首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nucleotides regulate various effects including vascular tone. This study was aimed to characterize P2Y receptors on endothelial cells of the aorta of C57BL6 mice. Five adjacent segments (width 2 mm) of the thoracic aorta were mounted in organ baths to measure isometric force development. Nucleotides evoked complete (adenosine 5' triphosphate (ATP), uridine 5' triphosphate (UTP), uridine 5' diphosphate (UDP); >90%) or partial (adenosine 5' diphosphate (ADP)) relaxation of phenylephrine precontracted thoracic aortic rings of C57BL6 mice. Relaxation was abolished by removal of the endothelium and was strongly suppressed (>90%) by inhibitors of nitric oxide synthesis. The rank order of potency was: UDP approximately UTP approximately ADP>adenosine 5'-[gamma-thio] triphosphate (ATPgammaS)>ATP, with respective pD2 values of 6.31, 6.24, 6.22, 5.82 and 5.40. These results are compatible with the presence of P2Y1 (ADP>ATP), P2Y2 or P2Y4 (ATP and UTP) and P2Y6 (UDP) receptors. P2Y4 receptors were not involved, since P2Y4-deficient mice displayed unaltered responses to ATP and UTP.The purinergic receptor antagonist suramin exerted surmountable antagonism for all agonists. Its apparent pKb for ATP (4.53+/-0.07) was compatible with literature, but the pKb for UTP (5.19+/-0.03) was significantly higher. This discrepancy suggests that UTP activates supplementary non-P2Y2 receptor subtype(s). Further, pyridoxal-phosphate-6-azophenyl-2'-4'-disulphonic acid (PPADS) showed surmountable (UTP, UDP), nonsurmountable (ADP) or no antagonism (ATP). Finally, 2'-deoxy-N6-methyladenosine3',5'-bisphosphate (MRS2179) inhibited ADP-evoked relaxation only. Taken together, these results point to the presence of functional P2Y1 (ADP), P2Y2 (ATP, UTP) and P2Y6 (UDP) receptors on murine aorta endothelial cells. The identity of the receptor(s) mediating the action of UTP is not fully clear and other P2Y subtypes might be involved in UTP-evoked vasodilatation.  相似文献   

2.
The vasodilatory effects of nucleotides in the guinea-pig thoracic aorta were examined to determine the relationship between molecular expression and function of P2Y receptors. In aortic rings precontracted with norepinephrine, vasodilatory responses to purine nucleotides exhibited a rank-order of potency of 2-methylthio-ATP>ADP>ATP. Responses to UTP, but not UDP suggested a functional role for P2Y4 but not P2Y6 receptors. Aortic endothelial cells express at least four P2Y receptors; P2Y1, P2Y2, P2Y4 and P2Y6. In primary culture, these cells exhibit desensitizing transient calcium responses characteristic of P2Y1, P2Y2 and P2Y4, but not P2Y6 receptors. UDP had no effect on endothelial cell calcium. The pyrimidinergic receptor agonist UTP is capable of eliciting robust vasodilation in aortic rings and causing calcium responses in cultured guineapig aortic endothelial cells. These responses are equivalent to the maximum responses observed to ATP and ADP. Measurement of intracellular calcium release in response to ATP and 2-methylthio-ATP were similar, however only the 2-methylthio-ATP response was sensitive to the P2Y1 antagonist N(6)-methyl-2'-deoxyadenosine-3',5'-bisphosphate (MRS2179). In aortic rings, vasodilatory responses to 2-methylthio-ATP, ATP and ADP were all blocked by pre-incubation of tissues with MRS2179. MRS2179 pretreatment had no effect of the ability of UTP to cause relaxation of norepinephrine responses in aortic rings or the ability of UTP to cause calcium release in aortic endothelial cells. We demonstrate robust effects of purine and pyrimidine nucleotides in guineapig aorta and provide functional and biochemical evidence that MRS2179 is a selective P2Y1 antagonist.  相似文献   

