首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The problem at the heart of motor control is how the myriad units of the neuromotor system are coordinated to perform goal-directed movements. Although for long these numerous degrees of freedom (DOFs) were considered redundant, recent views emphasize more that the DOFs should be considered abundant, allowing flexible performance. We studied how variability in arm joints was employed to stabilize the displaced end-effector in tool use to examine how the neuromotor system flexibly exploits DOFs in the upper extremity. Participants made pointing movements with the index finger and with the index finger extended by rods of 10, 20, and 30 cm. Using the uncontrolled manifold (UCM) method, the total joint angle variance was decomposed into two parts, the joint angle variance that did not affect the position of the end-effector (V UCM) and the variance that results in a deviation of the position of the end-effector from its mean (V ORT). Analyses showed that some angles depended on length of the rod in use. For all rod lengths, V UCM was larger than V ORT, and this did not differ over rod lengths, demonstrating that the arm was organized into a synergy. Finally, the variation in the joint angles in the arm as well as the degree of co-variation between these angles did not differ for the rod’s tip and the hand. We concluded that synergies are formed in the arm during reaching with an extended end-effector and those synergies stabilize different parts of the arm+rod system equally.  相似文献   

2.
We used the uncontrolled manifold (UCM) approach to study the synergy formation during learning an unusual multi-finger task. The subjects produced accurate force ramps with challenging sets of four fingers (two per hand). We tested hypotheses on stabilization of the contributions of subsets of effectors to the task force (FTASK) and to the moment in the frontal plane (force-stabilization and moment-stabilization, respectively). Force signals were used to compute magnitudes of hypothetical independent signals, modes. The variance of the mode magnitudes across repetitions of the task was partitioned into two components, within the UCM (VUCM), which did not affect the average value of a selected performance variable (force or moment), and orthogonal to the UCM (VORT), which affected the variable. Prior to practice, subjects showed high error indices and failed to show stabilization of each hands contribution to FTASK (VORTVUCM), while the pronation-supination moment was stabilized by the fingers of each hand (VORT<VUCM). The total forces produced by each of the two hands showed negative covariation across trials, which supported the force-stabilization hypothesis but not moment-stabilization hypothesis. Both force-stabilization and moment-stabilization hypotheses were supported by analysis of mode magnitudes to all eight fingers. Over 2 days of practice, the performance of the subjects improved considerably. This was accompanied by the emergence of within-a-hand force-stabilization for each of the two hands without deterioration of moment-stabilization. Quantitatively better within-a-hand force-stabilization was seen in male subjects as compared to females throughout the course of the experiment. Force-stabilization by all eight fingers improved quantitatively with practice. Practice also resulted in higher finger forces in maximal force production (MVC) trials and higher forces produced by unintended fingers in single-finger MVC trials (higher enslaving). We conclude that the UCM approach allows quantifying changes in the coordination of effectors during practice, and offers insights into the microstructure of this coordination with respect to different performance variables and different subsets of effectors. The approach can be used to test whether new synergies emerge in the process of practice.  相似文献   

3.
We studied the effects of a single practice session of a variable task with subject-specific adjustments of task difficulty (instability) on indices of multi-finger coordination in young and elderly persons. The main hypothesis was that practicing such a task would lead to contrasting changes in the amounts of two components of variance estimated across repetitive trials within the uncontrolled manifold (UCM) hypothesis: V UCM that had no effect on total force and V ORT that affected total force. In addition, we also expected to see strong transfer effects to a different task. A variable task with graded instability was designed to encourage use of variable solutions during the accurate production of total force with two fingers. The subjects practiced with the index and middle fingers pressing on individual force sensors. Overall, the older subjects showed lower indices of performance and higher indices of both V UCM and V ORT. After about 1 h of practice, both groups showed an increase in the index of involuntary force production by non-task fingers (enslaving). Both groups improved the indices of performance. The two variance indices showed opposite effects of practice: V ORT dropped with practice, while V UCM increased leading to an increase in the total amount of variance in the space of commands to fingers and in the index of force-stabilizing synergy. Performance in a simpler, non-practiced task improved, but there was no transfer of the changes in the structure of variance. Specifically, both variance components, V ORT and V UCM, dropped in the non-practiced task. The results show that the neural system responsible for synergies stabilizing important features of performance is highly adaptable to practice of tasks designed to encourage use of variable solutions. We view the results as highly promising for future use in populations with impaired coordination characterized by low synergy indices.  相似文献   

