首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe a comparative assessment of the structure–property–process relationship of three-dimensional chitosan–nanohydroxyapatite (nHA) and pure chitosan scaffolds in conjunction with their respective biological response with the aim of advancing our insight into aspects that concern bone tissue engineering. High- and medium-molecular-weight (MW) chitosan scaffolds with 0.5, 1 and 2 wt.% fraction of nHA were fabricated by freezing and lyophilization. The nanocomposites were characterized by a highly porous structure and the pore size (~50 to 120 μm) was in a similar range for the scaffolds with different content of nHA. A combination of X-ray diffraction, Fourier transform infrared spectroscopy and electron microscopy indicated that nHA particles were uniformly dispersed in chitosan matrix and there was a chemical interaction between chitosan and nHA. The compression modulus of hydrated chitosan scaffolds was increased on the addition of 1 wt.% nHA from 6.0 to 9.2 kPa in high-MW scaffold. The water uptake ability of composites decreased with an increase in the amount of nHA, while the water retention ability was similar to pure chitosan scaffold. After 28 days in physiological condition, nanocomposites indicated about 10% lower degree of degradation in comparison to chitosan scaffold. The biological response of pre-osteoblasts (MC 3T3-E1) on nanocomposite scaffolds was superior in terms of improved cell attachment, higher proliferation, and well-spread morphology in relation to chitosan scaffold. In composite scaffolds, cell proliferation was about 1.5 times greater than pure chitosan after 7 days of culture and beyond, as implied by qualitative analysis via fluorescence microscopy and quantitative study through MTT assay. The observations related to well-developed structure morphology, physicochemical properties and superior cytocompatibility suggest that chitosan–nHA porous scaffolds are potential candidate materials for bone regeneration although it is necessary to further enhance the mechanical properties of the nanocomposite.  相似文献   

2.
We here describe the structure-process-property relationship of graphene oxide-mediated proliferation and growth of osteoblasts in conjunction with the physico-chemical, mechanical, and structural properties. Chitosan-graphene network structure scaffolds were synthesized by covalent linkage of the carboxyl groups of graphene oxide with the amine groups of chitosan. The negatively charged graphene oxide in chitosan scaffolds was an important physico-chemical factor influencing cell-scaffold interactions. Furthermore, it was advantageous in enhancing the biocompatibility of the scaffolds and the degradation products of the scaffolds. The high water retention ability, hydrophilic nature, and high degree of interconnectivity of the porous structure of chitosan-graphene oxide scaffolds facilitated cell attachment and proliferation and improved the stability against enzymatic degradation. The cells infiltrated and colonized the pores of the scaffolds and established cell-cell interactions. The interconnectivity of the porous structure of the scaffolds helps the flow of medium throughout the scaffold for even cell adhesion. Moreover, the seeded cells were able to infiltrate inside the pores of chitosan-graphene oxide scaffolds, suggesting that the incorporation of polar graphene oxide in scaffolds is promising for bone tissue engineering.  相似文献   

3.
背景:丝素蛋白、壳聚糖及纳米羟基磷灰石均是天然材料,具有良好的生物活性和理化特性,作为人体组织工程材料已取得了一定的成果,但3种材料在单独应用的研究中还存在一定的缺陷。 目的:制作丝素蛋白/壳聚糖/纳米羟基磷灰石三维支架材料,分析其特性。 方法:将丝素蛋白、壳聚糖、纳米羟基磷灰石分别配制成2%的溶液后,分别按照 1∶1∶0.5,1∶1∶1, 1∶1∶1.5 的体积比混合,采用冷冻干燥与化学交联技术制备成三维复合支架材料。检测三维复合支架的孔隙率、吸水膨胀率及热水溶失率,采用材料力学测验机测试干燥三维复合支架材料的拉伸和压缩弹性模量,采用扫描电镜检测三维复合支架的孔径。 结果与结论:丝素蛋白/壳聚糖/纳米羟基磷灰石三维复合支架在干燥状态下呈白色,无特殊气味,为稳定固态的圆柱体,触之有明显的抗压能力和弹性。随着复合支架材料中纳米羟基磷灰石含量的增高,支架材料的孔隙率、吸水膨胀率、平均孔径呈逐渐减小趋势,热水溶失率及抗压能力表现出相反的趋势,结果显示以1∶1∶1体积比制作的支架更符合骨替代材料要求,其平均孔径为85.67 µm、吸水膨胀率的为(135.65±4.56)%、热水溶失率为(22.84±1.06)%,支架材料内部孔隙均匀,呈现网状结构,孔隙之间交通发达,网状结构本身约10 µm。  相似文献   

