首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulation of gastric emptying in humans by cholecystokinin.   总被引:13,自引:2,他引:13       下载免费PDF全文
In the present study we used a bioassay system for measuring plasma cholecystokinin (CCK) to evaluate whether CCK has a physiologic role in regulating gastric emptying in humans. Plasma CCK levels and gastric emptying after ingestion of a mixed liquid meal were determined in five normal male volunteers. Fasting CCK levels averaged 0.8 +/- 0.1 pM and increased to 6.5 +/- 1.0 pM within 10 min of drinking the mixed meal. CCK levels remained elevated for up to 90 min. Gastric emptying after a meal was slow; at the end of the 90 min 68% of the original volume remained in the stomach. The rate of gastric emptying of water was then measured in the same individuals with a simultaneous infusion of either saline, or one of two doses of CCK (12 pmol/kg per h and 24 pmol/kg per h). With the saline infusion, plasma CCK levels did not increase above basal and gastric contents emptied rapidly. At the end of 90 min only 7% of the original volume remained in the stomach. The lower dose of CCK resulted in a plasma level of 3.4 pM which both reproduced the average postprandial plasma level and caused a significant delay in gastric emptying. The higher dose of CCK achieved plasma levels of 8 pM and resulted in a delay in gastric emptying that was similar to that seen with the mixed meal. Since exogenous CCK at concentrations which occur postprandially delays gastric emptying, we conclude that CCK is a physiologic regulator of gastric emptying.  相似文献   

2.
Since the development of radioimmunoassay for insulin, the diagnosis of insulinoma has been made easily. However, it has been assumed that insulinoma is heterogenous in the histological structure as well as in clinical findings. Therefore, the present study was performed to investigate the insulin response to various stimuli and to evaluate the various insulin response tests in 19 patients with insulinoma. The fasting blood glucose was 19 to 90 mg/100 ml in insulinoma and 81 +/- 5 (mean +/- S.D.) mg/100 ml in normal controls. Plasma insulin (IRI) in insulinoma ranged from 10 to 255 microU/ml, while in the control it was 14 +/- 9 microU/ml. However, insulin/blood glucose ratio increased in insulinoma (0.2-11.2) compared with the normal control (0.18 +/- 0.11). In oral glucose tolerance tests, plasma IRI increased and reached peak levels of 48-244 microU/ml, remaining elevated in most cases. In the intravenous tolbutamide test, plasma IRI increased conspicuously to 82-1,330 microU/ml and hypoglycemic coma was provoked in 54%. Plasma IRI was elevated in the intravenous glucagon test and reached the peak levels of 85-400 microU/ml, which exceeded those of the control group. Plasma IRI increased to more than 100 microU/ml after arginine infusion and formed bizarre curves. There were no correlations between plasma IRI response to various stimuli and malignancy, type of B-granule or insulin content of insulinoma tumors. It is concluded that fasting plasma IRI, insulin/glucose ratio, tolbutamide test and glucagon test are highly valuable for the diagnosis of insulinoma.  相似文献   