4.
We considered a hypothetical two-level hierarchy participating in the control of vertical posture. The framework of the uncontrolled manifold (UCM) hypothesis was used to explore the muscle groupings (M-modes) and multi-M-mode synergies involved in the stabilization of a time profile of the shear force in the anterior–posterior direction. Standing subjects were asked to produce pulses of shear force into a target using visual feedback while trying to minimize the shift of the center of pressure (COP). Principal component analysis applied to integrated muscle activation indices identified three M-modes. The composition of the M-modes was similar across subjects and the two directions of the shear force pulse. It differed from the composition of M-modes described in earlier studies of more natural actions associated with large COP shifts. Further, the trial-to-trial M-mode variance was partitioned into two components: one component that does not affect a particular performance variable (V UCM), and its orthogonal component (V ORT). We argued that there is a multi-M-mode synergy stabilizing this particular performance variable if V UCM is higher than V ORT. Overall, we found a multi-M-mode synergy stabilizing both shear force and COP coordinate. For the shear force, this synergy was strong for the backward force pulses and nonsignificant for the forward pulses. An opposite result was found for the COP coordinate: the synergy was stronger for the forward force pulses. The study shows that M-mode composition can change in a task-specific way and that two different performance variables can be stabilized using the same set of elemental variables (M-modes). The different dependences of the ΔV indices for the shear force and COP coordinate on the force pulse direction supports applicability of the principle of superposition (separate controllers for different performance variables) to the control of different mechanical variables in postural tasks. The M-mode composition allows a natural mechanical interpretation.  相似文献   

5.
We used the framework of the uncontrolled manifold (UCM) hypothesis to analyze multi-muscle synergies involved in making a step by a standing person. We hypothesized that leg and trunk muscles are organized into stable groups (muscle modes, M-modes) related to shifts of the center of pressure (COP) in the anterior-posterior and medio-lateral directions. Another hypothesis was that the magnitudes of the modes co-vary across repetitive trials to stabilize a certain magnitude of the COP shift in both directions. M-modes were defined using principal component analysis applied to indices of changes in the electromyographic (EMG) activity prior to releasing variable loads that were held by the subject using a pulley system. For the task of releasing the load behind the body three M-modes associated with a backward COP shift were defined. Four M-modes were defined for the task of releasing the load at the body side associated with a lateral COP shift. Multiple regression analysis was used to relate changes in the M-mode magnitudes to COP shifts. EMG changes prior to making a step were quantified over five 100 ms time windows before the lift-off of the stepping leg. Two components of the variance in the M-mode space computed across repetitions of a stepping task were quantified—a component that did not affect the average COP shift in a particular direction (variance within the UCM, V UCM), and a component that affected the COP shift (variance orthogonal to the UCM, V ORT). V UCM was significantly higher than V ORT for both directions of the COP shifts. This relation was observed for the M-modes in the stepping leg as well as in the support leg. The stepping leg showed a different time evolution of the ratio V UCM/V ORT such that the difference between the two variance components disappeared closer to the time of the lift-off. The findings corroborate both main hypotheses. The study supports a view that control of whole-body actions involves grouping the muscles, using fewer elemental variables to scale the muscle activity, and forming synergies in the space of the elemental variables that stabilize time profiles of important performance variables.  相似文献   

