首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
脊髓损伤是脊柱外科中严重的损伤,通过细胞移植方式来修复脊髓损伤是一种行之有效的方法,目前国内外对脊髓损伤修复的研究主要集中在细胞移植上,如许旺细胞移植、干细胞移植、嗅鞘细胞移植及骨髓间充质干细胞移植等。这些细胞的移植在不同程度上促进了轴突髓鞘的再生,细胞的移植也从单一细胞移植发展到多种细胞联合移植,联合移植较单一细胞移植有更好的效果。另外,一些影响细胞正常生长的因素,如环境和分子反应过程也有可能为细胞移植修复脊髓损伤提供有益启示。  相似文献   

2.
干细胞移植治疗脊髓损伤研究进展   总被引:1,自引:0,他引:1  
学术背景:目前治疗脊髓损伤应用比较多的方法是细胞移植治疗和神经营养因子的应用。移植的细胞可在损伤部位存活、整合入宿主组织中,分化出神经元、星形胶质细胞和少突胶质细胞,并且和宿主细胞之间可形成突触样结构,使中枢神经系统的功能得到部分恢复。 目的:总结神经干细胞移植治疗大鼠脊髓损伤的研究进展。 检索策略:应用计算机检索Pubmed数据库1985-01/2007-10期间的相关文献,检索词为“Spinal Cord Injuries ,Neural,Stem Cell Transplantation”。并限定文章语言种类为English。同时计算机检索中文科技期刊数据库1989-01/2007-06期间的相关文章,检索词为“脊髓损伤,神经干细胞,神经元,干细胞移植”,并限定文章语言种类为中文。对资料进行初审,并查看每篇文献后的引文。纳入标准:文章所述内容应与移植干细胞后脊髓损伤后神经轴突的再生与修复等研究进展中的应用相关。排除标准:重复研究或Meta分析类文章。共收集到66篇相关文献,31篇文献符合纳入标准,排除的35篇为内容陈旧或重复文献。 文献评价:符合纳入标准的31篇文献中,23篇涉及移植后损伤脊髓神经元和轴突、髓鞘的再生及功能修复的研究,8篇涉及存在的问题与展望。 资料综合:①在脊柱骨折中约有16%~40%并发脊髓损伤。脊髓损伤传统治疗仅限于脊柱骨折脱位的复位固定、解除脊髓压迫、对症及康复治疗,疗效较差。②近年来随着神经病理生理及神经发育学研究的不断深人,神经组织或非神经组织移植逐渐应用于脊髓损伤并取得了肯定的成绩。③干细胞具有自我更新能力,植入受损部位后,其释放的营养因子能促进神经元的再生,且再生轴突能快速穿越移植物与宿主组织的边界,重建轴突的连续性。④关于干细胞及营养因子在损伤脊髓修复方面的研究虽已取得较大进展,但仍存在对神经再生的不利因素,如髓鞘相关抑制分子和胶质瘢痕形成,免疫排斥等。 结论:干细胞移植是治疗脊髓损伤的理想方案,可恢复损伤大鼠脊髓的部分功能。  相似文献   

3.
骨髓基质细胞移植治疗脊髓全横断损伤超微结构观察   总被引:1,自引:0,他引:1  
目的观察骨髓基质细胞(MSCs)移植治疗脊髓全横断损伤(SCI)超微结构,探讨内源性细胞与再生轴突关系。方法通过全骨髓法培养、纯化MSCs,SCI9d后移植MSCs,通过免疫荧光组化观察细胞移植后损伤区轴突再生情况,免疫荧光双标、免疫电镜观察再生轴突与内源性细胞关系。结果移植8W后实验组脊髓损伤区可见大量神经微丝蛋白200(NF200)阳性纤维,对照组脊髓损伤区未见明显的NF200阳性纤维。免疫荧光双标结果显示损伤区NF200阳性纤维和2,3'-环核苷酸磷酸而酯酶(CNP)阳性细胞之间存在密切的空间关系,免疫电镜显示CNP阳性细胞通过伸长丝状伪足形成再生轴突支架,内源性施万细胞参与再生轴突髓鞘形成。结论MSCs移植可促进损伤区轴突再生,宿主自身CNP阳性细胞和施万细胞参与损伤轴突的再生和髓鞘形成。  相似文献   

