vemurafenib. Three BRAFV600E models showed acquired drug resistance, one BRAFV600E model had a complete and durable response, and a BRAFV600V model was expectedly unresponsive. In progressing tumors, a variety of resistance mechanisms to BRAF inhibition were uncovered, including mutant BRAF alternative splicing, NRAS mutation, COT (MAP3K8) overexpression, and increased mutant BRAF gene amplification and copy number. The resistance mechanisms among the patient derived xenograft models were similar to the resistance pathways identified in clinical specimens from patients progressing on BRAF inhibitor therapy. In addition, there was both inter- and intra-patient heterogeneity in resistance mechanisms, accompanied by heterogeneous pERK expression immunostaining profiles. MEK monotherapy of Vemurafenib-resistant tumors caused toxicity and acquired drug resistance. However, tumors were eradicated when Vemurafenib was combined the MEK inhibitor. The diversity of drug responses among the xenograft models; the distinct mechanisms of resistance; and the ability to overcome resistance by the addition of a MEK inhibitor provide a scheduling rationale for clinical trials of next-generation drug combinations.  相似文献   

3.
4.
Oncogenic mutations in BRAF are common in melanoma and thyroid carcinoma and drive constitutive activation of the MAPK pathway. Molecularly targeted therapies of this pathway improves survival compared to chemotherapy; however, responses tend to be short-lived as resistance invariably occursCell line models of melanoma and thyroid carcinoma, +/? BRAFV600E activating mutation, were treated with the MEK inhibitor PD0325901. Treated and naive samples were assayed for expression of key members of the MAPK pathway. Global microRNA expression profiling of naive and resistant cells was performed via next generation sequencingand indicated pluripotency pathways in resistance. Parental cell lines were progressed to holoclones to confirm the miRNA stemness profileMembers of the MIR302/373/374/520 family of embryonic stem cell specific cell cycle regulating (ESCC) microRNAs were identified as differentially expressed between resistant BRAFV600E melanoma and thyroid cell lines. Upregulated expression of gene and protein stemness markers, upregulated expression of MAPK pathway genes and downregulation of the ESCC MIR302 cluster in BRAFV600E melanoma indicated an increased stem-like phenotype in resistant BRAFV600E melanoma. Conversely, downregulated expression of gene and protein stemness markers, downregulated expression of MAPK pathway genes, upregulation of the ESCC MIR520 cluster, reeexpression of cell surface receptors, and induced differentiation-associated morphology in resistant BRAFV600E indicate a differentiated phenotype associated with MEK inhibitor resistance in BRAFV600E thyroid cellsThe differential patterns of resistance observed between BRAFV600E melanoma and thyroid cell lines may reflect tissue type or de novo differentiation, but could have significant impact on the response of primary and metastatic cells to MEK inhibitor treatment. This study provides a basis for the investigation of the cellular differentiation/self-renewal access and its role in resistance to MEK inhibition.  相似文献   

5.
6.
Treatment with vemurafenib, a potent and selective inhibitor of mitogen‐activated protein kinase signaling downstream of the BRAFV600E oncogene, elicits dramatic clinical responses in patients with metastatic melanoma. Unfortunately, the clinical utility of this drug is limited by a high incidence of drug resistance. Thus, there is an unmet need for alternative therapeutic strategies to treat vemurafenib‐resistant metastatic melanomas. We have conducted high‐throughput screening of two bioactive compound libraries (Siga and Spectrum libraries) against a metastatic melanoma cell line (A2058) and identified two structurally analogous compounds, deguelin and rotenone, from a cell viability assay. Vemurafenib‐resistant melanoma cell lines, A2058R and A375R (containing the BRAFV600E mutation), also showed reduced proliferation when treated with these two compounds. Deguelin, a mitochondrial complex I inhibitor, was noted to significantly inhibit oxygen consumption in cellular metabolism assays. Mechanistically, deguelin treatment rapidly activates AMPK signaling, which results in inhibition of mTORC1 signaling and differential phosphorylation of mTORC1's downstream effectors, 4E‐BP1 and p70S6 kinase. Deguelin also significantly inhibited ERK activation and Ki67 expression without altering Akt activation in the same timeframe in the vemurafenib‐resistant melanoma cells. These data posit that treatment with metabolic regulators, such as deguelin, can lead to energy starvation, thereby modulating the intracellular metabolic environment and reducing survival of drug‐resistant melanomas harboring BRAF V600E mutations.  相似文献   