3.
(1) Vasorelaxation and hyperpolarization of endothelial cells by adenosine 5'-[beta-thio]diphosphate (ADPbetaS) and adenosine 5'-[gamma-thio]triphosphate (ATPgammaS) were studied in rat-isolated mesenteric artery. Effects from stimulation of P2X receptors were avoided by desensitization with alpha,beta-methylene adenosine triphosphate. (2) ADPbetaS caused concentration- and endothelium-dependent relaxations of methoxamine-precontracted small (third generation) and main mesenteric artery. These were inhibited by N(omega)-nitro-L-arginine methyl ester (L-NAME) or a combination of apamin plus charybdotoxin (inhibitors of Ca(2+)-activated K(+) channels); L-NAME, apamin and charybdotoxin applied together abolished the response. (3) ATPgammaS induced limited relaxation (35% of methoxamine-induced tone at 10 micro M) of small mesenteric artery, which was sensitive to L-NAME or endothelium denudation. However, it almost completely relaxed the main mesenteric artery over an extended concentration range (>6 orders of magnitude) in an endothelium-dependent manner. This relaxation was inhibited by either L-NAME or a combination of apamin with charybdotoxin, and abolished by a combination of all the three inhibitors. (4) The P2Y(1) receptor antagonist MRS 2179 (2'-deoxy-N(6)-methyladenosine 3',5'-bisphosphate; 0.3-3 micro M) caused parallel rightward shifts of the concentration/relaxation curve to ADPbetaS (pA(2)=7.1). However, MRS 2179 did not inhibit, but potentiated, relaxant responses to ATPgammaS. MRS 2179 did not affect the contractile responses ATPgammaS in small mesenteric artery; ATPgammaS did not contract the main mesenteric artery. (5) ADPbetaS hyperpolarized the endothelium of the main mesenteric artery in a concentration-dependent manner. This was unaffected by L-NAME but antagonized by MRS 2179. ATPgammaS also hyperpolarized the mesenteric artery endothelium in a concentration-dependent manner but, when ATPgammaS was applied at 10 micro M, its effect was potentiated by MRS 2179 (3 micro M). (6) It is concluded that both relaxation and hyperpolarization to ADPbetaS are mediated by P2Y(1) receptors and that the endothelial hyperpolarization is related to the L-NAME-resistant relaxation. Relaxation to the P2Y(2) agonist ATPgammaS shows regional variation along the mesenteric vasculature. The mechanisms for potentiation of relaxation and hyperpolarization by ATPgammaS are unknown, but may indicate interactions between P2Y receptor subtypes.  相似文献   

4.
Abstract: The aim of the present study was to assess the purinoceptor functional responses of the urinary bladder by using isolated rat urinary bladder strip preparations. ATP elicited a transient bladder contraction followed by a sustained relaxation and ADP, UDP and UTP generated predominantly potent relaxations (relaxatory potencies: ADP = ATP > UDP = UTP). The ATP contractions were desensitized with the P2X1/3 purinoceptor agonist/desensitizer α,β‐meATP and reduced by the P2 purinoceptor antagonist PPADS but unaffected by the P2 purinoceptor antagonist suramin. Electrical field stimulation (1–60 Hz) evoked frequency‐dependent bladder contractions that were decreased by incubation with α,β‐meATP but not further decreased by PPADS. Suramin antagonized relaxations generated by UDP but not those by ADP, ATP or UTP. PPADS antagonized and tended to antagonize UTP and UDP relaxations, respectively, but did neither affect ADP nor ATP relaxations. ADP relaxations were insensitive to the P2Y1 purinoceptor antagonist MRS 2179 and the ATP‐sensitive potassium channel antagonist glibenclamide. The ATP relaxations were inhibited by the P1 purinoceptor antagonist 8‐p‐sulfophenyltheophylline but unaffected by the A2A adenosine receptor antagonist 8‐(3‐chlorostyryl)caffeine and glibenclamide. Adenosine evoked relaxations that were antagonized by the A2B adenosine receptor antagonist PSB 1115. Thus, in the rat urinary bladder purinergic contractions are elicited predominantly by stimulation of the P2X1 purinoceptors, while UDP/UTP‐sensitive P2Y purinoceptor(s) and P1 purinoceptors of the A2B adenosine receptor subtype are involved in bladder relaxation.  相似文献   