3.
Prednisone-induced insulin resistance may depend on either reduced sensitivity (receptor defect) or reduced response to insulin (postreceptor defect). To clarify the mechanism of prednisone-induced insulin resistance, a [3H]glucose infusion (1 microCi/min) was performed for 120 min before and during a euglycemic clamp repeated at approximately 100, approximately 1,000, and approximately 10,000 microU/ml steady state plasma insulin concentration in 10 healthy, normal weight subjects, aged 35 +/- 7 yr. Each test was repeated after 7-d administration of placebo or prednisone (15 plus 15 mg/d per subject), in a randomized sequence with an interval of 1 mo between the two tests. Mean fasting blood glucose (89.5 +/- 2.1 vs. 83.7 +/- 1.9 mg/dl) and mean fasting plasma insulin values (17.8 +/- 1.2 vs. 14.3 +/- 0.8 microU/ml) were significantly higher (P less than 0.01) after prednisone. The insulin sensitivity index (glucose metabolic clearance rate in ml/kg per min) was significantly lower (P less than 0.001) after prednisone at all three steady state plasma insulin levels: 2.8 +/- 0.3 vs. 7.4 +/- 1.1 at approximately 100 microU/ml; 6.0 +/- 0.5 vs. 12.2 +/- 1.1 at approximately 1,000 microU/ml; 7.4 +/- 0.6 vs. 14.4 +/- 0.5 at approximately 10,000 microU/ml. Fasting glucose production (in mg/kg per min) was significantly higher after prednisone: 3.7 +/- 0.2 vs. 2.9 +/- 0.2, P less than 0.001. Suppression of glucose production at steady state plasma insulin level of approximately 100 microU/ml was less after prednisone (1.01 +/- 0.35 vs. 0.14 +/- 0.13, NS), and total at approximately 1,000 and approximately 10,000 microU/ml after both prednisone and placebo. The metabolic kinetic parameters of insulin after prednisone were not significantly different from those after placebo. In addition, insulin binding and 3-ortho-methyl-glucose transport were studied in vitro on fat cells from 16 normal-weight surgical candidates aged 40 +/- 8 yr (10 treated with placebo and 6 with prednisone as above). No significant difference was observed with regard to specific insulin binding (tested with 1 ng/ml hormone only), whereas significant transport differences were noted at the basal level (0.40 +/- 0.10 vs. 0.54 +/- 0.12 pmol/10(5) cells, P less than 0.05), and at increasing concentrations up to the maximum stimulation values (5 ng/ml): 0.59 +/- 0.04 vs. 0.92 +/- 0.12 pmol/10(5) cells, P less than 0.005. These results suggest that (a) administration of an anti-inflammatory dose of prednisone for 7 d induces insulin resistance in man; (b) this is more dependent on depressed peripheral glucose utilization than on increased endogenous production; (c) total insulin binding on isolated adipocytes is not significantly affected; (d) insulin resistance is primarily the outcome of postreceptor defect (impaired glucose transport).  相似文献   

4.
Gastric inhibitory polypeptide (GIP) is a gastrointestinal hormone stimulated after oral nutrient ingestion, but not after intravenous nutrient administration. GIP stimulates insulin release in the presence of hyperglycemia and as such is considered a major enteroinsular hormone. Since elevated glucose and insulin levels are found in hyperthyroidism, we compared the GIP responses to oral glucose ingestion in 12 hyperthyroid patients and 10 age-matched controls. Seventy-five grams of oral glucose was ingested after overnight fasting and samples were obtained at 0, 30, 60, 90, 120, and 180 min for serum glucose and immunoreactive insulin (IRI) and GIP (IRGIP). The mean serum glucose levels in hyperthyroid subjects were significantly higher (P less than or equal to 0.05) at every time studied except at 180 min. At 60 min, peak mean glucose was 171 +/- 14 mg/dl versus 128 +/- 7 mg/dl in controls (P less than 0.02). Except for fasting, mean IRI levels were significantly higher (P less than 0.001) in hyperthyroid subjects than in controls at all times studied. At 60 min, IRI rose to a peak of 125 +/- 11 microU/ml in hyperthyroid subjects versus 50 +/- 9 microU/ml in controls (P less than 0.001). Mean fasting, stimulated, and incremental IRGIP levels were slightly higher but not statistically different in the hyperthyroid subjects versus controls. Glucose and IRI responses are exaggerated in hyperthyroidism after oral glucose ingestion. Even though GIP has insulinotropic action, its role in the hyperinsulinism found in hyperthyroid subjects appears to be minimal.  相似文献   

5.
To explore the physiology of cholecystokinin (CCK) in humans, we investigated the effect on gallbladder contraction and gastric emptying of a recently developed CCK receptor antagonist, MK-329. In a double-blind, four-period crossover study eight subjects received single doses of 0.5, 2, or 10 mg MK-329, or placebo, followed by an intravenous infusion of CCK-8 (30 pmol/kg.h). In placebo-treated subjects gallbladder volumes decreased on average to 43% of initial volumes after 2 h of CCK infusion. MK-329 caused a dose-dependent inhibition of CCK-stimulated gallbladder contraction with 10 mg producing complete blockade (P less than 0.01, cf. placebo). Gallbladder contraction and gastric emptying rates after a mixed meal were then measured in a two-period crossover study. Subjects received placebo or 10 mg of MK-329 2 h before eating. Gastric emptying of both solids and liquids was measured simultaneously by gamma scintigraphy. In placebo-treated subjects plasma CCK levels increased postprandially to 2.3 pM, gallbladder volumes decreased 68.4 +/- 3.8% (SE), and the times for 50% emptying of liquids and solids from the stomach were 58 +/- 10 and 128 +/- 8 min, respectively. In MK-329-treated subjects there was a marked elevation in peak CCK levels to 13.8 pM (P less than 0.01, cf. placebo), and gallbladder contraction was completely inhibited. Solid and liquid emptying rates were unaffected. These findings demonstrate that (a) MK-329 is a potent, orally active antagonist of CCK in humans, and (b) CCK is the major regulator of postprandial gallbladder contraction. These data also support the concept of negative feedback regulation of CCK secretion and suggest that mechanisms other than CCK play a dominant role in the regulation of postprandial gastric emptying rates.  相似文献   

