首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. We consider the consequences of the orientation selectivity shown by most cortical neurons for the nature of the signals they can convey about the direction of stimulus movement. On theoretical grounds we distinguish component direction selectivity, in which cells are selective for the direction of movement of oriented components of a complex stimulus, from pattern direction selectivity, or selectivity for the overall direction of movement of a pattern irrespective of the directions of its components. We employed a novel test using grating and plaid targets to distinguish these forms of direction selectivity. 2. We studied the responses of 280 cells from the striate cortex and 107 cells from the lateral suprasylvian cortex (LS) to single sinusoidal gratings to determine their orientation preference and directional selectivity. We tested 73 of these with sinusoidal plaids, composed of two sinusoidal gratings at different orientations, to study the organization of the directional mechanisms within the receptive field. 3. When tested with single gratings, the directional tuning of 277 oriented cells in area 17 had a mean half width of 20.6 degrees, a mode near 13 degrees, and a range of 3.8-58 degrees. Simple cells were slightly more narrowly tuned than complex cells. The selectivity of LS neurons for the direction of moving gratings is not markedly different from that of neurons in area 17. The mean direction half width was 20.7 degrees. 4. We evaluated the directional selectivity of these neurons by comparing responses to stimuli moved in the optimal direction with those elicited by a stimulus moving in the opposite direction. In area 17 about two-thirds of the neurons responded less than half as well to the non-preferred direction as to the preferred direction; two-fifths of the units responded less than one-fifth as well. Complex cells showed a somewhat greater tendency to directional bias than simple cells. LS neurons tended to have stronger directional asymmetries in their response to moving gratings: 83% of LS neurons showed a significant directional asymmetry. 5. Neurons in both areas responded independently to each component of the plaid. Thus cells giving single-lobed directional-tuning curves to gratings showed bilobed plaid tuning curves, with each lobe corresponding to movement in an effective direction by one of the two component gratings within the plaid. The two best directions for the plaids were those at which one or other single grating would have produced an optimal response when presented alone.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Adaptation is a general property of almost all neural systems and has been a longstanding tool of psychophysics because of its power to isolate and temporarily reduce the contribution of specific neural populations. Recently, adaptation designs have been extensively applied in functional MRI (fMRI) studies to infer neural selectivity in specific cortical areas. However, there has been considerable variability in the duration of adaptation used in these experiments. In particular, although long-term adaptation has been solidly established in psychophysical and neurophysiological studies, it has been incorporated into few fMRI studies. Furthermore, there has been little validation of fMRI adaptation using stimulus dimensions with well-known adaptive properties (e.g., orientation) and in better understood regions of cortex (e.g., primary visual cortex, V1). We used an event-related fMRI experiment to study long-term orientation adaptation in the human visual cortex. After long-term adaptation to an oriented pattern, the fMRI response in V1, V2, V3/VP, V3A, and V4 to a test stimulus was proportional to the angular difference between the adapting and test stimuli. However, only V3A and V4 showed this response pattern with short-term adaptation. In a separate experiment, we measured behavioral contrast detection thresholds after adaptation and found that the fMRI signal in V1 closely matched the psychophysically derived contrast detection thresholds. Similar to the fMRI results, adaptation induced threshold changes strongly depended on the duration of adaptation. In addition to supporting the existence of adaptable orientation-tuned neurons in human visual cortex, our results show the importance of considering timing parameters in fMRI adaptation experiments.  相似文献   