5.
1. To assess the role of nucleotide receptors in endothelial-smooth muscle signalling, changes in perfusion pressure of the rat arterial mesenteric bed, the luminal output of nitric oxide (NO) and guanosine 3',5' cyclic monophosphate (cGMP) accumulation were measured after the perfusion of nucleotides. 2. The rank order of potency of ATP and analogues in causing relaxation of precontracted mesenteries was: 2-MeSADP=2-MeSATP>ADP>ATP=UDP=UTP>adenosine. The vasodilatation was coupled to a concentration-dependent rise in NO and cGMP production. MRS 2179 selectively blocked the 2-MeSATP-induced vasodilatation, the NO surge and the cGMP accumulation, but not the UTP or ATP vasorelaxation. 3. mRNA encoding for P2Y(1), P2Y(2) and P2Y(6) receptors, but not the P2Y(4) receptor, was detected in intact mesenteries by RT-PCR. After endothelium removal, only P2Y(6) mRNA was found. 4. Endothelium removal or blockade of NO synthase obliterated the nucleotides-induced dilatation, the NO rise and cGMP accumulation. Furthermore, 2-MeSATP, ATP, UTP and UDP contracted endothelium-denuded mesenteries, revealing additional muscular P2Y and P2X receptors. 5. Blockade of soluble guanylyl cyclase reduced the 2-MeSATP and UTP-induced vasodilatation and the accumulation of cGMP without interfering with NO production. 6. Blockade of phosphodiesterases with IBMX increased 15-20 fold the 2-MeSATP and UTP-induced rise in cGMP; sildenafil only doubled the cGMP accumulation. A linear correlation between the rise in NO and cGMP was found. 7. Endothelial P2Y(1) and P2Y(2) receptors coupled to the NO/cGMP cascade suggest that extracellular nucleotides are involved in endothelial-smooth muscle signalling. Additional muscular P2Y and P2X receptors highlight the physiology of nucleotides in vascular regulation.  相似文献   

6.
The contractile and relaxant effects of the different P2 receptors were characterized in the rat isolated mesenteric artery by use of extracellular nucleotides, including the stable pyrimidines uridine 5'-O-thiodiphosphate (UDPbetaS) and uridine 5'-O-3-thiotriphosphate (UTPgammaS). The selective P2X receptor agonist, alphabeta-methylene-adenosine triphosphate (alphabeta-MeATP) stimulated a potent (pEC(50)=6.0) but relatively weak contraction (E:(max)=57% of 60 mM K(+)). The contractile concentration-response curve of adenosine triphosphate (ATP) was biphasic when added in single concentrations. The first part of the response could be desensitized by alphabeta-MeATP, indicating involvement of P2X receptors, while the second part might be mediated by P2Y receptors. The contractile P2Y receptors were further characterized after P2X receptor desensitization with 10 microM alphabeta-MeATP. Uridine diphosphate (UDP), uridine triphosphate (UTP) and ATP stimulated contraction only in high concentrations (1 - 10 mM). The selective P2Y(6) agonist, UDPbetaS, and the P2Y(2)/P2Y(4)-receptor agonists UTPgammaS and adenosine 5'-O-3-thiotriphosphate (ATPgammaS) were considerably more potent and efficacious (E:(max) approximately 250% of 60 mM K(+)). Adenosine 5'-O-thiodiphosphate (ADPbetaS) was inactive, excluding contractile P2Y(1) receptors. After precontraction with 1 microM noradrenaline, UTP, ADP and ATP induced relaxations with similar potencies (pEC(50) approximately 5.0). UTPgammaS, ADPbetaS and ATPgammaS were approximately one log unit more potent indicating the presence of endothelial P2Y(1) and P2Y(2)/P2Y(4) receptors. The P2Y(6) receptor agonist, UDPbetaS, had no effect. UDPbetaS and UTPgammaS are useful tools when studying P2 receptors in tissue preparations with ectonucleotidase activity. Contractile responses can be elicited by stimulation of P2Y(6) and, slightly less potently, P2Y(2)/P2Y(4) receptors. The P2X response was relatively weak, and there was no P2Y(1) response. Stimulation of P2Y(1) and P2Y(2)/P2Y(4) receptors elicited relaxation, while P2Y(6) did not contribute.  相似文献   