6.
This study investigated in eight healthy male volunteers (a) the gastric emptying pattern of 50 and 100 grams of glucose; (b) its relation to the phase of interdigestive motility (phase I or II) existing when glucose was ingested; and (c) the interplay between gastric emptying or duodenal perfusion of glucose (1.1 and 2.2 kcal/min; identical total glucose loads as orally given) and release of glucose-dependent insulinotropic peptide (GIP), glucagon-like peptide-1(7-36)amide (GLP-1), C-peptide, insulin, and plasma glucose. The phase of interdigestive motility existing at the time of glucose ingestion did not affect gastric emptying or any metabolic parameter. Gastric emptying of glucose displayed a power exponential pattern with a short initial lag period. Duodenal delivery of glucose was not constant but exponentially declined over time. Increasing the glucose load reduced the rate of gastric emptying by 27.5% (P < 0.05) but increased the fractional duodenal delivery of glucose. Both glucose loads induced a fed motor pattern which was terminated by an antral phase III when approximately 95% of the meal had emptied. Plasma GLP-1 rose from basal levels of approximately 1 pmol/liter of peaks of 3.2 +/- 0.6 pmol/liter with 50 grams of glucose and of 7.2 +/- 1.6 pmol/liter with 100 grams of glucose. These peaks occurred 20 min after glucose intake irrespective of the load. A duodenal delivery of glucose exceeding 1.4 kcal/min was required to maintain GLP-1 release in contrast to ongoing GIP release with negligibly low emptying of glucose. Oral administration of glucose yielded higher GLP-1 and insulin releases but an equal GIP release compared with the isocaloric duodenal perfusion. We conclude that (a) gastric emptying of glucose displays a power exponential pattern with duodenal delivery exponentially declining over time and (b) a threshold rate of gastric emptying of glucose must be exceeded to release GLP-1, whereas GIP release is not controlled by gastric emptying.  相似文献   

7.
It has been postulated that glucose regulation is secondary to maintenance of normal basal insulin secretion. Serum glucose, insulin, and C-peptide levels were measured at fasting in 209 consecutive non-insulin-dependent diabetic patients and after glucose stimulation in 193 patients. The basal serum insulin C-peptide levels were not significantly different in control subjects (mean 22 +/- 8.8 microU/ml) and in patients with varying severity of diabetes (mean 24 +/- 9.6 microU/ml) except in the most severely diabetic group [fasting serum glucose greater than 350 mg/dl (19.4 mmol/L), mean 19 +/- 7 microU/ml]. In 39 patients who developed ketonuria without acidosis during follow-up, the mean basal serum insulin was 22 microU/ml during the episode of ketonuria, 21 microU/ml during the glucose tolerance test, and 25 microU/ml after glucose stimulation (statistically nonsignificant differences). Our data suggest that hyperglycemia compensates for beta-cell impairment so that basal insulin secretion usually stays above the threshold for ketoacidosis unless there is marked beta-cell impairment. Patients who fail to increase insulin in response to nutrient challenge are at risk of developing ketosis.  相似文献   