6.
We analysed the effects of task symmetry during bilateral accurate force production tasks performed by the two feet. In particular, we tested a hypothesis that bilateral deficit would lead to higher indices of synergies defined as co-varied adjustments in the two forces across trials that reduced total force variability. The subjects produced steady-state force followed by a quick force pulse into the target. The two feet could be acting both into plantar flexion and into dorsiflexion (symmetrical tasks), or in opposite directions (asymmetrical task). We used the framework of the uncontrolled manifold hypothesis to quantify two variance components, one of which did not change total force (V UCM), while the other did (V ORT). Synergy indices during the asymmetrical task were higher than in either symmetrical task. The difference was due to higher V UCM (compared to the symmetrical plantar flexion task) or lower V ORT (compared to the symmetrical dorsiflexion task). The synergy index showed a drop (anticipatory synergy adjustment, ASA) starting 100–150 ms prior to the force pulse initiation. The ASA tended to be shorter and of a smaller magnitude for the asymmetrical task. This is the first demonstration of bilateral synergies during accurate force production by the legs. We conclude that bilateral deficit has no or weak effects on two-leg synergies. The results fit the earlier introduced scheme with two groups of neural variables defining average performance of a redundant system and patterns of co-variation among its elemental variables, respectively.  相似文献   

7.
In recent years, uncontrolled manifold (UCM) analysis has emerged as an important method to study variability of human movements. The current study investigated the upper extremity movements during typical assembly tasks using the framework of the UCM analysis. Younger and older participants performed machine-paced assembly tasks, while the kinematics of upper extremities were recorded using a motion tracking system. The upper extremity was modeled as a 7 degrees-of-freedom system. The variance of joint angles within the UCM space (V UCM) and the variance perpendicular to the UCM space (V ORT) were analyzed. The results indicated that V UCM were not significantly different for the older and younger groups. For the older group, V ORT was significantly less than the younger group and resulted in less total variance (V TOT) and a better synergy level (Z ΔV ). Therefore, the synergies of upper extremity movement may not be impaired for machine-paced tasks as people age. While current results showed a different effect of aging on the synergies of body movement compared with one previous study, they were in line with a recently proposed theory that for natural tasks, aging people did not have impairment in the ability to organize upper extremity movement into synergies.  相似文献   

8.
We investigated co-varied changes in muscle activity during voluntary sway tasks that required a quick shift of the center of pressure (COP). We hypothesized that multi-muscle synergies (defined as task-specific covariation of elemental variables, muscle modes) stabilize a COP location in the anterior–posterior direction prior to a voluntary COP shift and that during the shift the synergies would weaken. Standing subjects performed two tasks, a cyclic COP shift over a range corresponding to 80% of the maximal amplitude of voluntary COP shift at 1 Hz and a unidirectional quick COP shift over the same nominal amplitude. The cyclic sway task was used to define muscle modes (M-modes, leg and trunk muscle groups with parallel scaling of muscle activation level within a group) and the relations between small changes in the magnitudes of M-modes [in the principal component analysis (PCA), the M-mode magnitudes are equivalent to PC scores] and COP shifts. A novel approach was used involving PCA applied to indices of muscle integrated activity measured both within a trial and across trials. The unidirectional sway task was performed in a self-paced (SP) manner and under a typical simple reaction time (RT) instruction. M-modes were also defined along trials at those tasks; they have been shown to be similar across tasks. Integrated indices of muscle activity in the SP-sway and RT-sway tasks were transformed into the M-modes. Variance in the M-mode space was partitioned into two components, one that did not affect the average value of COP shift (V UCM) and the other that did (V ORT). An index (ΔV) corresponding to the normalized difference between V UCM and V ORT was computed. During steady-state posture, ΔV was positive corresponding to most M-mode variance lying in a sub-space corresponding to a stable COP location across trials. Positive ΔV values have been interpreted as reflecting a multi-M-mode synergy stabilizing the COP location. The magnitude of ΔV was larger in SP trials than in RT trials. During voluntary COP shifts, the ΔV magnitude dropped to zero or even became negative. We conclude that M-mode synergies stabilize COP location during quiet standing, while these synergies weaken or disappear during fast voluntary COP shifts. Under RT conditions, the COP stabilizing synergies were weaker supposedly to facilitate a quick COP shift without time for preparation. The suggested method of M-mode identification may potentially be applied to analysis of postural synergies in persons with impaired postural control such as elderly persons, persons with atypical development, or in the course of rehabilitation after an injury.  相似文献   