7.
P2 receptors in the murine gastrointestinal tract   总被引:14,自引:0,他引:14  
The actions of adenosine, adenosine 5'-triphosphate (ATP), 2-methylthio adenosine diphosphate ADP (2-MeSADP), 2-methylthio ATP (2-MeSATP), alpha,beta-methylene ATP (alpha,beta-meATP) and uridine triphosphate (UTP) on isolated segments of mouse stomach (fundus), duodenum, ileum and colon were investigated. The localization of P2Y(1), P2Y(2), P2Y(4), P2X(1) and P2X(2) receptors and neuronal nitric oxide synthase (NOS) were examined immunohistochemically, and P2Y(1) mRNA was examined with in situ hybridization. The order of potency for relaxation of longitudinal muscle of all regions was: 2-MeSADP>/=2-MeSATP>alpha,beta-meATP>ATP=UTP=adenosine. This is suggestive of P2Y(1)-mediated relaxation and perhaps a further P2Y receptor subtype sensitive to alpha,beta-meATP. As ATP and UTP are equipotent, the presence of a P2Y(2) receptor is indicated. ATP responses were inhibited by the P2Y(1)-selective antagonist MRS 2179, and suramin. P2Y(1) receptors were visualized immunohistochemically in the smooth muscle of the ileum and in a subpopulation for myenteric neurones, which also stained for NOS. P2Y(1) mRNA was localized in neurones in both myenteric and submucosal ganglia in the ileum. Taken together, these results suggest that ATP was acting on non-adrenergic, non-cholinergic inhibitory neurons, which release both nitric oxide (NO) and ATP. Reduced relaxations to 2-MeSADP by tetrodotoxin and N(omega)-nitro-L-arginine methyl ester, are consistent with this possibility. Adenosine acts via P1 receptors to relax smooth muscle of the mouse gut. Segments of mouse colon (in contrast to the stomach and small intestine) were contracted by nucleotides with the potency order: 2-MeSATP>alpha,betameATP>ATP; the contractions showed no desensitization and were antagonized by suramin and PPADS, consistent with responses mediated by P2X(2) receptors. Immunoreactivity to P2X(2) receptors was demonstrated on both longitudinal and circular muscle of the colon, but not in the other regions of the gut, except for a small subpopulation of myenteric neurones. In summary, neuronal P2Y(1) receptors appear to mediate relaxation, largely through NO in all regions of the mouse gut, and to a lesser extent by P2Y(1), P2Y(2) and a novel P2Y receptor subtype responsive to alpha,beta-meATP in smooth muscle, while P2X(2) receptors mediate contraction of colonic smooth muscle.  相似文献   