8.
The contribution of the sympathetic nervous system to the thermic effect of intravenously infused glucose and insulin was studied in 10 healthy young men before and after beta-adrenergic receptor blockade with propranolol during conditions of normoglycemia (90 mg/dl) at two levels of hyperinsulinemia (approximately 90 microU/ml and approximately 620 microU/ml). During steady state conditions of glucose uptake (0.515 +/- 0.046 and 0.754 +/- 0.056 g/min), significant increases were observed in energy expenditure (0.10 +/- 0.02 kcal/min, P less than 0.001, and 0.21 +/- 0.02 kcal/min, P less than 0.01, respectively). Similarly, glucose oxidation increased from 0.100 +/- 0.015 to 0.266 +/- 0.022 g/min (P less than 0.001) at approximately microU/ml insulin and from 0.082 +/- 0.013 to 0.295 +/- 0.018 g/min (P less than 0.001) at approximately 620 microU/ml insulin. Concomitantly, the rate of nonoxidative glucose disposal or "glucose storage" was 0.249 +/- 0.033 and 0.459 +/- 0.048 g/min, respectively. At this time the thermic effect of infused glucose/insulin was 5.3 +/- 0.9 and 7.5 +/- 0.7%, and the energy cost of "glucose storage" was 0.50 +/- 0.16 kcal/g and 0.47 +/- 0.04 kcal/g at the two different levels of glucose uptake. After beta-adrenergic receptor blockade with propranolol, glucose uptake, oxidation, and "storage" were unchanged in both studies, but significant decreases in energy expenditure were observed (1.41 +/- 0.06-1.36 +/- 0.05 kcal/min, P less than 0.01 at approximately 90 microU/ml insulin, and 1.52 +/- 0.07-1.43 +/- 0.05 kcal/min, P less than 0.005 at approximately 620 microU/ml insulin) causing significant falls in both the estimated thermic effect of infused glucose/insulin and the energy cost of "glucose storage". Regression analysis of the results from both studies indicated a mean energy cost for "glucose storage" of 0.36 kcal/g (r = 0.74, P less than 0.001), which fell significantly (P less than 0.005) to 0.21 kcal/g (r = 0.49, P less than 0.05) during beta-adrenergic receptor blockade with propranolol. The latter is in close agreement with that calculated on theoretical grounds for the metabolic cost of glucose storage as glycogen, i.e., obligatory thermogenesis. It is concluded that beta-adrenergically mediated sympathetic nervous activity is responsible for almost the entire rise in energy expenditure in excess of the obligatory requirements for processing and storing glucose during conditions of normoglycemia and hyperinsulinemia in healthy man, and that the energy cost of "glucose storage" is not different at normal (approximately 90 microU/ml) and supraphysiological (approximately 620 microU/ml) plasma insulin concentrations.  相似文献   

9.
Retardation of meal carbohydrate absorption by inhibition of starch degradation improves glucose tolerance in normal and diabetic humans. To determine the effects of Bay-m-1099, a new alpha-glucosidase inhibitor, on insulin requirements and prandial glucose tolerance in patients with insulin-dependent diabetes mellitus (IDDM), plasma glucose, triglyceride, and free insulin concentrations were measured after ingestion of a standard breakfast, lunch, and dinner in nine patients with IDDM in a single-blind, randomized, crossover design. A 20% reduction in insulin was given 30 minutes before the meals when the subjects received Bay-m-1099 (50 mg). This resulted in the AUC for plasma insulin to be significantly less with Bay-m-1099 (AUC, 8.2 +/- 1.3 vs. 12.8 +/- 1.6 microU/ml/min with placebo; P less than 0.01). Despite this reduction in plasma insulin levels, postprandial plasma glucose concentrations were reduced for the breakfast (73 +/- 15 vs. 112 +/- 14 mg/dl/min with placebo; P less than 0.01) and dinner (23 +/- 8 vs. 4 +/- 1 mg/dl/min with placebo; P less than 0.05) meal with Bay-m-1099. Bay-m-1099 did not affect postprandial plasma triglycerides and was well tolerated, the major side effect being flatulence (4/9) and mild diarrhea (4/9). We conclude that inhibition of intestinal alpha-glucosidases by Bay-m-1099 in IDDM reduces meal insulin requirements by at least 20% and that such an agent could be useful in the management of diabetes mellitus by reducing hyperinsulinemia.  相似文献   

