首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The toxicity of chronic immunosuppressive agents required for organ transplant maintenance has prompted investigators to pursue approaches to induce immune tolerance. We developed an approach using a bioengineered mobilized cellular product enriched for hematopoietic stem cells (HSCs) and tolerogenic graft facilitating cells (FCs) combined with nonmyeloablative conditioning; this approach resulted in engraftment, durable chimerism, and tolerance induction in recipients with highly mismatched related and unrelated donors. Eight recipients of human leukocyte antigen (HLA)-mismatched kidney and FC/HSC transplants underwent conditioning with fludarabine, 200-centigray total body irradiation, and cyclophosphamide followed by posttransplant immunosuppression with tacrolimus and mycophenolate mofetil. Subjects ranged in age from 29 to 56 years. HLA match ranged from five of six loci with related donors to one of six loci with unrelated donors. The absolute neutrophil counts reached a nadir about 1 week after transplant, with recovery by 2 weeks. Multilineage chimerism at 1 month ranged from 6 to 100%. The conditioning was well tolerated, with outpatient management after postoperative day 2. Two subjects exhibited transient chimerism and were maintained on low-dose tacrolimus monotherapy. One subject developed viral sepsis 2 months after transplant and experienced renal artery thrombosis. Five subjects experienced durable chimerism, demonstrated immunocompetence and donor-specific tolerance by in vitro proliferative assays, and were successfully weaned off all immunosuppression 1 year after transplant. None of the recipients produced anti-donor antibody or exhibited engraftment syndrome or graft-versus-host disease. These results suggest that manipulation of a mobilized stem cell graft and nonmyeloablative conditioning represents a safe, practical, and reproducible means of inducing durable chimerism and donor-specific tolerance in solid organ transplant recipients.  相似文献   

2.
A nonmyeloablative conditioning regimen, consisting of depleting doses of anti-CD4 and anti-CD8 monoclonal antibodies (MoAbs) given on days -6 and -1 and 3 Gy of whole body irradiation given on day 0, allows the engraftment of fully major histocompatibility complex (MHC)-mismatched allogeneic bone marrow and the induction of tolerance for the graft. If MoAbs are given on day -5 only, permanent chimerism and tolerance are not observed in most animals. The addition of thymic irradiation to the single MoAb treatment permits tolerance induction in these mice, suggesting that residual host thymocytes reject donor marrow in recipients of 1, but not 2, MoAb injections. In this study, both CD4+ and CD8+ thymocytes were found to be responsible for residual alloreactivity in mice receiving only 1 MoAb injection. Co-receptor coating and downmodulation on residual thymocytes occur to a greater extent in recipients of 2 MoAb injections than in recipients of a single MoAb injection. This downmodulation may play a role in the loss of alloreactivity. Our results suggest that a second MoAb injection inactivates mature, functional donor-alloreactive CD4+ and CD8+ host thymocytes.  相似文献   

3.
Donor T-cells can provide a graft-versus-leukemia effect and help to promote donor engraftment after allogeneic BMT; however, these benefits can be outweighed by the ability of the cells to induce life-threatening GVHD. Photochemical treatment (PCT) of T-cells with S-59 psoralen and long-wavelength UV-A light can inhibit their proliferative capacity and significantly decrease their ability to induce acute GVHD after allogeneic BMT. PCT donor T-cells have been shown to facilitate donor engraftment in a myeloablative BMT model. In this study, we examined whether donor T-cells subjected to PCT ex vivo could retain the ability to facilitate engraftment or increase donor chimerism after nonmyeloablative BMT or after establishment of mixed hematopoietic chimerism. In a transplantation model in which mice were conditioned for BMT with sublethal (600 cGy) TBI, an infusion of PCT donor T-cells was unable to facilitate engraftment of donor BM. A BMT model was used in which a mixture of allogeneic and syngeneic marrow cells was infused into lethally irradiated recipients for establishment of mixed hematopoietic chimerism. The goal was to determine whether PCT donor splenocytes could increase levels of donor chimerism. Recipients of splenocytes treated with UV-A light only (no S-59 psoralen) and given at the time of BMT or in a donor lymphocyte infusion (DLI) had significantly higher levels of donor chimerism than did recipients of BM only. Although PCT donor splenocytes given at the time of BMT modestly increased donor chimerism, PCT donor splenocytes given in a DLI did not increase donor chimerism. A nonmyeloablative BMT model was employed for determining whether DLI given relatively late after BMT could increase donor chimerism. Recipient mice were conditioned for BMT with a combination of low-dose TBI (50 or 100 cGy) and anti-CD154 (anti-CD40L) monoclonal antibody for achievement of low levels of mixed chimerism. When control mixed chimeras were given a DLI 71 days after BMT, donor chimerism was significantly increased. In contrast, PCT of the donor cells eliminated the ability of the cells to increase donor chimerism after infusion. Together results from these 3 distinct BMT models indicate that PCT of donor T-cells significantly inhibited the ability of the cells to facilitate donor engraftment after nonmyeloablative BMT or to increase donor chimerism in mixed hematopoietic chimeras when the cells were administered in a DLI.  相似文献   

4.
Bone marrow transplantation (BMT) results in hematopoietic chimeras that demonstrate donor specific tolerance to tissue and cellular grafts. The clinical application of chimerism to induce tolerance is limited by the morbidity associated with human BMT: failure of engraftment, graft-versushost disease (GVHD), and toxic host conditioning.