9.
This study aimed to apply an uncontrolled manifold (UCM) approach to investigate how children utilize the variability of multiple body segment movement to facilitate the center of mass (COM) control during quiet stance. Three groups of participants were included in this study: younger children (YC, mean age 6.3 years), older children (OC, mean age 10.3 years), and young adults (YA, mean age 20.5 years). Participants stood on a force platform with their hands on the iliac crests for 40 s in each trial. Two visual conditions were examined including eyes-open and eyes-closed and three trials were collected for each condition. Results showed that all three groups partitioned more variability of multi-segment movement into the UCM subspace (maintaining the mean COM position) than into the ORT subspace (a subspace orthogonal to the UCM subspace, causing the deviation of the COM from its mean position) in both eyes-open and eyes-closed conditions. Furthermore, both the YC and OC groups partitioned a significantly higher percentage of variability into the UCM subspace than the YA group regardless of visual condition. In addition, results of conventional COM variables indicated that only the YC group produced significantly faster sway velocity and greater standard deviation than the YA group. All the results together suggest that children at 6–10 years of age use a similar variability-partitioning strategy (a greater V UCM and a smaller V ORT) like young adults in quiet stance to facilitate the COM control, but it takes more than 10 years for children to refine this strategy and achieve an adult-like variability-partitioning capability (i.e., UCM ratio). It also suggests that postural development may include two phases in which children learn to regulate the position and movement of multiple body segments and the COM first and gain an adult-like variability-partitioning capability later.  相似文献   

10.
Movements by a standing person are commonly associated with adjustments in the activity of postural muscles to cause a desired shift of the center of pressure (COP) and keep balance. We hypothesize that such COP shifts are controlled (stabilized) using a small set of central variables (muscle modes, M-modes), while each M-mode induces changes in the activity of a subgroup of postural muscles. The main purpose of this study has been to explore the possibility of identification of muscle synergies in a postural task using the framework of the uncontrolled manifold (UCM) hypothesis employing the following three steps in data analysis: (i) Identification of M-modes: Subjects were asked to release a load from extended arms through a pulley system, resulting in a COP shift forward prior to load release. Electromyographic (EMG) activity of eleven postural muscles on one side of the body was integrated over a 100 ms interval corresponding to the early stage of the COP shift, and subjected to a principal component (PC) analysis across multiple repetitions of each task. Three PCs were identified and associated with a push-back M-mode, a push-forward M-mode and a mixed M-mode. (ii) Calculation of the Jacobian of the system, which relates changes in the magnitude of M-modes to COP shifts using regression techniques: Subjects performed three different tasks (releasing different loads at the back, voluntarily shifting body weight forward and backward, at different speeds) to verify if the relationship between magnitudes of M-modes and COP shifts is task or direction specific. (iii) UCM analysis: Three tasks were chosen (load release in the front, arm movement forward and backward) which were associated with an early shift in COP. A manifold was identified in the M-mode space corresponding to a certain average (across trials) shift of the COP and variance per degree of freedom within the UCM (VUCM) and orthogonal (VORT) to the UCM was computed. Across subjects, VUCM was significantly higher than VORT when analysis at the third step was performed using a Jacobian computed based on a set of tasks associated with a COP shift in the same direction but not in the opposite direction. This result confirms our hypothesis that the M-modes work together as a synergy to stabilize a desired shift of the COP. Forward and backward COP shifts are associated with different synergies based on the same three M-modes.An erratum to this article can be found at  相似文献   

11.