10.
To examine the relationship between net hepatic glucose uptake (NHGU) and the insulin level and to determine the effects of portal glucose delivery on that relationship, NHGU was evaluated at three different insulin levels in seven 42-h-fasted, conscious dogs during peripheral glucose delivery and during a combination of peripheral and portal glucose delivery. During peripheral glucose delivery, at arterial blood glucose levels of approximately 175 mg/dl and insulin levels reaching the liver of 51 +/- 2, 92 +/- 6, and 191 +/- 6 microU/ml, respectively, NHGUs were 0.55 +/- 0.30, 1.52 +/- 0.44, and 3.04 +/- 0.79 mg/kg per min, respectively. At hepatic glucose loads comparable to those achieved during peripheral glucose delivery and inflowing insulin levels of 50 +/- 4, 96 +/- 5, and 170 +/- 8 microU per ml, respectively, NHGUs were 1.96 +/- 0.48, 3.67 +/- 0.68, and 5.52 +/- 0.92 mg/kg per min when a portion of the glucose load was delivered directly into the portal vein. The results of these studies thus indicate that net hepatic glucose uptake is dependent on both the plasma insulin level and the route of glucose delivery and that under physiological conditions the "portal" signal is at least as important as insulin in the determination of net hepatic glucose uptake.  相似文献   

11.
Intermediate-acting biosynthetic human (NPH) insulin was administered by disposable insulin syringe into the right upper thigh of nine insulin-dependent diabetic youths. Seven days later, the same amount and type of NPH insulin was given in the same anatomic site with a Medi-Jector II, which delivers insulin as a jet stream. Blood was collected before insulin injection and at hourly intervals subsequently for the measurement of glucose and insulin. The total serum insulin measured before the first morning dose with the needle and syringe and the Medi-Jector II was 41.2 +/- 10.7 microU/ml and 46.2 +/- 10.7 microU/ml, respectively. During the next 9 h, the areas under the respective total insulin curves were not different, but the area under the free-insulin curve after jet injection was greater than the free-insulin area after needle injection (P less than .01). The ratio of free/total serum insulin was 0.31 +/- 0.02 after needle injection and 0.40 +/- 0.03 after jet injection (P less than .0025). The peak of total insulin concentration occurred 4.2 h after jet injection of NPH: 1 h earlier than the peak after needle injection. The plasma glucose at time zero was 197 +/- 15 mg/dl before needle injection and 242 +/- 19 mg/dl before jet injection. Although the diet consumed by each subject on the 2nd study day was identical to that of the 1st day, the mean glucose increase was greater after needle-injected insulin than after jet-spray injection. This indicates that the greater amount of free insulin observed after jet-injected insulin had a direct effect in lowering the plasma glucose. Jet injection may reduce insulin requirements by increasing the availability of free insulin.  相似文献   

12.
Evidence that the brain of the conscious dog is insulin sensitive.   总被引:1,自引:0,他引:1       下载免费PDF全文
The aim of this study was to determine whether a selective increase in the level of insulin in the blood perfusing the brain is a determinant of the counterregulatory response to hypoglycemia. Experiments were carried out on 15 conscious 18-h-fasted dogs. Insulin was infused (2 mU/kg per min) in separate, randomized studies into a peripheral vein (n = 7) or both carotid and vertebral arteries (n = 8). This resulted in equivalent systemic insulinemia (84 +/- 6 vs. 86 +/- 6 microU/ml) but differing insulin levels in the head (84 +/- 6 vs. 195 +/- 5 microU/ml, respectively). Glucose was infused during peripheral insulin infusion to maintain the glucose level (56 +/- 2 mg/dl) at a value similar to that seen during head insulin infusion (58 +/- 2 mg/dl). Despite equivalent peripheral insulin levels and similar hypoglycemia; steady state plasma epinephrine (792 +/- 198 vs. 2394 +/- 312 pg/ml), norepinephrine (404 +/- 33 vs. 778 +/- 93 pg/ml), cortisol (6.8 +/- 1.8 vs. 9.8 +/- 1.6 micrograms/dl) and pancreatic polypeptide (722 +/- 273 vs. 1061 +/- 255 pg/ml) levels were all increased to a greater extent during head insulin infusion (P < 0.05). Hepatic glucose production, measured with [3-3H]glucose, rose from 2.6 +/- 0.2 to 4.3 +/- 0.4 mg/kg per min (P < 0.01) in response to head insulin infusion but remained unchanged (2.6 +/- 0.5 mg/kg per min) during peripheral insulin infusion. Similarly, gluconeogenesis, lipolysis, and ketogenesis were increased twofold (P < 0.001) during head compared with peripheral insulin infusion. Cardiovascular parameters were also significantly higher (P < 0.05) during head compared with peripheral insulin infusion. We conclude that during hypoglycemia in the conscious dog (a) the brain is directly responsive to physiologic elevations of insulin and (b) the response includes a profound stimulation of the autonomic nervous system with accompanying metabolic and cardiovascular changes.  相似文献   