7.
To determine the role of BRAFV600E mutation and MAPK signaling as well as the effects of BRAF and MEK directed therapy in gastroenteropancreatic neuroendocrine neoplasia (GEP-NEN), with a focus on highly aggressive gastroenteropancreatic neuroendocrine carcinoma (GEP-NEC). Using Sanger sequencing of BRAF exon 15 we determined the frequency of BRAFV600E mutations in 71 primary GEP-NENs. MEK phosphorylation was examined by immunohistochemistry in corresponding tissue samples. To evaluate the biological relevance of BRAFV600E mutation and MAPK signaling in GEP-NECs, effects of a pharmacological BRAF and MEK inhibition were analyzed in NEC cell lines both in vitro and in vivo. BRAFV600E mutation was detected in 9.9% of all GEP-NENs. Interestingly, only NECs of the colon harbored BRAFV600E mutations, leading to a mutation frequency of 46.7% in this subgroup of patients. In addition, a BRAFV600E mutation was significantly associated with high levels of MEK phosphorylation (pMEK) and advanced tumor stages. Pharmacological inhibition of BRAF and MEK abrogated NEC cell growth, inducing G1 cell cycle arrest and apoptosis only in BRAFV600E mutated cells. BRAF inhibitor dabrafenib and MEK inhibitor trametinib prevented growth of BRAFV600E positive NEC xenografts. High frequencies of BRAFV600E mutation and elevated expression levels of pMEK were detected in biologically aggressive and highly proliferative colorectal NECs. We provide evidence that targeting BRAF oncogene may represent a therapeutic strategy for patients with BRAF mutant colorectal NECs.  相似文献   

8.

Background:

To examine the association between level and patterns of baseline intra-tumoural BRAFV600E protein expression and clinical outcome of BRAFV600E melanoma patients treated with selective BRAF inhibitors.

Methods:

Fifty-eight BRAFV600E metastatic melanoma patients treated with dabrafenib or vemurafenib on clinical trials had pre-treatment tumour BRAFV600E protein expression immunohistochemically (IHC) assessed using the BRAF V600E mutant-specific antibody VE1. Sections were examined for staining intensity (score 1–3) and percentage of immunoreactive tumour cells, and from this an immunoreactive score (IRS) was derived (intensity × per cent positive/10). The presence of intra-tumoural heterogeneity for BRAFV600E protein expression was also assessed. BRAFV600E expression was correlated with RECIST response, time to best response (TTBR), progression-free survival (PFS) and overall survival (OS).

Results:

Expression was generally high (median IRS 28 (range 5–30)) and homogeneous (78%). Expression of mutated protein BRAFV600E as measured by intensity, per cent immunoreactive cells, or IRS did not correlate with RECIST response, TTBR, PFS or OS, including on multivariate analysis. Heterogeneity of staining was seen in 22% of cases and did not correlate with outcome.