4.
Abstract

The chitosan/gelatin hydrogel incorporated with biphasic calcium phosphate nanoparticles (BCP-NPs) as scaffold (CGB) for bone tissue engineering was reported in this article. Such nanocomposite hydrogels were fabricated by using cycled freeze-thawing method, of which physicochemical and biological properties were regulated by adjusting the weight ratio of chitosan/gelatin/BCP-NPs. The needle-like BCP-NPs were dispersed into composites uniformly, and physically cross-linked with chitosan and gelatin, which were identified via Scanning Electron Microscope (SEM) images and Fourier Transform Infrared Spectroscopy (FT-IR) analysis. The porosity, equilibrium swelling ratio, and compressive strength of CGB scaffolds were mainly influenced by the BCP-NPs concentration. In vitro degradation analysis in simulated body fluids (SBF) displayed that CGB scaffolds were degraded up to at least 30?wt% in one month. Also, CCK-8 analysis confirmed that the prepared scaffolds had a good cytocompatibility through in culturing with bone marrow mesenchymal stem cells (BMSCs). Finally, In vivo animal experiments revealed that new bone tissue was observed inside the scaffolds, and gradually increased with increasing months, when implanted CGB scaffolds into large necrotic lesions of rabbit femoral head. The above results suggested that prepared CGB nanocomposites had the potential to be applied in bone tissue engineering.  相似文献   

5.
Natural polymer chitosan and synthetic polymer poly(lactide-co-glycolide) (PLAGA) have been investigated for a variety of tissue engineering applications. We have previously reported the fabrication and in vitro evaluation of a novel chitosan/PLAGA sintered microsphere scaffold for load-bearing bone tissue engineering applications. In this study, the in vitro degradation characteristics of the chitosan/PLAGA scaffold and the in vivo bone formation capacity of the chitosan/PLAGA-based scaffolds in a rabbit ulnar critical-sized-defect model were investigated. The chitosan/PLAGA scaffold showed slower degradation than the PLAGA scaffold in vitro. Although chitosan/PLAGA scaffold showed a gradual decrease in compressive properties during the 12-week degradation period, the compressive strength and compressive modulus remained in the range of human trabecular bone. Chitosan/PLAGA-based scaffolds were able to guide bone formation in a rabbit ulnar critical-sized-defect model. Microcomputed tomography analysis demonstrated that successful bridging of the critical-sized defect on the sides both adjacent to and away from the radius occurred using chitosan/PLAGA-based scaffolds. Immobilization of heparin and recombinant human bone morphogenetic protein-2 on the chitosan/PLAGA scaffold surface promoted early bone formation as evidenced by complete bridging of the defect along the radius and significantly enhanced mechanical properties when compared to the chitosan/PLAGA scaffold. Furthermore, histological analysis suggested that chitosan/PLAGA-based scaffolds supported normal bone formation via intramembranous formation.  相似文献   

6.
Lyophilised collagen scaffolds have shown enormous potential in tissue engineering in a number of areas due to their excellent biological performance. However, they are limited for use in bone tissue engineering due to poor mechanical properties. This paper discusses the development of a calcium-phosphate coating for collagen scaffolds in order to improve their mechanical properties for bone tissue engineering.Pure collagen scaffolds produced in a lyophilisation process were coated by immersing them in sodium ammonium hydrogen phosphate (NaNH4HPO4) followed by calcium chloride (CaCl2). The optimal immersing sequence, duration, as well as the optimal solution concentration which facilitated improved mechanical properties of the scaffolds was investigated. The influence of the coating on composition, structural and material properties was analysed.This investigation successfully developed a novel collagen/calcium-phosphate composite scaffold. An increase in the mechanical properties of the scaffolds from 0.3 kPa to up to 90 kPa was found relative to a pure collagen scaffold, while the porosity was maintained as high as 92%, indicating the potential of the scaffold for bone tissue engineering or as a bone graft substitute.  相似文献   