3.
There have been many attempts to define eye dominance in normal subjects, but limited consensus exists, and relevant physiological data is scarce. In this study, we consider two different behavioral methods for assignment of eye dominance, and how well they predict fMRI signals evoked by monocular stimulation. Sighting eye dominance was assessed with two standard tests, the Porta Test, and a 'hole in hand' variation of the Miles Test. Acuity dominance was tested with a standard eye chart and with a computerized test of grating acuity. We found limited agreement between the sighting and acuity methods for assigning dominance in our individual subjects. We then compared the fMRI response generated by dominant eye stimulation to that generated by non-dominant eye, according to both methods, in 7 normal subjects. The stimulus consisted of a high contrast hemifield stimulus alternating with no stimulus in a blocked paradigm. In separate scans, we used standard techniques to label the borders of visual areas V1, V2, V3, VP, V4v, V3A, and MT. These regions of interest (ROIs) were used to analyze each visual area separately. We found that percent change in fMRI BOLD signal was stronger for the dominant eye as defined by the acuity method, and this effect was significant for areas located in the ventral occipital territory (V1v, V2v, VP, V4v). In contrast, assigning dominance based on sighting produced no significant interocular BOLD differences. We conclude that interocular BOLD differences in normal subjects exist, and may be predicted by acuity measures.  相似文献   

4.
A variety of cues can differentiate objects from their surrounds. These include "first-order" cues such as luminance modulations and "second-order" cues involving modulations of orientation and contrast. Human sensitivity to first-order modulations is well described by a computational model involving spatially localized filters that are selective for orientation and spatial frequency (SF). It is widely held that first-order modulations are represented by the firing rates of simple and complex cells ("first-order" neurons) in primary visual cortex (V1) that, likewise, have spatially localized receptive fields that are selective for orientation- and SF. Human sensitivity to second-order modulations is well described by a filter-rectify-filter (FRF) model, with first- and second-order filters selective for orientation and SF. However, little is known about how neuronal activity in visual cortex represents second-order modulations. We tested the FRF model by using an functional (f)MRI-adaptation protocol to characterize the selectivity of activity in visual cortex to second-order, orientation-defined gratings of two different SFs. fMRI responses throughout early visual cortex exhibited selective adaptation to these stimuli. The low-SF grating was a more effective adapter than the high-SF grating, incompatible with the FRF model. To explain the results, we extended the FRF model by incorporating normalization, yielding a filter-rectify-normalize-filter model, in which normalization enhances selectivity for second-order SF but only for low spatial frequencies. We conclude that neurons in human visual cortex are selective for second-order SF, that normalization (surround suppression) contributes to this selectivity, and that the selectivity in higher visual areas is simply fed forward from V1.  相似文献   

5.
The nature of the quantitative relationship between single-neuron recordings in monkeys and functional magnetic resonance imaging (fMRI) measurements in humans is crucial to understanding how experiments in these different species are related, yet it remains undetermined. We measured brain activity in humans attending to moving visual stimuli, using blood oxygenation level-dependent (BOLD) fMRI. Responses in V5 showed a strong and highly linear dependence on increasing strength of motion signal (coherence). These population responses in human V5 had a remarkably simple mathematical relationship to previously observed single-cell responses in macaque V5. We provided an explicit quantitative estimate for the interspecies comparison of single-neuron activity and BOLD population responses. Our data show previously unknown dissociations between the functional properties of human V5 and other human motion-sensitive areas, thus predicting similar dissociations for the properties of single neurons in homologous areas of macaque cortex.  相似文献   

6.
High-resolution mapping of iso-orientation columns by fMRI   总被引:10,自引:0,他引:10  
Blood-oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) is an important tool for localizing brain functions in vivo. However, the ability of BOLD fMRI to map cortical columnar structures is highly controversial, as the ultimate functional specificity of BOLD remains unknown. Here we report a biphasic BOLD response to visual stimulation in the primary visual cortex of cats. In functional imaging, the initial BOLD signal decrease accurately labeled individual iso-orientation columns. In contrast, the delayed positive BOLD changes indicated the pattern of overall activation in the visual cortex, but were less suited to discriminate active from inactive columns.  相似文献   