Purpose

The ability to maintain stable balance while standing decreases with age. The body must coordinate multiple joints using “freeze” or “free” strategy, or a combination of both to ensure balance stability. The purpose of this study was to examine age-related changes in the use of motor abundance during upright stance on a narrow base without visual input.

Methods

Uncontrolled manifold (UCM) analysis was used to decompose the movement variability of joints into goal-equivalent variability (GEV) and non-goal-equivalent variability (NGEV). The ratio between GEV and NGEV (UCMratio) quantifies the joint coordination related to postural stability, and a high UCMratio value indicates flexible control of joints. To perform balance tests, participants in this study (healthy young and old adults, 20 each) were asked to stand on a flat platform and on narrow wooden blocks with their eyes open and then eyes closed.

Results

In upright balance tests, both old and young adults maintained postural stability. GEV was greater than NGEV across all participants and conditions. However, GEV was higher in the young adults than in the old adults, whereas NGEV was higher in the old adults than in the young adults. Therefore, the old adults exhibited a lower UCMratio than the young adults.

Conclusion

The old adults were unable to exploit motor abundance and used a less flexible multi-joint coordination pattern to achieve stable balance. The UCMratio value reflects the quality of postural control and can be used for assessing joint coordination in balance disorders.  相似文献   

12.
The structure of joint angle variability and its changes with practice were investigated using the uncontrolled manifold (UCM) computational approach. Subjects performed fast and accurate bimanual pointing movements in 3D space, trying to match the tip of a pointer, held in the right hand, with the tip of one of three different targets, held in the left hand during a pre-test, several practice sessions and a post-test. The prediction of the UCM approach about the structuring of joint angle variance for selective stabilization of important task variables was tested with respect to selective stabilization of time series of the vectorial distance between the pointer and aimed target tips (bimanual control hypothesis) and with respect to selective stabilization of the endpoint trajectory of each arm (unimanual control hypothesis). The components of the total joint angle variance not affecting (VCOMP) and affecting (VUN) the value of a selected task variable were computed for each 10% of the normalized movement time. The ratio of these two components RV=VCOMP/VUN served as a quantitative index of selective stabilization. Both the bimanual and unimanual control hypotheses were supported, however the RV values for the bimanual hypothesis were significantly higher than those for the unimanual hypothesis applied to the left and right arm both prior to and after practice. This suggests that the CNS stabilizes the relative trajectory of one endpoint with respect to the other more than it stabilizes the trajectories of each of the endpoints in the external space. Practice-associated improvement in both movement speed and accuracy was accompanied by counter-intuitive lack of changes in RV. Both VCOMP and VUN variance components decreased such that their ratio remained constant prior to and after practice. We conclude that the UCM approach offers a unique and under-explored opportunity to track changes in the organization of multi-effector systems with practice and allows quantitative assessment of the degree of stabilization of selected performance variables.  相似文献   

13.
The purpose of the study was to explore the ability of the central nervous system (CNS) to organize synergies at two levels of a hypothetical control hierarchy involved in two-hand, multi-finger tasks. We investigated indices (ΔV) of finger force co-variation across trials as reflections of synergies stabilizing the total force (F TOT). Subjects produced constant force with one or two finger-pairs (from one hand or two hands). In trials starting with one finger-pair, subjects added another finger-pair without changing F TOT. In trials starting with two finger-pairs, subjects removed one of the finger-pairs without changing F TOT. Adding or removing a finger-pair resulted in a transient drop in ΔV computed for the finger-pair that remained active throughout the trial. This drop in ΔV was seen simultaneously with force changes. Compared to the original steady-state, addition of a finger-pair led to a significant drop in ΔV at the newly established steady-state. This drop eliminated negative co-variation among finger forces that had stabilized F TOT. In contrast, in trials starting with two finger-pairs, no negative co-variation between finger forces within-a-pair was seen. Removing a finger-pair led to the emergence of negative co-variation between finger forces at the new steady-state. The ΔV index computed across two finger-pairs confirmed the existence of negative force co-variation. The emergence and disappearance of force stabilizing synergies within a finger-pair may signal limitations in the ability of the CNS in forming synergies at two different hierarchical levels.  相似文献   