BMT in an immunologically mature host has until recently been believed to require complete ablation of the host's immune system to allow donor engraftment. Lethal conditioning is associated with significant morbidity and mortality. Stable multilineage mixed allogeneic chimerism has more recently been achieved in mice using partial myeloablation prior to BMT. Chimeras prepared in this fashion exhibit donor specific tolerance in vitro and in vivo similar to lethally-conditioned recipients. A second factor that has limited the widespread application of BMT to nonmalignant disease, including attempts to induce tolerance, is GVHD. Although T-cell depletion of donor marrow reduces the incidence of GVHD, engraftment is often jeopardized. Although highly purified stem cells (SC) engraft at relatively low doses in syngeneic recipients, they do not durably engraft in MHC-disparate recipients. It has recently become clear that a second cell (facilitating cell) that enhances bone marrow engraftment and minimizes the occurrence of GVHD is required for SC to engraft in MHC-disparate recipients. Methods to optimize engraftment yet minimize GVHD may provide an approach to apply BMT clinically. With decreased morbidity through incomplete recipient conditioning and the ability to engineer a bone marrow graft to contain only the desired cells to optimize engraftment, BMT may provide a reasonable strategy to treat nonmalignant diseases including enzyme deficiencies, hemoglobinopathies, autoimmune diseases, and species-specific viral infections such as HIV. BMT-induced donor specific tolerance may benefit recipients of solid organ transplants by eliminating the need for nonspecific immunosuppression and by preventing chronic rejection. This review will focus on approaches to enable BMT yet minimize recipient morbidity and mortality.  相似文献   


5.
Mixed hematopoietic chimerism can be induced in mice receiving allogeneic bone marrow transplantation (BMT) after nonmyeloablative host conditioning with depletion T cells with of anti-T cell monoclonal antibodies (mAbs), low-dose (3 Gy) total-body irradiation (TBI), and local thymic irradiation (7 Gy). These mice are specifically tolerant to donor and host antigens. When nontolerant donor T cells are given to chimeras several months after BMT, full donor-type chimerism develops, but graft-vs.-host disease (GVHD) does not occur. The induction of such lymphohematopoietic GVH reactions without GVHD could provide an approach to separating graft-vs.-leukemia (GVL) from GVHD in patients with hematologic malignancies. To make the nonmyeloablative conditioning regimen described above more cytoreductive for such malignancies, we have now modified it by replacing TBI with cyclophosphamide (CP). Treatment with anti-CD4 and anti-CD8 mAbs on day -5, 200 mg/kg CP on day -1, and 7 Gy thymic irradiation on day 0 was only slightly myelosuppressive and allowed fully major histocompatibility complex (MHC)-mismatched (with or without multiple minor antigen disparities) allogeneic bone marrow to engraft and establish long-term mixed chimerism in 40 to 82% of recipients in three different strain combinations. The administration of nontolerant donor spleen cells at 5 weeks or at 5, 8, and 11 weeks posttransplant was capable of eliminating host hematopoietic cells, leading to full or nearly full donor chimerism in six of six and two of four chimeric animals in two different strain combinations. No clinical evidence of GVHD was observed in any recipients of these donor leukocyte infusions (DLI). These studies demonstrate that induction of mixed chimerism with nonmyeloablative conditioning followed at appropriate times by DLI might allow lymphohematopoietic GVH reactions, and hence GVL effects, to eliminate chronic hematologic malignancies without causing clinically significant GVHD.  相似文献   

6.
Cotransplantation of donor bone marrow cells (BMCs) in allograft recipients is currently the most promising concept for clinical tolerance induction; however, it still has many difficulties in its successful performance due to the toxicity of the required host conditioning, the risk of engraftment failure, and the problem of graft-versus-host disease (GVHD), as well as the limited accessibility of donor bone marrow cells. Therefore, we performed the studies to determine whether BMCs from multi-donors are simultaneously engrafted and lead to induction of chimerism-based tolerance through the tolerogenic protocol of whom effectiveness we have shown in a previous study. Using a murine model, it was demonstrated that grafted BMCs from BALB/c (H-2(d)) and CBA mice (H-2(k)) establish mixed type and multi-lineage double chimerism and induce immunological donor-specific tolerance to fully MHC-mismatched skin allografts in host C57BL/6 mice (H-2(b)) receiving conditioning with Busulfan and treatment with the two-signal blockade comprised of anti-CD45RB and anti-CD154 monoclonal antibodies.  相似文献   