7.
Cross-orientation suppression was measured in human primary visual cortex (V1) to test the normalization model. Subjects viewed vertical target gratings (of varying contrasts) with or without a superimposed horizontal mask grating (fixed contrast). We used functional magnetic resonance imaging (fMRI) to measure the activity in each of several hypothetical channels (corresponding to subpopulations of neurons) with different orientation tunings and fit these orientation-selective responses with the normalization model. For the V1 channel maximally tuned to the target orientation, responses increased with target contrast but were suppressed when the horizontal mask was added, evident as a shift in the contrast gain of this channel's responses. For the channel maximally tuned to the mask orientation, a constant baseline response was evoked for all target contrasts when the mask was absent; responses decreased with increasing target contrast when the mask was present. The normalization model provided a good fit to the contrast-response functions with and without the mask. In a control experiment, the target and mask presentations were temporally interleaved, and we found no shift in contrast gain, i.e., no evidence for suppression. We conclude that the normalization model can explain cross-orientation suppression in human visual cortex. The approach adopted here can be applied broadly to infer, simultaneously, the responses of several subpopulations of neurons in the human brain that span particular stimulus or feature spaces, and characterize their interactions. In addition, it allows us to investigate how stimuli are represented by the inferred activity of entire neural populations.  相似文献   

8.
The current study investigates if early visual cortical areas, V1, V2 and V3, use predictive coding to process motion information. Previous studies have reported biased visual motion responses at locations where novel visual information was presented (i.e., the motion trailing edge), which is plausibly linked to the predictability of visual input. Using high-field functional magnetic resonance imaging (fMRI), we measured brain activation during predictable versus unpreceded motion-induced contrast changes during several motion stimuli. We found that unpreceded moving dots appearing at the trailing edge gave rise to enhanced BOLD responses, whereas predictable moving dots at the leading edge resulted in suppressed BOLD responses. Furthermore, we excluded biases in directional sensitivity, shifts in cortical stimulus representation, visuo-spatial attention and classical receptive field effects as viable alternative explanations. The results clearly indicate the presence of predictive coding mechanisms in early visual cortex for visual motion processing, underlying the construction of stable percepts out of highly dynamic visual input.  相似文献   

9.
Functional imaging of the human lateral geniculate nucleus and pulvinar   总被引:6,自引:0,他引:6  
In the human brain, little is known about the functional anatomy and response properties of subcortical nuclei containing visual maps such as the lateral geniculate nucleus (LGN) and the pulvinar. Using functional magnetic resonance imaging (fMRI) at 3 tesla (T), collective responses of neural populations in the LGN were measured as a function of stimulus contrast and flicker reversal rate and compared with those obtained in visual cortex. Flickering checkerboard stimuli presented in alternation to the right and left hemifields reliably activated the LGN. The peak of the LGN activation was found to be on average within +/-2 mm of the anatomical location of the LGN, as identified on high-resolution structural images. In all visual areas except the middle temporal (MT), fMRI responses increased monotonically with stimulus contrast. In the LGN, the dynamic response range of the contrast function was larger and contrast gain was lower than in the cortex. Contrast sensitivity was lowest in the LGN and V1 and increased gradually in extrastriate cortex. In area MT, responses were saturated at 4% contrast. Response modulation by changes in flicker rate was similar in the LGN and V1 and occurred mainly in the frequency range between 0.5 and 7.5 Hz; in contrast, in extrastriate areas V4, V3A, and MT, responses were modulated mainly in the frequency range between 7.5 and 20 Hz. In the human pulvinar, no activations were obtained with the experimental designs used to probe response properties of the LGN. However, regions in the mediodorsal right and left pulvinar were found to be consistently activated by bilaterally presented flickering checkerboard stimuli, when subjects attended to the stimuli. Taken together, our results demonstrate that fMRI at 3 T can be used effectively to study thalamocortical circuits in the human brain.  相似文献   