7.
Biomedical scaffolds used in bone tissue engineering should have various properties including appropriate bioactivity, mechanical strength, and morphologically optimized pore structures. Collagen has been well known as a good biomaterial for various types of tissue regeneration, but its usage has been limited due to its low mechanical property and rapid degradation. In this work, a new hybrid scaffold consisting of polycaprolactone (PCL) and collagen is proposed for bone tissue regeneration. The PCL enhances the mechanical properties of the hybrid scaffold and controls the pore structure. Layered collagen nanofibers were used to enhance the initial cell attachment and proliferation. The results showed that the hybrid scaffold yielded better mechanical properties of pure PCL scaffold as well as enhanced biological activity than the pure PCL scaffold did. The effect of pore size on bone regeneration was investigated using two hybrid scaffolds with pore sizes of 200 ± 20 and 300 ± 27 μm. After post-seeding for 7 days, the cell proliferation with pore size, 200 ± 20 μm, was greater than that with pore size, 300 ± 27 μm, due to the high surface area of the scaffold.  相似文献   

8.
A novel nano-hydroxyapatite (HA)/chitosan composite scaffold with high porosity was developed. The nano-HA particles were made in situ through a chemical method and dispersed well on the porous scaffold. They bound to the chitosan scaffolds very well. This method prevents the migration of nano-HA particles into surrounding tissues to a certain extent. The morphologies, components, and biocompatibility of the composite scaffolds were investigated. Scanning electron microscopy, porosity measurement, thermogravimetric analysis, X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier transformed infrared spectroscopy were used to analyze the physical and chemical properties of the composite scaffolds. The biocompatibility was assessed by examining the proliferation and morphology of MC 3T3-E1 cells seeded on the scaffolds. The composite scaffolds showed better biocompatibility than pure chitosan scaffolds. The results suggest that the newly developed nano-HA/chitosan composite scaffolds may serve as a good three-dimensional substrate for cell attachment and migration in bone tissue engineering.  相似文献   

9.
The development of suitable three-dimensional scaffold for the maintenance of cellular viability and differentiation is critical for applications in periodontal tissue engineering. In this work, different ratios of porous nanohydroxyapatite/chitosan (HA/chitosan) scaffolds are prepared through a freeze-drying process. These scaffolds are evaluated in vitro by the analysis of microscopic structure, porosity, and cytocompatibility. The expression of type I collagen and alkaline phosphatase (ALP) activity are detected with real-time polymerase chain reaction (RT-PCR). Human periodontal ligament cells (HPLCs) transfected with enhanced green fluorescence protein (EGFP) are seeded onto the scaffolds, and then these scaffolds are implanted subcutaneously into athymic mice. The results indicated that the porosity and pore diameter of the HA/chitosan scaffolds are lower than those of pure chitosan scaffold. The HA/chitosan scaffold containing 1% HA exhibited better cytocompatibility than the pure chitosan scaffold. The expression of type I collagen and ALP are up-regulated in 1% HA/chitosan scaffold. After implanted in vivo, EGFP-transfected HPLCs not only proliferate but also recruit surrounding tissue to grow in the scaffold. The degradation of the scaffold significantly decreased in the presence of HA. This study demonstrated the potential of HA/ chitosan scaffold as a good substrate candidate in periodontal tissue engineering.  相似文献   

10.
三维骨组织工程支架已成为成骨研究领域的热点。聚己内酯(PCL)具有良好的生物相容性,在骨组织工程研究中被广泛应用于三维支架的制备。但纯PCL支架亲水性差、生物活性低,限制了其在生物医学领域的应用。随着骨组织工程材料研究的发展,大量研究者将PCL与各种无机物、金属元素或胶原等活性材料进行复合,以改善支架性能或引入新的性能。针对PCL基骨组织工程复合支架的材料选择,从PCL复合无机材料、PCL复合水凝胶材料、PCL复合金属元素、PCL复合小分子药物以及PCL复合生物活性分子等5个方面,对各类复合支架的性能及体内外成骨效果等方面进行综述,希望对PCL在骨组织工程中的研究及临床应用提供一定的帮助。  相似文献   