4.
大网膜具有复杂的生理功能,临床及实验室资料业已证明.大网膜移植至脑或脊髓可很快形成新生血管,建立新的供血联系,从而对缺血性疾病具有保护作用,并对中枢神经系统的损伤有促进修复及帮助功能恢复作用.近年来研究更证实大网膜内还存在某种神经递质,能引起血管增生.大网膜亦有良好的吸收功能,能吸收和转移30%的脑脊液量.大网膜合并胶元(Collagen)移植可促进神经轴突再生.所有这些为大网膜中枢神经系统移植治疗某些疾病提供了系统的理论依据.  相似文献   

5.
雪旺氏细胞移植与脊髓轴突再生   总被引:2,自引:0,他引:2  
脊髓损伤后,其自身具有极局限的再生能力,但很快夭折,这种局限性是由于其所处的微环境所造成的。通过移植周围神经,改变中枢神经系统的微环境,可显著促进损伤轴突的再生。其机制认为是雪旺氏细胞在其中起关键作用。研究发现雪旺氏细胞通过合成、分泌神经营养因子,产生细胞外基质、细胞粘附分子来维持受损神经元的存活,诱导、促进中枢轴突再生。通过移植雪旺氏细胞可以显著促进脊髓轴突再生并达到部分功能恢复的目的。  相似文献   

6.
中枢神经系统疾病可以导致人们的神经功能缺损。同时,损伤区出现轴突受损,形成胶质瘢痕、空腔和裂隙。嗅鞘细胞作为自体移植最佳的候选细胞,它可以分泌神经营养因子等起到不同程度地神经保护作用,刺激血管再生,促进未受损和受损害轴突的生长。嗅鞘细胞还可以改变损伤后内源性神经胶质的应答情况,并且在受到一定程度的脱髓鞘损害时能够将轴突再髓鞘化。近几年来,嗅鞘细胞移植逐渐成为了一种临床治疗手段应用于人类的中枢神经系统疾病。因此,嗅鞘细胞移植可以成为由细胞介导的神经修复策略,治疗许多中枢神经系统疾病。文章通过该研究领域大量的实验结果来阐述嗅鞘细胞移植治疗中枢神经系统疾病基础研究目前的情况。  相似文献   

7.
背景:近年来,部分学者证明骨髓基质细胞移植可促进轴突再生,改善脊髓损伤引起的运动功能障碍,但目前关于移植骨髓基质细胞如何促进轴突再生,移植细胞与再生轴突的关系尚不清楚。 目的:通过免疫荧光组织化学和免疫电镜的方法,探讨移植骨髓基质细胞促进脊髓全横断损伤区轴突再生的机制。 设计、时间及地点:随机对照动物实验,细胞学体内观察,于2006-03/2007-06在新加坡国立大学解剖系完成。 材料:清洁级Wistar新生大鼠1只,用于骨髓基质细胞培养。清洁级成年雌性Wistar大鼠36只,无菌条件下显露、切断脊髓T10,制备脊髓全横断损伤模型。 方法:通过传代法培养、纯化骨髓基质细胞。36只成年Wistar雌性大鼠随机投币法分为移植组和对照组,每组18只。移植组大鼠脊髓全横断损伤9 d后以1×1011 L-1的密度移植骨髓基质细胞,缺损区5 μL,损伤区上、下1 mm处各2.5 μL,对照组动物在相同部位注射等量DMEM完全培养基,注射速度1 μL/min。 主要观察指标:①移植骨髓基质细胞存活、分化情况。②轴突再生情况。③移植组和对照组宿主自身的nestin、NF200、GFAP和CNP阳性细胞在脊髓损伤区存活情况。④内源性CNP阳性细胞和再生纤维关系。 结果:骨髓基质细胞移植2周时,脊髓损伤区可见大量CFDA-SE标记的移植细胞,随时间延长,存活的移植细胞数目逐渐降低,考虑脊髓损伤区内大量的OX42阳性吞噬细胞/激活小胶质细胞及空洞可能影响移植细胞的存活。虽然骨髓基质细胞数目逐渐降低,骨髓基质细胞移植可促进损伤区轴突的再生,而且还可促进宿主自身的nestin、NF200、GFAP和CNP阳性细胞在脊髓损伤区存活。宿主自身CNP和许旺细胞促进损伤轴突的再生和髓鞘形成。 结论:移植骨髓基质细胞移植可促进宿主自身CNP和许旺细胞在脊髓损伤区存活,后者具有促进损伤轴突再生和髓鞘形成的作用。  相似文献   