Conclusion:

In the current study population, IHC-measured pre-treatment BRAFV600E protein expression does not predict response or outcome to BRAF inhibitor therapy in BRAFV600E metastatic melanoma patients.  相似文献   

9.
Mutational activation of BRAF (BRAFV600E) occurs in pediatric glioma and drives aberrant MAPK signaling independently of upstream cues. Targeted monotherapy against BRAFV600E displays efficacy in pre-clinical models of glioma, however xenograft tumors adapt rapidly and escape from the growth-inhibitory effects of BRAF-targeted therapy. Here, we show that intrinsic resistance to a BRAFV600E specific inhibitor stems, in part, from feedback activation of EGFR and downstream signaling pathways. BRAFV600E inhibition suppresses MAPK signaling, which in turn downregulates the EGFR phosphatase PTPN9, resulting in sustained EGFR phosphorylation and enhanced EGFR activity. We demonstrated that overexpression of PTPN9 reduces EGFR phosphorylation and cooperates with BRAFV600E inhibitor PLX4720 to reduce MAPK and Akt signaling, resulting in decreased glioma cell viability. Moreover, pharmacologic inhibition of EGFR combined with inhibition of BRAFV600E to reduce growth of glioma cell lines and orthotopic glioma xenograft by decreasing tumor cell proliferation while increasing apoptosis, with resultant significant extension of animal subject survival. Our data support clinical evaluation of BRAFV600E and EGFR targeted therapy in treating BRAFV600E glioma.  相似文献   

10.

Purpose

Previous studies suggest that solar UV exposure in early life is predictive of cutaneous melanoma risk in adulthood, whereas the relation of BRAF mutation with sun exposure and disease prognosis has been less certain. We investigated the associations between BRAFV600E and NRASQ61R mutations and known risk factors, clinicopathologic characteristics and clinical outcomes of melanoma in a case series of primary invasive cutaneous melanoma from the Nurses’ Health Study (NHS).

Methods

Somatic BRAFV600E and NRASQ61R mutations of 127 primary invasive melanomas from the NHS cohort were determined by pyrosequencing using formalin-fixed, paraffin-embedded block tissues. Logistic regression analyses were performed to detect the associations of mutations with melanoma risk factors, and Kaplan–Meier method was used to examine associations between mutations and survival.

Results

The odds ratios for harboring BRAFV600E mutations were 5.54 (95 % CI 1.19–25.8, p trend = 0.02) for women residing in states with UV index ≥ 7 versus those residing in states with UV index ≤5 at 30 years of age. Patients with BRAFV600E mutations tended to have shorter melanoma-specific survival when compared to patients with wild type at both loci (median survival time 110 vs. 159 months) (p = 0.03). No association was found between NRASQ61R mutation and melanoma risk factors or melanoma-specific survival.

Conclusions

BRAFV600E mutations in primary cutaneous melanomas were associated with residence in locations with medium and high UV indices in mid-life. BRAFV600E mutation may be associated with an unfavorable prognosis among melanoma patients.  相似文献   

11.
An activating mutation in the BRAF gene is the most common genetic alteration in papillary thyroid carcinomas (PTCs). The mutation in PTCs is almost a c.1799T>A transversion, resulting in a p.V600E amino acid substitution (BRAFV600E). Here, we report a novel complex BRAF mutation identified in 4/492 Japanese PTC cases (0.81%). The mutation was comprised of one nucleotide substitution at position 1798, followed by an in‐frame insertion of three nucleotides, c.1798delinsTACA in Exon 15, resulting in p.V600delinsYM. In silico three‐dimensional protein structure prediction implied altered kinase activity of this mutant. In vitro kinase assay and western blotting revealed that this mutation conferred high kinase activity on the BRAF protein, leading to constitutive activation of the MAPK signaling pathway. The mutation also showed high transforming ability in focus formation assay using NIH3T3 cells. The degree of all the functional characteristics was comparable to that of BRAFV600E, and treatment with a BRAF inhibitor Sorafenib was also equally effective in this mutant. These findings suggest that the novel BRAF mutation, BRAFV600delinsYM, is a gain‐of‐function mutation and plays an important role in PTC development.  相似文献   