14.
Motor learning in the vestibular system can be differentially obtained depending upon the context for which the vestibulo-ocular reflex (VOR) has been exposed. Manipulating head orientation relative to gravity is an example of a contextual cue that can elicit independent VOR gains. We were interested in examining retention of short-term VOR adaptation when the adapting stimulus was paired with a novel contextual cue. Two sets of non-human primate VOR adaptation experiments were designed to assess the influence of head position relative to gravity on retention of the pitch VOR. First, the pitch VOR of three squirrel monkeys was adapted for 3 h using minimizing (×0.45) spectacles and a sum-of-sines stimulus (20°/s at 0.5, 1.1, 2.3, and 3.7 Hz) while the animals were positioned left ear down (LED adaptation). Pitch VOR gains were measured in the adapted position (LED) and two non-adapted positions (upright, UP) or right ear down (RED). In the second set of experiments, the pitch VOR was adapted in an upright head position (same adapting stimulus as used in LED) and tested in UP, LED or RED. No head immobility or darkness restrictions were imposed on the animals after the initial adaptation exposure. The pitch VOR gains were measured during the acceleration (G A) and constant velocity (G V) portions of 1,000°/s2–150°/s step responses and during 0.5, 2.0, and 4.0 Hz sinusoids with velocities varying from 20 to 100°/s. All measures of VOR gain for UP, LED, and RED were done immediately after the adaptation and for three subsequent days and at post-adaptation day 7 (PAD 7). When tested in the adapting position, all experiments showed immediate reduction in G A and G V compared with pre-adaptation levels. For LED adaptation experiments, the pitch G A and G V gains were significantly reduced for as long as 7 days. Some retention of the LED-adapted VOR gain also occurred when testing in the RED position. No retention of pitch VOR G A or G V existed for the UP position after adaptation in LED. After the UP-adapt experiments, no retention of the G A or G V was found when tested in the adapting position. Interestingly, however, some retention of G A and G V did exist when the UP-adapted animals were tested in LED or RED. Data from sinusoidal rotations followed a similar adaptation pattern as the step responses. Our findings show that after only 3 h of adaptation exposure, adaptation of the pitch VOR gain is retained for several days. This long-term retention of VOR adaptation after short-term exposure appears to be the result of inducing adaptation with an atypical combination of movement and position for the monkey (LED-adapt). Our results indicate that head orientation relative to gravity is an effective context for retaining learned VOR gains in addition to restricting mobility or keeping animals in the dark. We also show that the adapting head position determines the magnitude of VOR adaptation.  相似文献   

15.
Human subjects can quickly adapt and maintain performance of arm reaching when experiencing novel physical environments such as robot-induced velocity-dependent force fields. Using anodal transcranial direct current stimulation (tDCS) this study showed that the primary motor cortex may play a role in motor adaptation of this sort. Subjects performed arm reaching movement trials in three phases: in a null force field (baseline), in a velocity-dependent force field (adaptation; 25 N s m−1) and once again in a null force field (de-adaptation). Active or sham tDCS was directed to the motor cortex representation of biceps brachii muscle during the adaptation phase of the motor learning protocol. During the adaptation phase, the global error in arm reaching (summed error from an ideal trajectory) was similar in both tDCS conditions. However, active tDCS induced a significantly greater global reaching (overshoot) error during the early stage of de-adaptation compared to the sham tDCS condition. The overshoot error may be representative of the development of a greater predictive movement to overcome the expected imposed force. An estimate of the predictive, initial movement trajectory (signed error in the first 150 ms of movement) was significantly augmented during the adaptation phase with active tDCS compared to sham tDCS. Furthermore, this increase was linearly related to the change of the overshoot summed error in the de-adaptation process. Together the results suggest that anodal tDCS augments the development of an internal model of the novel adapted movement and suggests that the primary motor cortex is involved in adaptation of reaching movements of healthy human subjects.  相似文献   