8.
背景:脊髓损伤的修复目前尚无良好的治疗手段,细胞移植能促进神经轴突再生及脊髓功能恢复,为治疗脊髓损伤提供了可能,但因脊髓损伤模型及移植方式不同,其治疗效果并不相同。 目的:验证异体骨髓间充质干细胞移植对大鼠脊髓损伤的治疗作用。 方法:全骨髓贴壁法分离大鼠骨髓间充质干细胞。健康SD大鼠随机分为3组,细胞移植组、对照组和假手术组。细胞移植组和对照组采用改良Allen重物打击法制造大鼠脊髓损伤模型,假手术组仅暴露脊髓。术后4周,每周进行运动功能评分,ELISA检测脊髓损伤组织中脑源性神经营养因子、神经生长因子表达;免疫荧光染色检测脊髓组织中NF200和胶质纤维酸性蛋白表达。 结果与结论:与对照组比较,细胞移植组大鼠运动功能明显改善,脊髓组织中脑源性神经营养因子、神经生长因子蛋白含量明显增高(P < 0.05);移植组大鼠脊髓囊腔较小,NF200表达明显增加,胶质纤维酸性蛋白表达减少。提示异体骨髓间充质干细胞移植能增加损伤脊髓神经生长因子含量,抑制胶质瘢痕形成,促进神经轴突再生,改善大鼠脊髓损伤后运动功能恢复。  相似文献   

9.
神经组织移植与脊髓损伤的再生修复   总被引:2,自引:0,他引:2  
脊髓损伤后神经再生与功能修复研究已进行了近百年。早期的研究大多限于观察轴突断端的生长。1928年,Cajal 等研究证实,在脊髓损伤的数天内,可见轴突有新芽(Sprouting)再生,但未见轴突的延长生长,新芽的最终结局仍是变性消失。此后,又有许多学者重复了有关脊髓损伤再生的研究,结论是:脊髓损伤后轴突再生能力极其有限,即使有一定程度的再生,也难以延长穿越损伤部位的瘢痕组织。这种中枢神经系统  相似文献   

10.
成年哺乳动物中枢神经系统损伤后神经元轴突再生的调节   总被引:1,自引:0,他引:1  
成年哺乳动物中枢神经系统损伤后修复十分困难,常导致严重的持续性神经功能障碍,因此中枢神经系统损伤修复的研究成为当今热点.最新研究证明,中枢神经系统神经元轴突再生障碍不是因为其内在的再生能力不足,而是与受伤神经元所处的状态及生长环境有关.调节损伤神经元轴突再生至少应该包括如下步骤:维持神经元存活并处于一种生长状态,防止胶质瘢痕形成,清除存在于髓鞘碎片间的神经再生阻滞因予及指引轴突再生方向.本文对近年来有关成年哺乳动物中枢神经系统神经元轴突再生及其调节的研究成果进行综述.  相似文献   

11.
Transplanted bone marrow stromal cells (BMSC) promote functional recovery after spinal cord injury (SCI) through multiple mechanisms. A Rho kinase inhibitor, Fasudil also enhances axonal regeneration. This study was aimed to evaluate whether combination therapy of BMSC transplantation and Fasudil further enhances axonal regeneration and functional recovery in rats subjected to SCI. Fasudil or vehicle was injected for 2 weeks. BMSC or vehicle transplantation into the rostral site of SCI was performed at 7 days after injury. Neurological symptoms were assessed throughout the experiments. Fluoro‐Ruby was injected into the dorsal funiculus of the rostral site of SCI at 63 days after injury. The fate of the transplanted BMSC was examined using immunohistochemistry. BMSC transplantation significantly increased the number of Fluoro‐Ruby ‐labeled fibers of the dorsal corticospinal tracts at the caudal site of SCI, enhancing functional recovery of the hind limbs. Some of the engrafted BMSC were positive for Fluoro‐Ruby, neuronal specific nuclear protein and microtubule‐associated protein‐2, suggesting that they acquired neuronal phenotypes and built synaptic connection with the host's neural circuits. Fasudil treatment also improved axonal continuity, but did not promote functional recovery. Combination therapy dramatically increased the number of Fluoro‐Ruby‐labeled fibers of the dorsal corticospinal tracts at the caudal site of SCI, but did not further boost the therapeutic effects on locomotor function by BMSC transplantation. The findings suggest that BMSC transplantation and Fasudil provide synergistic effects on axon regeneration after SCI, although further studies would be necessary to further enhance functional recovery.  相似文献   