10.
Functional imaging of the monkey brain.   总被引:15,自引:0,他引:15  
Functional magnetic resonance imaging (fMRI) has become an essential tool for studying human brain function. Here we describe the application of this technique to anesthetized monkeys. We present spatially resolved functional images of the monkey cortex based on blood oxygenation level dependent (BOLD) contrast. Checkerboard patterns or pictures of primates were used to study stimulus-induced activation of the visual cortex, in a 4.7-Tesla magnetic field, using optimized multi-slice, gradient-recalled, echo-planar imaging (EPI) sequences to image the entire brain. Under our anesthesia protocol, visual stimulation yielded robust, reproducible, focal activation of the lateral geniculate nucleus (LGN), the primary visual area (V1) and a number of extrastriate visual areas, including areas in the superior temporal sulcus. Similar responses were obtained in alert, behaving monkeys performing a discrimination task.  相似文献   

11.
Maier A  Wilke M  Aura C  Zhu C  Ye FQ  Leopold DA 《Nature neuroscience》2008,11(10):1193-1200
The role of primary visual cortex (V1) in determining the contents of perception is controversial. Human functional magnetic resonance imaging (fMRI) studies of perceptual suppression have revealed a robust drop in V1 activity when a stimulus is subjectively invisible. In contrast, monkey single-unit recordings have failed to demonstrate such perception-locked changes in V1. To investigate the basis of this discrepancy, we measured both the blood oxygen level-dependent (BOLD) response and several electrophysiological signals in two behaving monkeys. We found that all signals were in good agreement during conventional stimulus presentation, showing strong visual modulation to presentation and removal of a stimulus. During perceptual suppression, however, only the BOLD response and the low-frequency local field potential (LFP) power showed decreases, whereas the spiking and high-frequency LFP power were unaffected. These results demonstrate that the coupling between the BOLD and electrophysiological signals in V1 is context dependent, with a marked dissociation occurring during perceptual suppression.  相似文献   

12.
Brain activation during dichoptic presentation of optic flow stimuli   总被引:2,自引:0,他引:2  
The processing of optic flow fields in motion-sensitive areas in human visual cortex was studied with BOLD (blood oxygen level dependent) contrast in functional magnetic resonance imaging (fMRI). Subjects binocularly viewed optic flow fields in plane (monoptic) or in stereo depth (dichoptic) with various degrees of disparity and increasing radial speed. By varying the directional properties of the stimuli (expansion, spiral motion, random), we explored whether the BOLD effect reflected neuronal responses to these different forms of optic flow. The results suggest that BOLD contrast as assessed by fMRI methods reflects the neural processing of optic flow information in motion-sensitive cortical areas. Furthermore, small but replicable disparity-selective responses were found in parts of Brodmann's area 19.  相似文献   

13.
A plaid pattern is formed when two sinusoidal gratings of different orientations are added together. Previous work has shown that V1 neurons selectively encode the direction and orientation of the component gratings in a moving plaid but not the direction of the plaid itself (Movshon et al. 1985). We recorded the responses of 49 direction-selective neurons to moving gratings and plaid patterns in area V1 of the anesthetized marmoset monkey (Callithrix jacchus). The responses of V1 neurons to rectangular patches of varying lengths and widths containing gratings of optimal spatial frequency were used to measure size and aspect ratio of the receptive-field subunits. We measured responses to plaid patterns moving in different directions and graded the magnitude of the response to the direction of motion of the plaid and the response to the direction of motion of the component gratings. We found significant correlations between receptive-field structure and the type and strength of its response to moving plaid patterns. The strength of pattern and component responses was significantly correlated with the interrelated properties of direction tuning width (Spearman's r = 0.82, P < 0.001), and receptive-field subunit aspect ratio (Spearman's r = -0.79, P < 0.001). Neurons with broad direction tuning and short, wide receptive-field subunits gave their greatest response when the plaid moved in their preferred direction. Conversely, neurons with narrow direction tuning and long, narrow receptive-field subunits gave their greatest responses when the plaid moved in a direction such that one of its components moved in the preferred direction.  相似文献   