16.
Nine young infants were followed longitudinally from 4 to 15 months of age. We recorded early spontaneous movements and reaching movements to a stationary target. Time-position data of the hand (endpoint), shoulder, and elbow were collected using an optoelectronic measurement system (ELITE). We analyzed the endpoint kinematics and the intersegmental dynamics of the shoulder and elbow joint to investigate how changes in proximal torque control determined the development of hand trajectory formation. Two developmental phases of hand trajectory formation were identified: a first phase of rapid improvements between 16 and 24 weeks of age, the time of reaching onset for all infants. During that time period the number of movement units per reach and movement time decreased dramatically. In a second phase (28–64 weeks), a period of fine-tuning of the sensorimotor system, we saw slower, more gradual changes in the endpoint kinematics. The analysis of the underlying intersegmental joint torques revealed the following results: first, the range of muscular and motiondependent torques (relative to body weight) did not change significantly with age. That is, early reaching was not confined by limitations in producing task-adequate levels of muscular torque. Second, improvements in the endpoint kinematics were not accomplished by minimizing amplitude of muscle and reactive torques. Third, the relative timing of muscular and motion-dependent torque peaks showed a systematic development toward an adult timing profile with increasing age. In conclusion, the development toward invariant characteristics of the hand trajectory is mirrored by concurrent changes in the control of joint forces. The acquisition of stable patterns of intersegmental coordination is not achieved by simply regulating force amplitude, but more so by modulating the correct timing of joint force production and by the system's use of reactive forces. Our findings support the view that development of reaching is a process of unsupervised learning with no external or innate teacher prescribing the desired kinematics or kinetics of the movement.  相似文献   

17.
Summary We have studied the force-velocity relation and the relaxation speed in intact, single fibres from Xenopus during fatigue produced by repeated tetani. Slack tests were used to obtain the shortening velocity at zero load (V 0) and ramp shortenings to get the force at intermediate velocities. The relaxation speed was measured as the slope during the initial linear phase of relaxation. During fatiguing stimulation isometric tension declined following a typical pattern with three phases. During the initial 10–15 tetani (phase 1) isometric tension fell to about 80% of thepre-fatigue tension (P 0), while V 0 showed no significant change. Thereafter V 0 fell almost linearly with time, whereas isometric tension first fell very slowly (phase 2) and then rapidly (phase 3). In fatigue V 0 was reduced to 46% of the control and isometric tension to 0.34 P 0. The force velocity relation seemed less curved during fatigue. The relaxation speed was almosthalved during phase 1 and thereafter fell more slowly to less than 10% of the control in fatigue. We suggest changes of isometric tension and shortening velocity during phase 1 and 2 to reflect altered crossbridge function due to changes of intracellular pH, inorganic phosphate and ADP concentration; the additional tension decline during phase 3 would reflect impaired Ca2+ activation of the crossbridges. The rapid slowing of relaxation during phase 1 probably involves Ca2+ saturation of parvalbumin, whereas the additional decline during phase 2 and 3 would reflect the above metabolic changes, acting either on crossbridges or active Ca2+ reuptake into the sarcoplasmic reticulum.  相似文献   