12.
Spontaneous recovery after spinal cord injury is limited. Transplantation of neural precursor cells (NPCs) into lesioned adult rat spinal cord results in only partial functional recovery, and most transplanted cells tend to differentiate predominantly into astrocytes. In order to improve functional recovery after transplantation, it is important that transplanted neural precursor cells appropriately differentiate into cell lineages required for spinal cord regeneration. In order to modulate the fate of transplanted cells, we advocate transplanting gene-modified neural precursor cells. We demonstrate that gene modification to inhibit bone morphogenetic protein (BMP) signaling by noggin expression promoted differentiation of neural precursor cells into neurons and oligodendrocytes, in addition to astrocytes after transplantation. Furthermore, functional recovery of the recipient mice with spinal cord injury was observed when noggin-expressing neural precursor cells were transplanted. These observations suggest that gene-modified neural precursor cells that express molecules involved in cell fate modulation could improve central nervous system (CNS) regeneration.  相似文献   

13.
Many therapeutic interventions using neurotrophic factors or pharmacological agents have focused on secondary degeneration after spinal cord injury (SCI) to reduce damaged areas and promote axonal regeneration and functional recovery. Hepatocyte growth factor (HGF), which was identified as a potent mitogen for mature hepatocytes and a mediator of inflammatory responses to tissue injury, has recently been highlighted as a potent neurotrophic and angiogenic factor in the central nervous system (CNS). In the present study, we revealed that the extent of endogenous HGF up-regulation was less than that of c-Met, an HGF receptor, during the acute phase of SCI and administered exogenous HGF into injured spinal cord using a replication-incompetent herpes simplex virous-1 (HSV-1) vector to determine whether HGF exerts beneficial effects and promotes functional recovery after SCI. This treatment resulted in the significant promotion of neuron and oligodendrocyte survival, angiogenesis, axonal regrowth, and functional recovery after SCI. These results suggest that HGF gene delivery to the injured spinal cord exerts multiple beneficial effects and enhances endogenous repair after SCI. This is the first study to demonstrate the efficacy of HGF for SCI.  相似文献   

14.
《中国神经再生研究》2016,(7):1043-1045
A combined approach in spinal cord injury (SCI) therapy is the modulation of the cellular and molecular processes involved in glial scarring. Aldaynoglial cells are neural cell precursors with a high capacity to differentiate into neurons, promote axonal growth, wrapping and myelination of resident neurons. These important characteristics of aldaynoglia can be combined with speciifc inhibition of the RhoGTPase ac-tivity in astroglia and microglia that cause reduction of glial proliferation, retraction of glial cell processes and myelin production by oligodendrocytes. Previously we used experimental central nervous system (CNS) injury models, like spinal cord contusion and striatal lacunar infarction and observed that adminis-tration of RhoGTPase glycolipid inhibitor or aldaynoglial cells, respectively, produced a signiifcant gain of functional recovery in treated animals. The combined therapy with neuro-regenerative properties strategy is highly desirable to treat SCI for functional potentiation of neurons and oligodendrocytes, resulting in better locomotor recovery. Here we suggest that treatment of spinal lesions with aldaynoglia from neu-rospheres plus local administration of a RhoGTPase inhibitor could have an additive effect and promote recovery from SCI.  相似文献   