14.
Creatine monohydrate is an organic acid that plays a key role in ATP re-synthesis. Creatine levels in the human brain vary considerably and dietary supplementation has been found to enhance cognitive performance in healthy individuals. To explore the possibility that the fMRI Blood Oxygen Level Dependent (BOLD) response is influenced by creatine levels, BOLD responses to visual stimuli were measured in visual cortex before and after a week of creatine administration in healthy human volunteers. The magnitude of the BOLD response decreased by 16% following creatine supplementation of a similar dose to that previously shown to increase cerebral levels of phosphocreatine. We also confirmed that cognitive performance (memory span) is increased. These changes were not found in a placebo group. Possible mechanisms of BOLD change are considered. The results offer potential for insight into the coupling between neural activity and the BOLD response and the more immediate possibility of accounting for an important source of variability during fMRI analysis in clinical studies and other investigations where between-subjects variance is an issue.  相似文献   

15.
The concept of perceptual memory refers to the neural and cognitive processes underlying the storage of specific stimulus features such as spatial frequency, orientation, shape, contrast, and color. Psychophysical studies of perceptual memory indicate that observers can retain visual information about the spatial frequency of Gabor patterns independent of the orientation with which they are presented. Compared to discrimination of gratings with the same orientation, reaction times to orthogonally oriented gratings, however, increase suggesting additional processing. Using event-related fMRI we examined the pattern of neural activation evoked when subjects discriminated the spatial frequency of Gabors presented with the same or orthogonal orientation. Blood-oxygen level dependent BOLD fMRI revealed significantly elevated bilateral activity in visual areas (V1, V2) when the gratings to be compared had an orthogonal orientation, compared to when they had the same orientation. These findings suggest that a change in an irrelevant stimulus dimension requires additional processing in primary and secondary visual areas. The finding that the task-irrelevant stimulus property (orientation) had no significant effect on the prefrontal and intraparietal cortex supports a model of working memory in which discrimination and retention of basic stimulus dimensions is based on low-level perceptual memory stores that are located at an early stage in the visual process. Our findings suggest that accessing different stores requires time and has higher metabolic costs. Supported by: BMBF Project “Visuospatial Cognition” and Norwegian Research Council.  相似文献   

16.
Attention is thought to enhance perceptual performance at attended locations through top-down attention signals that modulate activity in visual cortex. Here, we show that activity in early visual cortex is sustained during maintenance of attention in the absence of visual stimulation. We used functional magnetic resonance imaging (fMRI) to measure activity in visual cortex while human subjects performed a visual detection task in which a variable-duration delay period preceded target presentation. Portions of cortical areas V1, V2, and V3 representing the attended part of the visual field exhibited sustained increases in activity throughout the delay period. Portions of these cortical areas representing peripheral, unattended parts of the visual field displayed sustained decreases in activity. The data were well fit by a model that assumed the sustained neural activity was constant in amplitude over a time period equal to that of the actual delay period for each trial. These results demonstrate that sustained attention responses are present in early visual cortex (including primary visual cortex), in the absence of a visual stimulus, and that these responses correlate with the allocation of visuospatial attention in both the spatial and temporal domains.  相似文献   

17.
The aim of this study was to explain the temporal variations between subjects in the blood oxygenation level-dependent (BOLD) response. Somatosensory responses were elicited with the electrical forepaw stimulus at a frequency of 10 Hz in urethane-anesthetized rats, and functional magnetic resonance imaging (fMRI) with BOLD contrast and local field potential (LFP) measurements were performed simultaneously. BOLD fMRI activation was evaluated by two different models, one based on the stimulus paradigm (the block model) and the other on the simultaneously measured evoked LFP responses. In the initial analysis, the LFP model captured the BOLD activation in the primary somatosensory cortex in all cases, and the block model in 10 of 12 rats. A statistical comparison of the two models revealed that the LFP-derived model was able to explain additional BOLD variation over the block model in the somatosensory cortex in nine of 12 rats. These results suggest that there is more information regarding neuronal activity in the BOLD signal than can be exploited using the block model alone. Furthermore, the hemodynamic coupling remains unchanged in the case of temporally variable BOLD signals.  相似文献   