11.
背景:胶原/壳聚糖支架需交联才能达到相应力学性能,有研究表示调节交联剂浓度可以在一定范围内调控支架的理化性能。目的:探究京尼平浓度对胶原/壳聚糖支架理化性能的影响,制备理化性能可调节的组织工程支架。方法:将胶原和壳聚糖粉末分别溶于弱酸后混合均匀,作为打印墨水,利用生物3D打印机低温打印胶原支架与胶原/壳聚糖支架,经冻干、中和处理后分别以1,3,5 mmol/L的京尼平进行交联。检测各组支架的表观结构稳定性、抗拉能力、溶胀性能、降解性能与生物相容性。结果与结论:①将支架在PBS中浸泡3 d后,对比未交联的冻干支架,交联后胶原支架表面维持规则的孔结构,但是支架出现明显变形;交联后胶原/壳聚糖支架表面结构规则,仅1 mmol/L京尼平交联的胶原/壳聚糖支架存在轻微变形。②随着京尼平浓度的增加,各组支架的力学性能增加,并且对应交联浓度下的胶原/壳聚糖支架力学性能好于胶原支架。③随着京尼平浓度的增加,胶原支架的溶胀率下降,胶原/壳聚糖支架的溶胀率无明显变化。④浸泡于胶原酶溶液中后,不同浓度京尼平交联的胶原支架在1 h内被完全降解,胶原/壳聚糖支架的降解速率随京尼平浓度的增加而降低,均呈现先快速后平缓的趋势。⑤将骨髓间充质干细胞接种于各组交联支架3 d后,1,3 mmol/L京尼平交联的胶原/壳聚糖支架(或胶原支架)上的细胞数量明显多于5 mmol/L京尼平交联的胶原/壳聚糖支架(P<0.05)。⑥结果表明,京尼平可在一定范围调节胶原/壳聚糖支架理化性能,其中3 mmol/L京尼平交联的胶原/壳聚糖支架具有较好的力学性能、抗酶解能力与生物相容性。  相似文献   

12.
Bionanocomposites formed by combining biodegradable polymers and nanosized osteoconductive inorganic solids have been regarded as promising biomimetic systems which possess much improved structural and functional properties for bone tissue regeneration. In this study three-dimensional nanocomposite scaffolds based on calcium phosphate (Ca-P)/poly(hydroxybutyrate–co-hydroxyvalerate) (PHBV) and carbonated hydroxyapatite (CHAp)/poly(l-lactic acid) (PLLA) nanocomposite microspheres were successfully fabricated using selective laser sintering, which is a rapid prototyping technology. The sintered scaffolds had controlled material microstructure, totally interconnected porous structure and high porosity. The morphology and mechanical properties of Ca-P/PHBV and CHAp/PLLA nanocomposite scaffolds as well as PHBV and PLLA polymer scaffolds were studied. In vitro biological evaluation showed that SaOS-2 cells had high cell viability and normal morphology and phenotype after 3 and 7 days culture on all scaffolds. The incorporation of Ca-P nanoparticles significantly improved cell proliferation and alkaline phosphatase activity for Ca-P/PHBV scaffolds, whereas CHAp/PLLA nanocomposite scaffolds exhibited a similar level of cell response compared with PLLA polymer scaffolds. The nanocomposite scaffolds provide a biomimetic environment for osteoblastic cell attachment, proliferation and differentiation and have great potential for bone tissue engineering applications.  相似文献   

13.
Porous scaffold materials that can provide a framework for the cells to adhere, proliferate, and create extracellular matrix are considered to be suitable materials for bone regeneration. Interconnected porous chitosan scaffolds were prepared by freeze-drying method, and were mineralized by calcium and phosphate solution by double-diffusion method to form nanoapatite in chitosan matrix. The mineralized chitosan scaffold contains hydroxyapatite nanocrystals on the surface and also within the pore channels of the scaffold. To assess the effect of apatite and porosity of the scaffolds on cells, human osteoblast (SaOS-2) cells were cultured on unmineralized and mineralized chitosan scaffolds. The cell growth on the mineralized scaffolds and on the pure chitosan scaffold shows a similar growth trend. The total protein content and alkaline phosphatase enzyme activity of the cells grown on scaffolds were quantified, and were found to increase over time in mineralized scaffold after 1 and 3 weeks of culture. The electron microscopy of the cell-seeded scaffolds showed that most of the outer macropores became sealed off by a continuous layer of cells. The cells spanned around the pore wall and formed extra cellular matrix, consisting mainly of collagen in mineralized scaffolds. The hydroxyproline content also confirmed the formation of the collagen matrix by cells in mineralized scaffolds. This study demonstrated that the presence of apatite nanocrystals in chitosan scaffolds does not significantly influence the growth of cells, but does induce the formation of extracellular matrix and therefore has the potential to serve for bone tissue engineering.  相似文献   