12.
BRAFV600E is a common finding in glioma (about 10–60% depending on histopathologic subclassification). BRAFV600E monotherapy shows modest preclinical efficacy against BRAFV600E gliomas and also induces adverse secondary skin malignancies. Here, we examine the molecular mechanism of intrinsic resistance to BRAFV600E inhibition in glioma. Furthermore, we investigate BRAFV600E/MEK combination therapy that overcomes intrinsic resistance to BRAFV600E inhibitor and also prevents BRAFV600E inhibitor induced secondary malignancies. Immunoblotting and Human Phospho-Receptor Tyrosine Kinase Array assays were used to interrogate MAPK pathway activation. The cellular effect of BRAFV600E and MEK inhibition was determined by WST-1 viability assay and cell cycle analysis. Flanked and orthotopic GBM mouse models were used to investigate the in vivo efficacy of BRAFV600E/MEK combination therapy and the effect on secondary malignancies. BRAFV600E inhibition leads to recovery of ERK phosphorylation. Combined BRAFV600E and MEK inhibition prevents reactivation of the MAPK signaling, which correlates with decreased cell viability and augmented cell cycle arrest. Similarly, mice bearing BRAFV600E glioma showed reduced tumor growth when treated with a combination of BRAFV600E and MEK inhibitor compared to BRAFV600E inhibition alone. Additional benefit of BRAFV600E/MEK inhibition was reflected by reduced cutaneous squamous-cell carcinoma (cSCC) growth (a surrogate for RAS-driven secondary maligancies). In glioma, recovery of MAPK signaling upon BRAF inhibition accounts for intrinsic resistance to BRAFV600E inhibitor. Combined BRAFV600E and MEK inhibition prevents rebound of MAPK activation, resulting in enhanced antitumor efficacy and also reduces the risk of secondary malignancy development.  相似文献   

13.
14.
Colorectal cancer (CRC) is the third most prevalent cancer type worldwide with a mortality rate of approximately 50%. Elevated cell-surface expression of truncated carbohydrate structures such as Tn antigen (GalNAcα-Ser/Thr) is frequently observed during tumor progression. We have previously demonstrated that the C-type lectin macrophage galactose-type lectin (MGL), expressed by human antigen presenting cells, can distinguish healthy tissue from CRC through its specific recognition of Tn antigen. Both MGL binding and oncogenic BRAF mutations have been implicated in establishing an immunosuppressive microenvironment. Here we aimed to evaluate whether MGL ligand expression has prognostic value and whether this was correlated to BRAFV600E mutation status. Using a cohort of 386 colon cancer patients we demonstrate that high MGL binding to stage III tumors is associated with poor disease-free survival, independent of microsatellite instability or adjuvant chemotherapy. In vitro studies using CRC cell lines showed an association between MGL ligand expression and the presence of BRAFV600E. Administration of specific BRAFV600E inhibitors resulted in decreased expression of MGL-binding glycans. Moreover, a positive correlation between induction of BRAFV600E and MGL binding to epithelial cells of the gastrointestinal tract was found in vivo using an inducible BRAFV600E mouse model. We conclude that the BRAFV600E mutation induces MGL ligand expression, thereby providing a direct link between oncogenic transformation and aberrant expression of immunosuppressive glycans. The strong prognostic value of MGL ligands in stage III colon cancer patients, i.e. when tumor cells disseminate to lymph nodes, further supports the putative immune evasive role of MGL ligands in metastatic disease.  相似文献   