8.
Vasoconstrictor responses to exogenous adenine and pyrimidine nucleotides were measured in endothelium-denuded segments of guinea pig mesenteric vein and compared with responses in mesenteric artery. The rank order of potency for nucleotides in veins was: 2-MeSADP = 2-MeSATP > UTP > ATPgammaS = alpha,betaMeATP > UDP = ATP > ADP > beta,gamma-D-MeATP = beta,gamma-L-MeATP. In contrast 2-MeSADP, UTP, and UDP were inactive in arteries, and the rank order of potency of other nucleotides differed; that is, alpha,betaMeATP > beta, gamma-D-MeATP > beta,gamma-L-MeATP = ATPgammaS = 2-MeSATP > ATP > ADP. In veins, UTP, ATP, and 2-MeSATP were more efficacious contractile agents than alpha,beta MeATP. In addition, the ability to desensitize responses to these nucleotides and inhibit them with various blockers differed. The response to alpha,betaMeATP in veins exhibited rapid desensitization and was inhibited by pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid tetrasodium (PPADS) and suramin. The response to 2-MeSATP in veins did not desensitize; nor was it inhibited by prior alpha,betaMeATP desensitization, but it was inhibited by PPADS, suramin, and the selective P2Y(1) receptor antagonist adenosine 3',5'-bisphosphate (ABP, 10-100 microM). Responses to ATP and UTP in veins did not desensitize and were not inhibited by PPADS, suramin, ABP, or alpha, betaMeATP desensitization. In conclusion, our results suggest that venous contraction to a variety of nucleotides is mediated in large part by P2Y receptors including P2Y(1) receptors and an UTP-preferring P2Y receptor. A small component of contraction also appears to be mediated by P2X(1) receptors. This receptor profile differs markedly from that of mesenteric arteries in which P2X(1) receptors predominate.  相似文献   

9.
10.
BACKGROUND AND PURPOSE: The uracil nucleotides UDP and UTP have been reported to activate P2Y2, P2Y4 and P2Y6 receptors to cause vasoconstriction. We have performed a comparative analysis of these receptors in endothelium-denuded smooth muscle from porcine isolated coronary and ear arteries, using pharmacological and molecular tools. EXPERIMENTAL APPROACH: Tissue segments were used to construct non-cumulative concentration response curves for UTP and UDP, in the absence and presence of the P2 receptor antagonists PPADS or suramin. RT-PCR and immunoblot analyses were employed to define gene expression and immunoreactivity for P2Y2, P2Y4 and P2Y6 receptors. KEY RESULTS: In the coronary artery, UTP-evoked contractile responses were reduced in the presence of suramin, but not PPADS, while the smaller responses to UDP were unaffected by either antagonist. In the ear artery, contractile responses to UDP were much smaller than those to UTP; responses to UTP were inhibited by both PPADS and suramin. RT-PCR suggested predominant expression of P2Y2 receptors in the coronary artery, while P2Y4 and P2Y6 receptor gene expression appeared equivalent in both tissues. Immunoblot analyses provided evidence for P2Y6 receptors in both tissues, with equivocal evidence of P2Y2 and P2Y4 receptor immunoreactivities. CONCLUSIONS AND IMPLICATIONS: We conclude that UTP-evoked contraction of porcine coronary artery smooth muscle appears to be predominantly P2Y2-mediated, while the ear artery appears to express a uracil nucleotide-sensitive P2 receptor(s) which fails to fit readily into the current classification.  相似文献   