14.
Three-dimensional oriented chitosan (CS)/hydroxyapatite (HA) scaffolds were prepared via in situ precipitation method in this research. Scanning electron microscopy (SEM) images indicated that the scaffolds with acicular nano-HA had the spoke-like, multilayer and porous structure. The SEM of osteoblasts which were polygonal or spindle-shaped on the composite scaffolds after seven-day cell culture showed that the cells grew, adhered, and spread well. The results of X-ray powder diffractometer and Fourier transform infrared spectrometer showed that the mineral particles deposited in the scaffold had phase structure similar to natural bone and confirmed that particles were exactly HA. In vitro biocompatibility evaluation indicated the composite scaffolds showed a higher degree of proliferation of MC3T3-E1 cell compared with the pure CS scaffolds and the CS/HA10 scaffold was the highest one. The CS/HA scaffold also had a higher ratio of adhesion and alkaline phosphate activity value of osteoblasts compared with the pure CS scaffold, and the ratio increased with the increase of HA content. The ALP activity value of composite scaffolds was at least six times of the pure CS scaffolds. The results suggested that the composite scaffolds possessed good biocompatibility. The compressive strength of CS/HA15 increased by 33.07% compared with the pure CS scaffold. This novel porous scaffold with three-dimensional oriented structure might have a potential application in bone tissue engineering.  相似文献   

15.
Scaffolds are crucial to tissue engineering/regeneration. In this work, a technique combining a unique phase-separation process with a novel sugar sphere template leaching process has been developed to produce three-dimensional scaffolds. The resulting scaffolds possess high porosities, well connected macropores, and nanofibrous pore walls. The technique advantageously controls macropore shape and size by sugar spheres, interpore opening size by assembly conditions (time and temperature of heat treatment), and pore wall morphology by phase-separation parameters. The bioactivity of a macroporous and nanofibrous poly(L-lactic acid) (PLLA) scaffold was demonstrated by the bone-like apatite deposition throughout the scaffold in a simulated body fluid (SBF). Preincorporation of nanosized hydroxyapatite eliminated the induction period and facilitated the apatite growth in the SBF. Interestingly, the apatite growth primarily occurred on the surface of the pores (internal and external) but not the interior of the nanofibrous network away from the pore surface. It was also noticed that the macropore size did not affect the apatite growth rate, while the interpore opening size did. The compressive modulus also increased substantially when a continuous apatite layer was formed on the pore walls of the scaffold. The resulting composite scaffold mimics natural bone matrix with the combination of an organic phase (a polymer such as PLLA) and an inorganic apatite phase. The demonstrated bioactivity of apatite layer, together with well-controlled macroporous and nanofibrous structures, makes the novel nanocomposite scaffolds desirable for bone tissue engineering.  相似文献   

16.
文题释义: 组织工程骨:将体外培养的功能相关的种子细胞种植于天然的或人工合成的支架材料内,加入生长因子体外培养一段时间,将他们移植到体内,促进组织修复和骨再生的人工骨。组织工程骨形成的3要素为:支架材料、成骨细胞、生长因子。 生物陶瓷:生物表面活性陶瓷通常含有羟基,还可做成多孔性,生物组织可长入并同其表面发生牢固的键合;生物吸收性陶瓷的特点是能部分吸收或者全部吸收,在生物体内能诱发新生骨的生长。生物活性陶瓷具有骨传导性,它作为一个支架,成骨在其表面进行;还可作为多种物质的外壳或填充骨缺损。生物陶瓷有羟基磷灰石陶瓷、磷酸三钙陶瓷等。  背景:目前常用的骨缺损修复支架材料种类较多,但单一类型材料难以满足骨组织工程支架材料的要求,通过合适的方法将几种单一材料组合形成复合型材料,综合考虑各种材料优缺点,是近年来学者们的研究重点。 目的:构建纳米羟基磷灰石/壳聚糖/聚己内酯三元复合支架材料,并作表征分析研究。 方法:采用3D打印成型技术制备纳米羟基磷灰石/壳聚糖/聚己内酯多孔三元复合支架材料,从X射线衍射分析、吸水率、抗压强度、体外降解性能、孔径分析、扫描电镜分析等多个维度对支架材料进行表征研究。 结果与结论:①X射线衍射分析显示,纳米羟基磷灰石/壳聚糖/聚己内酯多孔三元复合支架的晶型峰图与羟基磷灰石粉末衍射标准卡片类似,表明该三元复合支架是通过物理作用相互结合的,不影响羟基磷灰石的生物学功能;②三元复合支架的吸水率为18.28%,亲水性好,支架可承受的最大压力为1 415 N,其体外降解速率与成骨速率相当;③显微镜下可见三元复合支架的内孔为方形,孔径250 µm,孔径大小均匀、分布有致;④扫描电镜下三元复合支架可见,壳聚糖和聚己内酯组成的纤维排列整齐有序,成网格状, 羟基磷灰石呈颗粒状在纤维表面均匀分布,三元复合材料呈现均匀、疏松的微孔结构;⑤结果表明,通过3D打印成型技术可成功制备纳米羟基磷灰石/壳聚糖/聚己内酯三元复合支架材料,其具有适度的抗压强度、一定的孔隙率、适宜的降解速度和吸水率,能为修复骨缺损的奠定基础。 ORCID: 0000-0002-6321-9160(余和东) 中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程    相似文献   