15.
Malignant melanoma is characterized by both genetic and molecular alterations that activate phosphoinositide 3-kinase (PI3K), and RAS/BRAF pathways. In this work, through diversity-based high-throughput virtual screening we identified a lead molecule that selectively targets PI3K and BRAFV600E kinases. Computational screening, Molecular dynamics simulation and MMPBSA calculations were performed. PI3K and BRAFV600E kinase inhibition was done. A375 and G-361 cells were used for in vitro cellular analysis to determine antiproliferative effects, annexin V binding, nuclear fragmentation and cell cycle analysis. Computational screening of small molecules indicates compound CB-006-3 selectively targets PI3KCG (gamma subunit), PI3KCD (delta subunit) and BRAFV600E. Molecular dynamics simulation and MMPBSA bases binding free energy calculations predict a stable binding of CB-006-3 to the active sites of PI3K and BRAFV600E. The compound effectively inhibited PI3KCG, PI3KCD and BRAFV600E kinases with respective IC50 values of 75.80, 160.10 and 70.84 nM. CB-006-3 controlled the proliferation of A375 and G-361 cells with GI50 values of 223.3 and 143.6 nM, respectively. A dose dependent increase in apoptotic cell population and sub G0/G1 phase of cell cycle were also observed with the compound treatment in addition to observed nuclear fragmentation in these cells. Furthermore, CB-006-3 inhibited BRAFV600E, PI3KCD and PI3KCG in both melanoma cells. Collectively, based on the computational modeling and in vitro validations, we propose CB-006-3 as a lead candidate for selectively targeting PI3K and mutant BRAFV600E to inhibit melanoma cell proliferation. Further experimental validations, including pharmacokinetic evaluations in mouse models will identify the druggability of the proposed lead candidate for further development as a therapeutic agent for treating melanoma.  相似文献   

16.
Oncogene addiction describes how cancer cells exhibit dependence on single oncogenes to escape apoptosis and senescence. While oncogene addiction constitutes the basis for new cancer treatment strategies targeting individual kinases and pathways activated by oncogenic mutations, the biochemical basis for this addiction is largely unknown. Here we provide evidence for a metabolic rationale behind the addiction to V600EBRAF in two malignant melanoma cell lines. Both cell lines display a striking addiction to glycolysis due to underlying dysfunction of oxidative phosphorylation (OXPHOS). Notably, even minor reductions in glycolytic activity lead to increased OXPHOS activity (reversed Warburg effect), however the mitochondria are unable to sustain ATP production. We show that V600EBRAF upholds the activity of glycolysis and therefore the addiction to glycolysis de facto becomes an addiction to V600EBRAF. Finally, the senescence response associated with inhibition of V600EBRAF is rescued by overexpression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), providing direct evidence that oncogene addiction rests on a metabolic foundation.  相似文献   

17.
Introduction: BRAFV600E mutations occur in 1–2% of lung adenocarcinomas and act as oncogenic drivers via the mitogen-activated protein kinase (MAPK) pathway. These mutations are mutually exclusive from the more common, epidermal growth factor receptor mutations or anaplastic lymphoma kinase rearrangements and have been associated with poor outcomes and a lower response to platinum-based chemotherapy.

Areas covered: Dabrafenib is a potent adenosine-triphosphate-competitive inhibitor of BRAF kinase and is selective for the BRAFV600E mutation in kinase panel screening, cell lines, and xenografts. The efficacy and safety of dabrafenib alone or in combination with the MEK inhibitor trametinib has been demonstrated in a number of clinical trials and herein, we discuss this data and outline the current and future role of BRAF/MEK inhibition in the management of advanced lung cancer.

Expert commentary: Responses rates with combination of dabrafenib/trametinib are approximately 63–64% and interestingly occur in both smokers and non-smokers but toxicities require dose reductions in the real world for the majority of patients.  相似文献   


18.

Background

The detection of BRAFV600 mutations in patients with metastatic melanoma is important because of the availability of BRAF inhibitor therapy. However, the clinical relevance of the frequency of BRAFV600 mutant alleles is unclear.

Patients and Methods

Allele frequencies of BRAFV600 mutations were analyzed by ultra-deep next-generation sequencing in formalin-fixed, paraffin-embedded melanoma tissue (75 primary melanomas and 88 matched metastases). In a second study, pretreatment specimens from 76 patients who received BRAF inhibitors were retrospectively analyzed, and BRAFV600 allele frequencies were correlated with therapeutic results.