13.
This study shows the influence on plasma glucose concentrations of 45 min of mild exercise (48 +/- 4% of maximum aerobic capacity) performed 180 min after breakfast and 195 min after a subcutaneous injection of regular insulin by six type I (insulin-dependent) diabetic patients on a three-daily insulin injection regimen (regular insulin before breakfast and lunch, regular + intermediate insulin before supper). It has been observed that such exercise does not induce a large plasma glucose decrease. Actually, plasma glucose concentrations were 99 +/- 18 mg/dl before exercise, reached a nadir of 78 +/- 17 mg/dl at 35 min, and were 81 +/- 15 mg/dl at the end of exercise. During the control study at rest, in the same 45-min time interval, plasma glucose decreased from 146 +/- 31 to 128 +/- 31 mg/dl. In the exercise study, one patient began exercising while hypoglycemic, and another patient developed asymptomatic hypoglycemia during exercise. In the control study at rest, one patient showed hypoglycemic glucose concentrations. Throughout the exercise study, plasma free-insulin concentrations decreased (from 32 +/- 5 to 20 +/- 4 microU/ml) as a result of the pharmacokinetics of subcutaneously injected insulin.  相似文献   

14.
BACKGROUND: Thyroid hormones are necessary for normal brain development. We studied thyroid hormone profile and insulin sensitivity in intrauterine growth retarded (IUGR) newborns to find correlation between insulin sensitivity and thyroid status in IUGR newborns. METHODS: Fifty IUGR and fifty healthy control infants were studied at birth. Cord blood was collected for determination of T(3), T(4), TSH, glucose and insulin levels. RESULTS: IUGR newborns had significantly lower insulin, mean+/-S.D., 5.25+/-2.81 vs. 11.02+/-1.85microU/ml, but significantly higher insulin sensitivity measured as glucose to insulin ratio (G/I), 9.80+/-2.91 vs. 6.93+/-1.08 compared to healthy newborns. TSH was also significantly higher 6.0+/-2.70 vs. 2.99+/-1.05microU/ml with significantly lower T(4), 8.65+/-1.95 vs. 9.77+/-2.18microg/dl, but similar T(3) levels, 100.8+/-24.36 vs. 101.45+/-23.45ng/dl. On stepwise linear regression analysis in IUGR infants, insulin sensitivity was found to have a significant negative association with T(4) and significant positive association with TSH. CONCLUSION: Thyroid hormones may play a role in increased insulin sensitivity at birth in IUGR.  相似文献   

15.
To assess the effects of aging on glucose-mediated glucose disposal and glucose transport, glucose disposal rates were measured in 10 nonelderly (32 +/- 4 yr) and 11 elderly (64 +/- 4 yr) subjects at five different plasma glucose concentrations. Glucose disposal was decreased by 30-35% in the elderly at each level of glycemia (100-350 mg/dl) in the presence of similar levels of hyperinsulinemia (approximately 100 microU/ml), and the 50% effective concentration (EC50) was similar in both the nonelderly (100 +/- 9) and elderly (103 +/- 5 mg/dl). The Michaelis constant (Km) of 3-O-methyl glucose transport in adipocytes was unchanged with aging (3.8 +/- 0.5 vs. 3.2 +/- 0.2 mM) while the maximum velocity of insulin stimulated transport was reduced by 34% in the elderly (8.3 +/- 1.3 vs. 12.6 +/- 1.5 pmol/5 X 10(4) cells per s, P less than 0.05). The insulin resistance of aging is therefore due to a reduction in the capacity of the glucose uptake system, while the affinity of glucose utilization (EC50 and Km) is unchanged. This supports the hypothesis that a reduction in the number of glucose transport and metabolic units occurs with aging, but that each unit functions normally.  相似文献   