18.
This study aimed to examine the effects of maximum static and dynamic forces during and after knee-hip extension movement on blood pressure. Blood pressure was measured with a combination of oscillometric and tonometry methods before, during, immediately after and 30 s after knee-hip extension movements performed under maximum isometric and various isotonic force conditions on the servo-controlled dynamometer. The force–velocity relation of knee-hip extension movement was linear (r 2 = 0.9989), so that maximum isometric force (F max) and unloaded velocity (V max) were obtained by extrapolation. F max coincided with measured maximum isometric force (F 0) (F 0/F max = 1.03 ± 0.25). During isometric contraction, mean arterial pressure (MAP) increased to a larger extent and the increase was significantly higher than those during all controlled-load range of isotonic force measurements. The magnitude of MAP response during maximum isometric exercise was positively correlated with both F 0 (r = 0.687, P < 0.01) and V max (r = 0.586, P < 0.05). On the other hand, there was no significant correlation between F 0 and V max (r = 0.451, P > 0.05). It is suggested that measurements of muscular function with isotonic trials cause smaller increase in blood pressure than isometric trials do. Also, it was indicated that individuals with greater muscular strength and speed might respond with larger changes in blood pressure to strenuous muscular exercises.  相似文献   

19.
 The phosphatase inhibitor okadaic acid (OA) was used to study the relationship between [Ca2+], rates of phosphorylation/dephosphorylation and the mechanical properties of smooth muscle fibres. Force/velocity relationships were determined with the isotonic quick release technique in chemically skinned guinea-pig taenia coli muscles at 22° C. In the maximally thiophosphorylated muscle neither OA (10 μM) nor Ca2+ (increase from pCa 9.0 to pCa 4.5) influenced the force-velocity relationship. When the degree of activation was altered by varying [Ca2+] in the presence of 0.5 μM calmodulin, both force and the maximal shortening velocity (V max) were altered. At pCa 5.75, at which force was about 35% of the maximal at pCa 4.5, V max was 55% of the maximal value. When OA was introduced into fibres at pCa 6.0, force was increased from less than 5% to 100% of the maximal force obtained in pCa 4.5. The relationship between the degree of myosin light chain phosphorylation and force was similar in the two types of activation; varied [OA] at constant [Ca2+] and at varied [Ca2+]. The relation between force and V max when the degree of activation was altered with OA was almost identical to that obtained with varied [Ca2+]. The results show that Ca2+ and OA do not influence force or V max in the maximally phosphorylated state and suggest that the level of myosin light chain phosphorylation is the major factor determining V max. The finding that the relationship between force and V max was similar when activation was altered with OA and Ca2+ suggests, however, that alterations in the absolute rates of phosphorylation and dephosphorylation at a constant phosphorylation level do not influence the mechanical properties of the skinned smooth muscle fibres. Received: 1 December 1995 / Received after revision: 20 June 1996 / Accepted 12 July 1996  相似文献   

20.
Microelectrodes have been used to study the effects of aldosterone on the barriers and forces controlling sodium and potassium transport in rat distal colon. Compared to control tissues, hyperaldosteronism induced by dietary sodium depletion resulted in a 7-fold increase in transepithelial voltage (V R) and a 52% decrease in total resistance (R T). IncreasedV T reflected both a rise in the basolateral membrane voltage (V bl) and a fall in the apical membrane voltage (V A).R T was resolved into its separate membrane components using nystatin (585 U · ml–1), and the decrease inR T produced by aldosterone was found to be due entirely to a 66% decrease in the apical membrane resistance (R A). Amiloride had no effect on the control tissues, but restoredV T,V bl andV A in tissues from sodium deprived animals to control values. Amiloride also increasedR T in the experimental tissue, but the post-amiloride values remained significantly lower than those in controls.These results indicate, therefore, that hyperaldosteronism results in an increase inV T by hyperpolarizing the basolateral membrane, as well as depolarizing apical membrane in rat distal colon. The fall inR T, however, is due only to a fall inR A sinceR bl and junctional resistance (R j) were unaffected. The data are consistent with the concept that aldosterone acts to stimulate sodium absorption by increasing the rate of cell entry of sodium, through the induction of amiloride-sensitive sodium channels in the apical membrane, and enhances the rate of potassium secretion by increasing the electrical driving force towards the mucosal solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号