15.
BACKGROUND: According to previous studies, the neuroprotective effect of the pedicled greater omentum may be attributed to the secretion of neurotrophic factors and stimulation of angiogenesis. The neurotrophic factors released from the pedicled greater omentum, such as brain-derived neurotrophic factor and neurotrophin 3/4/5 could exert a neuroprotective effect on the damaged host neural and glial cells, and also could induce the transdifferentiation of transplanted bone marrow mesenchymal stem cells (BMSCs) into neural cells. OBJECTIVE: Based on the functions of the omentum of neuro-protection and vascularization, we hypothesize that the transplantation of BMSCs and pedicled greater omentum into injured rat spinal cord might improve the survival rate and neural differentiation of transplanted BMSCs and consequently gain a better functional outcome. DESIGN, TIME AND SETFING: A randomized, controlled animal experiment. The experiments were carried out at the Department of Anatomy, the Secondary Military Medical University of Chinese PLA between June 2005 and June 2007. MATERIALS: Fifteen male inbred Wistar rats, weighing (200±20) g, provided by the Experimental Animal Center of the Secondary Military Medical University of Chinese PLA were used and met the animal ethical standards. Mouse anti-BrdU and mouse anti-NF200 monoclonal antibody were purchased from Boster, China. METHODS: Cell culture: We used inbred Sprague-Dawley rats to harvest bone marrow for culture of BMSCs and transplantation to avoid possible immune rejection. BMSCs were cultured via total bone marrow adherence. Experimental grouping and intervention: The rats were randomly divided into a control group, cell group and combined group, five rats per group. Rats in the control group underwent spinal cord injury (SCI) only, during which an artery clamp with pressure force of 30 g was employed to compress the spinal cord at the Tl0 level for 30 seconds to produce the SCI model. 5 μ L PBS containing 10^5 BMSCs was injected in  相似文献   

16.
C‐J. Xu, L. Xu, L‐D. Huang, Y. Li, P‐P. Yu, Q. Hang, X‐M. Xu and P‐H. Lu (2011) Neuropathology and Applied Neurobiology 37, 135–155
Combined NgR vaccination and neural stem cell transplantation promote functional recovery after spinal cord injury in adult rats Aims: After spinal cord injury (SCI), there are many adverse factors at the lesion site such as glial scar, myelin‐derived inhibitors, cell loss and deficiency of neurotrophins that impair axonal regeneration. Therefore, combination therapeutic strategies might be more effective than a single strategy for promoting functional recovery after SCI. In the present study, we investigated whether a Nogo66 receptor (NgR) vaccine, combined with neural stem cell (NSC) transplantation, could promote better functional recovery than when NgR vaccine or NSCs were used alone. Methods: Adult rats were immunized with NgR vaccine at 1 week after a contusive SCI at the thoracic level, and the NSCs, obtained from green fluorescent protein transgenic rats, were transplanted into the injury site at 8 weeks post injury. The functional recovery of the animals under various treatments was evaluated by three independent behavioural tests, that is, Basso, Beattie and Bresnahan locomotor rating scale, footprint analysis and grid walking. Results: The combined therapy with NgR vaccination and NSC transplantation protected more ventral horn motor neurones in the injured spinal cord and greater functional recovery than when they were used alone. Furthermore, NgR vaccination promoted migration of engrafted NSCs along the rostral‐caudal axis of the injured spinal cords, and induced their differentiation into neurones and oligodendrocytes in vivo. Conclusions: The combination therapy of NgR vaccine and NSC transplantation exhibited significant advantages over any single therapy alone in this study. It may represent a potential new therapy for SCI.  相似文献   

17.
Transplantation of growth-permissive cells or tissues was used to bridge a lesion cavity and induce axonal growth in experimental spinal cord injury (SCI). Axonal interactions between host and transplant may be affected by upregulation of inhibitory chondroitin sulfate proteoglycans (CSPGs) following various transplantation strategies. The extent of axonal growth and functional recovery after transplantation of embryonic spinal cord tissue decreases in adult compared to neonatal host. We hypothesized that CSPGs contribute to the decrease in the extent to which transplant supports axonal remodeling and functional recovery. Expression of CSPGs increased after overhemisection SCI in adult rats but not in neonates. Embryonic spinal cord transplant was surrounded by CSPGs deposited in host cord, and the interface between host and transplant seemed to contain a large amount of CSPGs. Intrathecally delivered chondroitinase ABC (C'ase) improved recovery of distal forelimb usage and skilled motor behavior after C4 overhemisection injury and transplantation in adults. This behavioral recovery was accompanied by an increased amount of raphespinal axons growing into the transplant, and raphespinal innervation to the cervical motor region was promoted by C'ase plus transplant. Moreover, C'ase increased the number of transplanted neurons that grew axons to the host cervical enlargement, suggesting that degradation of CSPGs supports remodeling not only of host axons but also axons from transplanted neurons. Our results suggest that CSPGs constitute an inhibitory barrier to prevent axonal interactions between host and transplant in adults, and degradation of the inhibitory barrier can potentiate transplant-mediated axonal remodeling and functional recovery after SCI.  相似文献   