11.
Dilatory responses of extracellular nucleotides were examined in the precontracted isolated rat mesenteric artery. Dilatation mediated by endothelium-derived hyperpolarising factor (EDHF) was studied in the presence of Nomega-nitro-L-arginine (L-NOARG) and indomethacin, and was most potently induced by the selective P2Y(1) receptor agonist adenosine 5'-O-thiodiphosphate (ADPbetaS), while 2-methylthioadenosine triphosphate (2-MeSATP) and adenosine triphosphate (ATP) were almost inactive. However, after P2X receptor desensitisation (with alphabeta-methylene-adenosine triphosphate, alphabeta-MeATP), 2-MeSATP and ATP potently stimulated EDHF-mediated dilatation. This can be explained by simultaneous activation of endothelial P2Y receptors that release EDHF, and depolarising P2X receptors on smooth muscle cells. Uridine triphosphate (UTP) also induced potent dilatation, suggesting EDHF release via P2Y(2)/P2Y(4) receptors. Uridine diphosphate (UDP) had only minor dilatory effects, and when pretreated with hexokinase it was almost inactive, suggesting a minor role for P2Y(6) receptors. The nitric oxide (NO) mediated dilatation was studied in the presence of charybdotoxin, apamin and indomethacin. ADPbetaS, 2-MeSATP, ATP and UTP were all potent relaxant agonists suggesting NO release via P2Y(1) and P2Y(2)/P2Y(4) receptors, while UDP was much less potent and efficacious. P2X receptor desensitisation had only minor effect on the NO-mediated dilatations. In conclusion, both EDHF and NO-mediated dilatation can be induced by activation of P2Y(1) and P2Y(2)/P2Y(4) receptors. P2X receptor stimulation of smooth muscle cells selectively counteracts the dilatory effect of EDHF.  相似文献   

12.
Contractile effects of uridine 5'-triphosphate in the rat duodenum.   总被引:4,自引:4,他引:0       下载免费PDF全文
1. Previous studies have shown that the rat duodenum relaxes to adenosine and adenosine 5'-triphosphate (ATP) via P1 and P2Y purinoceptors respectively, but in preliminary studies uridine 5'-triphosphate (UTP) was found to contract this tissue. The non-selective P2 antagonist suramin and a number of nucleotides were therefore used to investigate this response further. 2. ATP, UTP, adenosine 5'-diphosphate (ADP), adenosine 5'-O-(3-thiotriphosphate) (ATP-gamma-S), guanosine 5'-triphosphate (GTP) and uridine 5'-diphosphate (UDP) each relaxed the duodenum, with an agonist potency order of ATP = ADP > ATP-gamma-S >> GTP >> UTP = UDP, consistent with the presence of a P2Y purinoceptor mediating relaxation. 3. ATP-gamma-S, UTP and UDP each contracted the duodenum with an agonist potency order of ATP-gamma-S > UTP > UDP, although maximal responses to these agonists were not obtained at a concentration of 267 microM (ATP-gamma-S) and 300 microM (UTP and UDP). No contractions were observed with any of the other agonists at concentrations up to 300 microM. 4. Indomethacin (25 microM) did not inhibit the contractions induced by UTP, indicating that they were not mediated via production of prostaglandins. 5. Suramin (100 microM and 1 mM) inhibited relaxations induced by ATP, shifting the concentration-response curve to the right, with the maximal response to ATP being decreased by the higher concentration of suramin (1 mM). Suramin (1 mM) inhibited relaxations induced by ATP-gamma-S, shifting the concentration-response curve to the right, and completely abolished contractions induced by ATP-gamma-S.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
14.
1. Purine and pyrimidine compounds were investigated on hamster proximal urethral circular smooth muscle preparations. In situ hybridization studies were carried out to localize P2Y(1), P2Y(2), P2Y(4) and P2Y(6) mRNA. Protein expression was studied using Western blotting analysis with antibodies against P2Y(1) and P2Y(2) receptors. 2. The hamster urethra relaxed with an agonist potency order of: 2-MeSADP>beta,gamma-meATP=ATP=adenosine=ADP>2-MeSATP>alpha,beta-meATP>TTP>CTP=UTP>GTP=UDP. The high potency of 2-MeSADP is suggestive of an action via P2Y(1) receptors. Although the order is not characteristic for any known single P2Y receptor subtype, it may represent a combination of P2Y receptor subtypes. 4. The selective P2Y(1) receptor antagonist MRS2179 inhibited ATP-, 2-MeSADP-, 2-MeSATP-, beta,gamma-meATP-, and to a lesser degree alpha,beta-meATP-induced responses. 3. Adenosine, but not ATP, was inhibited by the adenosine receptor antagonist 8-phenyltheophylline, indicating that ATP was not acting via adenosine following enzymatic breakdown. 5. Western blotting analysis showed the expression of both P2Y(1) and P2Y(2) receptors, confirming the results obtained with in situ hybridization that showed the expression of both P2Y(1) and P2Y(2), but not P2Y(4) or P2Y(6) mRNA, in smooth muscle layers of the hamster proximal urethra. 6. It is proposed that the relaxant response of the urethra to ATP may be evoked through the activation of the combination of receptors for P2Y(1) and to a lesser extent P2Y(2) receptors, which may mediate a trophic effect in addition. A P2Y subtype responsive to alpha,beta-meATP and P1 receptors may contribute to urethral smooth muscle relaxation.  相似文献   