17.
Micro-size patterned surfaces trigger specific biological responses such as the promotion of cell growth, cell migration, cell differentiation, and ECM production. The aim of this work was to elaborate three-dimensional scaffolds with honeycomb patterned surfaces and large open pores, and to study the influence of surface patterning on cell behavior. In this study, we used water droplets as porogen material to prepare a novel type of chitosan sponge with large open pores on its surface. The sponges obtained were then immersed into 6 wt % Poly(L-lactic acid) chloroform solution to obtain honeycomb patterned composite porous scaffolds. The morphology and mechanical properties were characterized with SEM and compression testing. The fibroblast behaviors in scaffolds were analyzed with SEM, VG, PAS, live-dead staining, and flow cytometer. Results showed that these composite scaffolds possessed better mechanical properties and hierarchical porous structure than pure chitosan sponges. Cell culture revealed that the honeycomb patterned surface had positive influences on fibroblast behaviors, wherein the cell adhesion, proliferation, ECM secretion and viability were improved dramatically. Such a hierarchical composite scaffold would be a suitable candidate for tissue engineering purposes.  相似文献   

18.
19.
A three-dimensional (3-D) scaffold is one of the major components in many tissue engineering approaches. We developed novel 3-D chitosan/poly(lactic acid-glycolic acid) (PLAGA) composite porous scaffolds by sintering together composite chitosan/PLAGA microspheres for bone tissue engineering applications. Pore sizes, pore volume, and mechanical properties of the scaffolds can be manipulated by controlling fabrication parameters, including sintering temperature and sintering time. The sintered microsphere scaffolds had a total pore volume between 28% and 37% with median pore size in the range 170-200microm. The compressive modulus and compressive strength of the scaffolds are in the range of trabecular bone making them suitable as scaffolds for load-bearing bone tissue engineering. In addition, MC3T3-E1 osteoblast-like cells proliferated well on the composite scaffolds as compared to PLAGA scaffolds. It was also shown that the presence of chitosan on microsphere surfaces increased the alkaline phosphatase activity of the cells cultured on the composite scaffolds and up-regulated gene expression of alkaline phosphatase, osteopontin, and bone sialoprotein.  相似文献   

20.
Novel poly(L-lactic acid) (PLLA)-chitosan hybrid scaffolds were developed in order to be used as tissue-engineering scaffolds and drug release carriers. The incorporation of chitosan into the PLLA porous structure allows for producing chitosan-based scaffold devices with interesting damping and stiffness aimed at being used in tissue engineering of bone or cartilage. The pore structure of the hybrid scaffolds was influenced by the concentration of the chitosan solution introduced into the PLLA scaffold. For lower concentrations, chitosan was mainly deposited onto the PLLA surface, whereas for higher concentration chitosan formed also microfibrilar structures within the pore walls of the PLLA foam that may act as additional soft anchorage sites for cells. Equilibrium water uptakes up to about 110% were achieved in 24 h. An anti-inflammatory drug, ketoprofen, was loaded within the chitosan component of the hybrid scaffolds by immersing the scaffolds in a drug-ethanol solution. The drug was released sharply within the initial periods ( approximately 2-4 h), but the rate decreased further, showing a sustained release. The drug release rate can be controlled by the chitosan content and cross-link densities, suggesting the effectiveness of the hybrid scaffold as a drug delivery system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号