16.
BACKGROUND: Abnormalities of upper gut motility, including a delay of gastric emptying and small bowel transit, found in patients with constipation may be secondary to factors originating in the colon or rectum as a result of faecal stasis. The aim was to determine if stimulation of mechanosensory function by rectal distension affects postprandial gallbladder emptying and release of gastrointestinal peptides participating in control of upper gut motility. MATERIALS AND METHODS: Eight healthy volunteers were studied with an electronic barostat and a plastic bag positioned in the rectum. Intrabag pressure was maintained at minimal distension pressure + 2 mmHg on one occasion and on a pressure that induced a sensation of urge on the other. Gallbladder volume and plasma concentrations of cholecystokinin (CCK), pancreatic polypeptide (PP) and peptide YY (PYY) were measured before and after ingestion of a 450-kcal mixed liquid meal. RESULTS: Rectal distension enhanced maximum gallbladder emptying from 66 +/- 7% to 78 +/- 5% (P < 0.05). Distension tended to increase integrated plasma PYY from 77 +/- 30 pM min to 128 +/- 40 pM min in the first hour after the meal (P = 0.08) and it suppressed integrated plasma PP from 1133 +/- 248 pM min to 269 +/- 284 pM min in the second hour (P < 0.05). Integrated plasma CCK concentrations were not significantly affected. CONCLUSION: Mechanosensory stimulation of the rectum enhances postprandial gallbladder emptying and influences postprandial release of gut hormones involved in the regulation of gastrointestinal motility in healthy subjects. These mechanisms may play a role in the pathogenesis of the upper gastrointestinal motor abnormalities observed in constipated patients.  相似文献   

17.
The effect of insulin on motilin release was investigated by use of the euglycemic glucose clamp technique. By use of this technique plasma glucose concentration was maintained constant at 80-90 mg/100 ml, and plasma insulin immunoreactivity (IRI) was increased from 15 +/- 6 microU/ml to 171 +/- 22 microU/ml in 10 min, and remained at this level for 2 hr. Plasma motilin like immunoreactivity (MLI) concentration decreased within 10 min from 199 +/- 36 pg/ml to 120 +/- 28 pg/ml and remained low during the course of study. A significant negative correlation between MLI and IRI concentrations (r = -0.72, p less than 0.01) was observed. The present results indicate that the suppressive effect of insulin on motilin release is a direct action of insulin and is not mediated by glucose.  相似文献   

18.
The metabolic response to exercise in insulin-dependent diabetic (IDD) man was assessed during continuous insulin infusion using the subcutaneous (CSII), intravenous (CIVII), and intraperitoneal (CIPII) routes. During the basal period, plasma glucose levels were higher with CIPII (153 +/- 17 mg/dl) than with CSII (117 +/- 13 mg/dl) or CIVII (118 +/- 17 mg/dl). Basal free insulin concentrations were similar for CSII (12.3 +/- 10 microU/ml) and CIVII (12.4 +/- 1.4 MicroU/ml) but lower in CIPII (8.5 +/- 1.0 microU/ml, P less than 0.05). Exercise on a stationary bicycle at 75 W for 60 min produced a decline of plasma glucose in each protocol that was significantly only during CIVII (55 +/- 11 mg/dl, P less than 0.01). Insulin levels remained unchanged throughout the study period in all protocols. In normals, insulin values decreased during exercise and remained below basal levels through the recovery period (P less than 0.05), while plasma glucose remained unchanged. Plasma glucagon and epinephrine levels were similar in all protocols and remained unchanged with exercise, while plasma norepinephrine tended to be higher than normal in all diabetic subjects. Significant differences between normal and diabetic subjects (P less than 0.05) were observed for blood ketone bodies, while blood lactate, glycerol, and plasma FFA were similar. Normalization of intermediary metabolites occurred only with CIVII. Continuous insulin infusion provides near-normal glycemic and metabolic control before, during and following exercise in IDD man. However, to produce normal blood concentrations of intermediary metabolites during exercise, the insulin infusion rate may be excessive in terms of its hypoglycemic effect. CSII appears to be a safe, accessible, and adequate method for treating diabetic man during exercise.  相似文献   