15.
We investigated P2 receptor expression and function in macrophages from mouse, and in the J774 cell line, and revealed a larger spectrum of P2 receptor subtypes than previously recognised. The nucleotides adenosine triphosphate (ATP), adenosine diphosphate, uridine triphosphate and uridine diphosphate evoked an increase in intracellular calcium and the activation of a potassium current. The sensitivity of these responses to the antagonists suramin, PPADS, MRS 2179 and Cibacron blue suggest the presence of at least three functional P2Y receptor subtypes, most probably P2Y(2), P2Y(4) and P2Y(6). ATP also activated P2X receptors, giving rise to a rapidly activating cation conductance. This response was insensitive to the antagonists suramin and Cibacron blue, was potentiated by Zn(2+) and inhibited by acidification suggesting involvement of P2X(4) receptors. In low divalent cation solution, responses to ATP became larger, and dibenzoyl-ATP became more potent than ATP, indicating the presence of P2X(7) receptors. Immunofluorescence, flow cytometry, Western blots and RT-PCR show that P2X(4) and P2X(7) receptors are the most prominent in both macrophage types, while the expression of the other P2X subunits is variable and sometimes weak or undetectable. These techniques also demonstrated the presence of mRNA for P2Y(1), P2Y(2), P2Y(4) and P2Y(6) receptors along with protein expression for the three subtypes we investigated, namely, P2Y(1), P2Y(2) and P2Y(4).  相似文献   

16.
17.
The actions of purine and pyrimidine compounds on isolated segments of the mouse intestine were investigated during postnatal development. The localization of P2Y(1), P2Y(2), P2Y(4), P2X(1,) P2X(2) and P2X(3) receptors were examined immunohistochemically, and levels of expression of P2Y(1), P2X(1) and P2X(2) were studied by Western immunoblot. From day 12 onwards, the order of potency for relaxation of longitudinal muscle of all regions was 2-MeSADP>or=alpha,beta-meATP>or=ATP=UTP=adenosine, suggesting P2Y(1) receptors. This was supported by the sensitivity of responses to 2-MeSADP to the selective antagonist MRS 2179 and P2Y(1) receptor immunoreactivity on longitudinal muscle and a subpopulation of myenteric neurons. A further alpha,beta-meATP-sensitive P2Y receptor subtype was also indicated. ATP and UTP were equipotent suggesting a P2Y(2) and/or P2Y(4) receptor. Adenosine relaxed the longitudinal muscle in all regions via P1 receptors. The efficacy of all agonists to induce relaxation of raised tone preparations increased with age, being comparable to adult by day 20, the weaning age. During postnatal development the contractile response of the ileum and colon was via P2Y(1) receptors, while the relaxant response mediated by P2Y(1) receptors gradually appeared along the mouse gastrointestinal tract, being detectable in the stomach from day 3 and in the duodenum from day 6. In the ileum and colon relaxant responses to 2-MeSADP were not detected until days 8 and 12, respectively. 2-MeSADP induced contractions on basal tone preparations from day 3, but decreased significantly at day 12 and disappeared by day 20. At day 8, contractions of colonic longitudinal muscle to ATP showed no desensitisation suggesting the involvement of P2X(2) receptors. Immunoreactivity to P2X(2) receptors only was observed on the longitudinal muscle of the colon and ileum from day 1 and on a subpopulation of myenteric neurons from day 3. These data suggest that P2Y(1) receptors undergo postnatal developmental changes in the mouse gut, with a shift from contraction to relaxation. Such changes occur 1 week before weaning and may contribute to the changes that take place in the gut when the food composition changes from maternal milk to solid food.  相似文献   