Results

Thirty-five patients had concordantly BRAF-positive and 36 (48%) patients had concordantly BRAF-negative primary melanomas and matched metastases, and four patients had discordant samples with low allele frequencies (3.4–5.2%). Twenty-six of 35 patients with concordant samples had BRAFV600E mutations, three of whom had additional mutations (V600K in two patients and V600R in one) and nine patients had exclusively non-V600E mutations (V600K in eight patients and V600E -c.1799_1800TG > AA- in one patient). The frequency of mutated BRAFV600 alleles was similar in the primary melanoma and matched metastasis in 27/35 patients, but differed by >3-fold in 8/35 of samples. BRAFV600E allele frequencies in pretreatment tumor specimens were not significantly correlated with treatment outcomes in 76 patients with metastatic melanoma who were treated with BRAF inhibitors.

Conclusions

BRAFV600 mutation status and allele frequency is consistent in the majority of primary melanomas and matched metastases. A small subgroup of patients has double mutations. BRAFV600 allele frequencies are not correlated with the response to BRAF inhibitors.  相似文献   

19.

Background:

Melanoma, the most lethal form of skin cancer, is responsible for over 80% of all skin cancer deaths and is highly metastatic, readily spreading to the lymph nodes or metastasising to other organs. The frequent genetic mutation found in metastatic melanoma, BRAFV600E, results in constitutive activation of the mitogen-activated protein kinase pathway.

Methods:

In this study, we utilised genetically engineered melanoma cell lines and xenograft mouse models to investigate how BRAFV600E affected cytokine (IL-1β, IL-6, and IL-8) and matrix metalloproteinase-1 (MMP-1) expression in tumour cells and in human dermal fibroblasts.

Results:

We found that BRAFV600E melanoma cells expressed higher levels of these cytokines and of MMP-1 than wild-type counterparts. Further, conditioned medium from the BRAFV600E melanoma cells promoted the activation of stromal fibroblasts, inducing expression of SDF-1 and its receptor CXCR4. This increase was mitigated when the conditioned medium was taken from melanoma cells treated with the BRAFV600E specific inhibitor, vemurafenib.

Conclusions:

Our findings highlight the role of BRAFV600E in activating the stroma and suggest a mechanistic link between BRAFV600E and MMP-1 in mediating melanoma progression and in activating adjacent fibroblasts in the tumour microenvironment.  相似文献   

20.
The presence of mutant BRAF V600E correlates with the risk of recurrence in papillary thyroid cancer (PTC) patients. However, not all PTC patients with BRAF V600E are associated with poor prognosis. Thus, understanding the mechanisms by which certain PTC patients with nuclear BRAF V600E become aggressive and develop resistance to a selective BRAF inhibitor, PLX-4032, is urgently needed. The effect of nuclear localization of BRAFV600E using in vitro studies, xenograft mouse-model and human tissues was evaluated. PTC cells harboring a nuclear localization signal (NLS) of BRAFV600E were established and examined in nude mice implanted with TPC1-NLS-BRAFV600E cells followed by PLX-4032 treatment. Immunohistochemical (IHC) analysis was performed on 100 PTC specimens previously confirmed that they have BRAFV600E mutations. Our results demonstrate that 21 of 100 (21%) PTC tissues stained with specific BRAFV600E antibody had nuclear staining with more aggressive features compared to their cytosolic counterparts. In vitro studies show that BRAFV600E is transported between the nucleus and the cytosol through CRM1 and importin (α/β) system. Sequestration of BRAFV600E in the cytosol sensitized resistant cells to PLX-4032, whereas nuclear BRAFV600E was associated with aggressive phenotypes and developed drug resistance. Proteomic analysis revealed Arp2/3 complex members, actin-related protein 2 (ACTR2 aliases ARP2) and actin-related protein 3 (ACTR3 aliases ARP3), as the most enriched nuclear BRAFV600E partners. ACTR3 was highly correlated to lymph node stage and extrathyroidal extension and was validated with different functional assays. Our findings provide new insights into the clinical utility of the nuclear BRAFV600E as a prognostic marker for PTC aggressiveness and determine the efficacy of selective BRAFV600E inhibitor treatment which opens new avenues for future treatment options.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号