7.
Leukocyte adhesion deficiency (LAD)-1, a primary immunodeficiency disease caused by molecular defects in the leukocyte integrin CD18 molecule, is characterized by recurrent, life-threatening bacterial infections. Myeloablative hematopoietic stem cell transplantation is the only curative treatment for LAD-1. Recently, canine LAD (CLAD) has been shown to be a valuable animal model for the preclinical testing of nonmyeloablative transplantation regimens for the treatment of children with LAD-1. To develop new allogeneic transplantation approaches for LAD-1, we assessed a nonmyeloablative conditioning regimen consisting of busulfan as a single agent before matched littermate allogeneic bone marrow transplantation in CLAD. Three CLAD dogs received busulfan 10 mg/kg intravenously before infusion of matched littermate bone marrow, and all dogs received posttransplantation immunosuppression with cyclosporin A and mycophenolate mofetil. Initially, all 3 dogs became mixed chimeras, and levels of donor chimerism sufficient to reverse the CLAD phenotype persisted in 2 animals. The third dog maintained donor microchimerism with an attenuated CLAD phenotype. These 3 dogs have all been followed up for at least 1 year after transplantation. These results indicate that a nonmyeloablative conditioning regimen with chemotherapy alone is capable of generating stable mixed chimerism and reversal of the disease phenotype in CLAD.  相似文献   

8.
Allogeneic bone marrow or blood stem cell transplantation (BMT) represents an important therapeutic tool for treatment of otherwise incurable malignant and nonmalignant diseases, especially acute and chronic leukemias. Until recently, myeloablative regimens were considered mandatory for effective eradication of all malignant cells of host origin. Our preclinical and ongoing clinical studies indicated that eradication of host immunohematopoietic cells, including chemoradiotherapy-resistant leukemia, could be achieved by adoptive allogeneic cell therapy with donor lymphocyte infusion following induction of host-versus-graft transplantation tolerance mediated by engraftment of donor stem cells in the course of BMT. Thus, eradication of blood cancer cells, especially in patients with chronic myeloid leukemia and less frequently in patients with other hematologic malignancies, could be frequently accomplished despite complete resistance of such tumor cells to maximally tolerated doses of chemoradiotherapy. Our cumulative experience suggested that graft-versus-leukemia (GVL) effects might be a useful tool for both treatment and prevention of relapse. Based on the aforementioned rationale, we speculated that the therapeutic benefit of BMT may be improved by using a safer conditioning as part of the transplant procedure, with the goal in mind to induce host-versus-graft tolerance to enable subsequent induction of GVL effects rather than attempt to eliminate host cells with hazardous myeloablative chemoradiotherapy. The latter hypothesis suggested that effective BMT procedure may be accomplished without lethal conditioning of the host, using a new well-tolerated nonmyeloablative regimen, thus possibly minimizing immediate and late side effects related to myeloablative procedures considered until recently mandatory for conditioning of BMT recipients. Recent clinical observations suggest that effective treatment of leukemia may be accomplished with a well-tolerated nonmyeloablative stem cell transplantation (NST) regimen, while avoiding immediate and late toxicity and minimizing procedure-related mortality. Taken together, our cumulative data suggest that high-dose chemotherapy and radiation therapy may be successively replaced by a more effective biological tool—alloreactive donor lymphocytes—thus setting the stage for innovative immunotherapeutic procedures for more selective and effective treatment of patients in need of BMT, including those resistant to conventional chemoradiotherapy.  相似文献   

9.
We studied the value of postgrafting immunosuppression with sirolimus (SRL) and cyclosporine (CSP) in enhancing engraftment of dog leukocyte antigen-identical littermate marrow after nonmyeloablative conditioning in a canine model. Dogs received either 2 Gy (n=7) or 1 Gy (n=5) total body irradiation (TBI), followed by postgrafting immunosuppression with SRL and CSP. In the first cohort, all 7 dogs showed rapid initial engraftment. One engrafted dog died on day 21 due to hemorrhagic pneumonitis. Durable engraftment was seen in 5 of 6 remaining dogs, with a median follow-up of >48 (range, >32 to >56) weeks. The sixth dog rejected the marrow graft (as assessed by variable number of tandem repeats) at 11 weeks; however, a subsequent skin graft from the same marrow donor did not undergo acute cellular rejection, suggesting donor-specific tolerance. In the second cohort, all 5 dogs rejected the marrow graft at a median of 9 weeks (range, 3-11 weeks). We conclude that SRL/CSP is as effective as a previously studied combination of mycophenolate mofetil and CSP at establishing durable marrow engraftment after sublethal conditioning.  相似文献   