18.
In comparison to other classes of cell surface receptors, the medicinal chemistry at P2X (ligand-gated ion channels) and P2Y (G protein-coupled) nucleotide receptors has been relatively slow to develop. Recent effort to design selective agonists and antagonists based on a combination of library screening, empirical modification of known ligands, and rational design have led to the introduction of potent antagonists of the P2X(1) (derivatives of pyridoxal phosphates and suramin), P2X(3)(A-317491), P2X(7) (derivatives of the isoquinoline KN-62), P2Y(1)(nucleotide analogues MRS 2179 and MRS 2279), P2Y(2)(thiouracil derivatives such as AR-C126313), and P2Y(12)(nucleotide/nucleoside analogues AR-C69931X and AZD6140) receptors. A variety of native agonist ligands (ATP, ADP, UTP, UDP, and UDP-glucose) are currently the subject of structural modification efforts to improve selectivity. MRS2365 is a selective agonist for P2Y(1)receptors. The dinucleotide INS 37217 potently activates the P2Y(2)receptor. UTP-gamma-S and UDP-beta-S are selective agonists for P2Y(2)/P2Y(4)and P2Y(6)receptors, respectively. The current knowledge of the structures of P2X and P2Y receptors, is derived mainly from mutagenesis studies. Site-directed mutagenesis has shown that ligand recognition in the human P2Y(1)receptor involves individual residues of both the TMs (3, 5, 6, and 7), as well as EL 2 and 3. The binding of the negatively-charged phosphate moiety is dependent on positively charged lysine and arginine residues near the exofacial side of TMs 3 and 7.  相似文献   

19.
Molecular pharmacology of P2Y-receptors   总被引:30,自引:0,他引:30  
  相似文献   

20.
1. It has previously been shown that ATP and UTP stimulate P2Y receptors in vascular smooth muscle cells (VSMCs), but the nature of these receptors, in particular the contribution of P2Y2 and P2Y4 subtypes, has not been firmly established. Here we undertake a further pharmacological analysis of [3H]inositol polyphosphate responses to nucleotides in cultured rat VSMCs. 2. ATP generated a response that was partial compared to UTP, as reported earlier. 3. In the presence of a creatine phosphokinase (CPK) system for regenerating nucleoside triphosphates, the response to ATP was increased, the response to UTP was unchanged, and the difference between UTP and ATP concentration-response curves disappeared. Chromatographic analysis showed that ATP was degraded slightly faster than UTP. 4. The response to UDP was always smaller than that to UTP, but with a shallow slope and a high potency component. In the presence of hexokinase (which prevents the accumulation of ATP/UTP from ADP/UDP), the maximum response to UDP was reduced and the high-potency component of the curve was retained. By contrast, the response to ADP was weaker throughout in the presence of hexokinase. 5. ATP gamma S was an effective agonist with a similar EC50 to UTP, but with a lower maximum. ITP was a weak agonist compared with UTP. 6. Suramin was an effective antagonist of the response to UTP (pA2=4.48), but not when ATP was the agonist. However, suramin was an effective antagonist (pA2=4.45) when stimulation with ATP was in the presence of the CPK regenerating system. 7. Taken together with the results of others, these findings indicate that the response of cultured rat VSMCs to UTP and to ATP is predominantly at the P2Y2 receptor, and that there is also a response to UDP at the P2Y6 receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号