18.
We investigated the quantitative relationship between saccadic activity (as reflected in frequency of occurrence and amplitude of saccades) and blood oxygenation level dependent (BOLD) changes in the cerebral cortex using functional magnetic resonance imaging (fMRI). Furthermore, we investigated quantitative changes in cortical activity associated with qualitative changes in the saccade task for comparable levels of saccadic activity. All experiments required the simultaneous acquisition of eye movement and fMRI data. For this purpose we used a new high-resolution limbus-tracking technique for recording eye movements in the magnetic resonance tomograph. In the first two experimental series we varied both frequency and amplitude of saccade stimuli (target jumps). In the third series we varied task difficulty; subjects performed either pro-saccades or anti-saccades. The brain volume investigated comprised the frontal and supplementary eye fields, parietal as well as striate cortex, and the motion sensitive area of the parieto-occipital cortex. All these regions showed saccade-related BOLD responses. The responses in these regions were highly correlated with saccade frequency, indicating that repeated processing of saccades is integrated over time in the BOLD response. In contrast, there was no comparable BOLD change with variation of saccade amplitude. This finding speaks for a topological rather than activity-dependent coding of saccade amplitudes in most cortical regions. In the experiments comparing pro- vs anti-saccades we found higher BOLD activation in the "anti" task than in the "pro" task. A comparison of saccade parameters revealed that saccade frequency and cumulative amplitude were comparable between the two tasks, whereas reaction times were longer in the "anti" task than the pro task. The latter finding is taken to indicate a more demanding cortical processing in the "anti" task than the "pro" task, which could explain the observed difference in BOLD activation. We hold that a quantitative analysis of saccade parameters (especially saccade frequency and latency) is important for the interpretation of the BOLD changes observed with visual stimuli in fMRI.  相似文献   

19.
Neurons in area MT (V5) are selective for the direction of visual motion. In addition, many are selective for the motion of complex patterns independent of the orientation of their components, a behavior not seen in earlier visual areas. We show that the responses of MT cells can be captured by a linear-nonlinear model that operates not on the visual stimulus, but on the afferent responses of a population of nonlinear V1 cells. We fit this cascade model to responses of individual MT neurons and show that it robustly predicts the separately measured responses to gratings and plaids. The model captures the full range of pattern motion selectivity found in MT. Cells that signal pattern motion are distinguished by having convergent excitatory input from V1 cells with a wide range of preferred directions, strong motion opponent suppression and a tuned normalization that may reflect suppressive input from the surround of V1 cells.  相似文献   

20.
The neurophysiology of the rodent visual system has mainly been investigated by invasive and ex-vivo techniques providing fragmented data. This area of research has been deprived of functional MRI studies based on blood oxygenation level dependent (BOLD) contrast, which allows a whole brain approach with a high spatial and temporal resolution. In the present study, we looked at the neurovascular response properties of the visual system of the pigmented rat, focusing on the visual cortex (VC), the superior colliculus (SC) and the flocculus-paraflocculus of the cerebellum (FL-PFL), using BOLD fMRI under domitor anesthesia. Visual stimulation was performed monocularly or binocularly while flashing light from a strobe unit was presented. For each structure, we assessed the flashing frequency that evoked the optimal BOLD response: Neither the VC nor the FL-PFL displayed frequency dependence during monocular visual stimulation, but were most sensitive to low frequencies (1-5 Hz) when flashing light was provided binocularly. The SC responded optimally to high flashing rates (8-12 Hz) during both monocular and binocular stimulation. The signal intensity changes in the VC and FL-PFL were locked to the stimulation period, whereas the BOLD response in the SC showed a similar onset but a very slow recovery at offset. The VC and FL-PFL, but not the SC, showed signs of binocular competition. The observed correlation between frequency-dependent responses of different visual areas during binocular visual presentation suggests a functional relationship between the VC and FL-PFL rather than between the SC and FL-PFL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号