19.
Insulin resistance in liver cirrhosis may depend on either reduced sensitivity (receptor defect) and/or reduced response to insulin (postreceptor defect). To clarify the mechanism of such resistance, a [3H]glucose infusion (0.2 microCi/min) was performed for 120 min before and during a euglycemic clamp at approximately 100, 1,000, and 10,000 microU/ml steady state plasma insulin concentration in 18 compensated cirrhotics with portal hypertension and impaired glucose tolerance, and 18 healthy volunteers with no family history of diabetes, matched for sex, age, and weight. Mean fasting plasma insulin (29.2 +/- 3.4 SEM vs. 14.8 +/- 1.1 microU/ml) was significantly higher (P less than 0.001) in cirrhotics, while fasting plasma glucose was much the same in the two groups. Glucose use (milligrams per kilogram per minute) was significantly lower in cirrhotics at all three steady state plasma insulin levels: 3.04 +/- 0.34 vs. 7.72 +/- 0.61 (P less than 0.001) at approximately 100; 6.05 +/- 1.07 vs. 11.45 +/- 1.24 (P less than 0.001) at approximately 1,000; and 11.69 +/- 0.69 vs. 14.13 +/- 0.74 (P less than 0.05) at approximately 10,000 microU/ml. Mean plasma C-peptide was significantly higher in cirrhotics both basally and during the steady states (P less than 0.001); it was completely suppressed at approximately 10,000 microU/ml in controls and only 57.5% of the baseline in cirrhotics. Endogenous glucose production (milligrams per kilogram per minute) was much the same in the two groups in the fasting state and almost entirely suppressed in the controls (0.10 +/- 0.05 vs. 0.48 +/- 0.11, P less than 0.001) at approximately 100 microU/ml; at approximately 1,000 microU/ml a residual glucose production, 0.07 +/- 0.05, was observed in the cirrhotics only. In addition, insulin binding and 3-ortho-methyl-glucose transport were studied in vitro in six cirrhotics and six controls. Insulin binding to circulating monocytes and isolated adipocytes was significantly lower (P less than 0.025) in cirrhotics in all insulin concentration studies. Glucose transport values on isolated adipocytes were significantly lower in cirrhotics both basally (P less than 0.001) and at maximal insulin concentration (P less than 0.05). These results suggest that insulin resistance in human cirrhosis is more dependent on depressed peripheral glucose use than on increased endogenous glucose production, and that a combined receptor and postreceptor defect in insulin action on target cells seems to be present.  相似文献   

20.
Studies of fat cells from patients with newly diagnosed, untreated non-insulin-dependent diabetes mellitus (NIDDM) have revealed severe abnormalities in insulin action on glucose transport and metabolism. To determine whether these defects can be reversed if good glycemic control is reached by dietary treatment, eight moderately obese NIDDM subjects were studied at diagnosis and again when the patients had been in good glycemic control induced by low-energy dieting for at least 2 mo (absence of glycosuria and fasting plasma glucose less than 7 mM). Average body weight decreased by 8 kg (P less than .05). Fasting plasma glucose decreased from 11.5 +/- 1.2 to 6.9 +/- 0.9 mM, whereas fasting serum insulin concentrations were unchanged. Adipocyte insulin binding at tracer concentration (15 pM, 37 degrees C) was not changed significantly (1.94 +/- 0.52 to 2.05 +/- 0.62% per 30 cm2 surface area/ml). The basal (non-insulin-stimulated) glucose transport (tracer glucose concentration 5 microM) increased from 25 +/- 12 to 44 +/- 14 pmol X 90 min-1 X 10 cm-2 surface area (P less than .02). The maximally insulin-stimulated glucose transport rate increased from 35 +/- 20 to 78 +/- 26 pmol/90 min (P less than .01). The percentage insulin response above basal levels increased from 31 +/- 40 to 89 +/- 58% (P less than .01). The insulin sensitivity (half-maximally stimulating insulin concentrations) was also improved (P less than .05). Glucose conversion rates to total lipids increased 34 +/- 62 and 65 +/- 80% in basal cells and maximally insulin-stimulated cells, respectively (.2 greater than P greater than .1, .1 greater than P greater than .05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号