18.
Contusive spinal cord injury (SCI) produces large fluid-, debris- and inflammatory cell-filled cystic cavities that lack structure to support significant axonal regeneration. The recent discovery of stem cells capable of generating central nervous system (CNS) tissues, coupled with success in neurotransplantation strategies, has renewed hope that repair and recovery from CNS trauma is possible. Based on results from several studies using bone marrow stromal cells (MSCs) to promote CNS repair, we transplanted MSCs into the rat SCI lesion cavity to further investigate their effects on functional recovery, lesion morphology, and axonal growth. We found that transplanted MSCs induced hindlimb airstepping--a spontaneous locomotor movement associated with activation of the stepping control circuitry--but did not alter the time course or extent of overground locomotor recovery. Using stereological techniques to describe spinal cord anatomy, we show that MSC transplants occupied the lesion cavity and were associated with preservation of host tissue and white matter (myelin), demonstrating that these cells exert neuroprotective effects. The tissue matrix formed by MSC grafts supported greater axonal growth than that found in specimens without grafts. Moreover, uniform random sampling of axon profiles revealed that the majority of neurites in MSC grafts were oriented with their long axis parallel to that of the spinal cord, suggesting longitudinally directed growth. Together, these studies support further investigation of marrow stromal cells as a potential SCI repair strategy.  相似文献   

19.
Astrocytes comprise a heterogeneous cell population that plays a complex role in repair after spinal cord injury. Reactive astrocytes are major contributors to the glial scar that is a physical and chemical barrier to axonal regeneration. Yet, consistent with a supportive role in development, astrocytes secrete neurotrophic factors and protect neurons and glia spared by the injury. In development and after injury, local cues are modulators of astrocyte phenotype and function. When multipotent cells are transplanted into the injured spinal cord, they differentiate into astrocytes and other glial cells as opposed to neurons, which is commonly viewed as a challenge to be overcome in developing stem cell technology. However, several examples show that astrocytes provide support and guidance for axonal growth and aid in improving functional recovery after spinal cord injury. Notably, transplantation of astrocytes of a developmentally immature phenotype promotes tissue sparing and axonal regeneration. Furthermore, interventions that enhance endogenous astrocyte migration or reinvasion of the injury site result in greater axonal growth. These studies demonstrate that astrocytes are dynamic, diverse cells that have the capacity to promote axon growth after injury. The ability of astrocytes to be supportive of recovery should be exploited in devising regenerative strategies.  相似文献   

20.
The close homolog of the adhesion molecule L1 (CHL1) is important during CNS development, but a study with CHL1 knockout mice showed greater functional recovery after spinal cord injury (SCI) in its absence. We investigated CHL1 expression from 1 to 28 days after clinically relevant contusive SCI in Sprague-Dawley rats. Western blot analysis showed that CHL1 expression was significantly up-regulated at day 1 and further increased over 4 weeks after SCI. Immunohistochemistry of tissue sections showed that CHL1 in the intact spinal cord was expressed at low levels. By 1 day and through 4 weeks after SCI, CHL1 became highly expressed in NG2(+) cells. Hypertrophic GFAP(+) astrocytes also expressed CHL1 by 1 week after injury. The increase in CHL1 protein paralleled that of NG2 in the first week and GFAP between 1 and 4 weeks after injury. At 4 weeks, NG2(+) /CHL1(+) cells and GFAP(+) /CHL1(+) astrocytes were concentrated at the boundary between residual spinal cord tissue and the central lesion. NF200(+) spinal cord axons approached but did not penetrate this boundary. In contrast, CHL1(+) cells in the central lesion at 1 week and later colabeled with p75 and NG2 and were chronically associated with many NF200(+) axons, presumably axons that had sprouted in association with CHL1(+) Schwann cells infiltrating the cord after contusion. Thus, our study demonstrates up-regulation of CHL1 in multiple cell types and locations in a rat model of contusion injury and suggests that this molecule may be involved both in inhibition of axonal regeneration and in recovery processes after SCI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号