10.
Severe hemolytic anemia in Basenji dogs secondary to pyruvate kinase (PK) deficiency can be corrected by marrow allografts from healthy littermates after a conventional high-dose myeloablative conditioning regimen. The nonmyeloablative conditioning regimen used here, which consisted of a sublethal dose of 200 cGy total body irradiation before and immunosuppression with mycophenolate mofetil and cyclosporine after a dog leukocyte antigen (DLA)-identical littermate allograft, has been found to be effective in establishing stable mixed donor/host hematopoietic chimerism in normal dogs. We explored the feasibility of nonmyeloablative marrow allografts for the treatment of canine PK deficiency and studied the effect of stable allogeneic mixed hematopoietic chimerism on the natural course of the disease. Five affected dogs received transplants, of which 3 dogs had advanced liver cirrhosis and myelofibrosis. Both complications were presumed to be due to iron overload. All 5 dogs showed initial engraftment. Two rejected their grafts after 6 weeks but survived with completeautologous marrow recovery and return of the disease. One died from liver failure on day 27 with 60% donor engraftment. Two dogs have shown sustained mixed donor/host chimerism for more than a year with 85% and 12% donor hematopoietic cells, respectively. Overall clinical response correlated with the degree of donor chimerism. The dog with the low degree of chimerism achieved partial resolution of hemolysis, but the disease symptoms persisted as manifested by increasing iron overload resulting in progression of marrow and liver fibrosis. The dog with the high degree of donor chimerism achieved almost complete resolution of hemolysis with a decrease of marrow iron content and resolution of marrow fibrosis. These observations suggest that mixed hematopoietic chimerism can be relatively safely established in dogs with PK deficiency even in the presence of advanced liver cirrhosis. However, although effective in correcting or delaying the development of myelofibrosis, a low degree of mixed chimerism was not sufficient to prevent continued hemolysis of red blood cells of host origin. Complete donor chimerism appears necessary to achieve a long-term cure.  相似文献   

11.
Allogeneic hematopoietic stem cell transplantation (HSCT) can be curative for patients with sickle cell disease (SCD). However, morbidity associated with myeloablative conditioning and graft-versus-host disease has limited its utility. To this end, autologous HSCT for SCD using lentiviral gene-modified bone marrow (BM) or peripheral blood stem cells has been undertaken, although toxicities of fully ablative conditioning with busulfan and incomplete engraftment have been encountered. Treosulfan, a busulfan analog with a low extramedullary toxicity profile, has been used successfully as part of a myeloablative conditioning regimen in the allogeneic setting in SCD. To further minimize toxicity of conditioning, noncytotoxic monoclonal antibodies that clear stem cells from the marrow niche, such as anti-c-Kit (ACK2), have been considered. Using a murine model of SCD, we sought to determine whether nonmyeloablative conditioning followed by transplantation with syngeneic BM cells could ameliorate the disease phenotype. Treosulfan and ACK2, in a dose-dependent manner, decreased BM cellularity and induced cytopenia in SCD mice. Conditioning with treosulfan alone at nonmyeloablative dosing (3.6?g/kg), followed by transplantation with syngeneic BM donor cells, permitted long-term mixed-donor chimerism. Level of chimerism correlated with improvement in hematologic parameters, normalization of urine osmolality, and improvement in liver and spleen pathology. Addition of ACK2 to treosulfan conditioning did not enhance engraftment. Our data suggests that pretransplant conditioning with treosulfan alone may allow sufficient erythroid engraftment to reverse manifestations of SCD, with clinical application as a preparative regimen in SCD patients undergoing gene-modified autologous HSCT.  相似文献   

12.
Clinical translation of the mixed-chimerism approach for inducing transplantation tolerance would be facilitated if mobilized peripheral blood stem cells (mPBSCs) could be used instead of bone marrow cells (BMCs). Because the use of mPBSCs for this purpose has not been investigated in nonmyeloablative murine protocols, we explored the engraftment potential of mPBSCs in a CD45-congenic model as a first step. After 2, 1.5, or 1 Gy of total body irradiation, CD45.1 B6 hosts received unseparated granulocyte colony-stimulating factor-mobilized CD45.2 B6 PBSCs or unseparated CD45.2 B6 BMCs. The same total cell numbers, or aliquots of mPBSCs and BMCs containing similar numbers of c-kit+ cells, were transplanted both with and without a short course of rapamycin-based immunosuppression (IS). Transplantation of mPBSCs induced long-term multilineage macrochimerism, but chimerism levels were significantly lower than among recipients of the same number of BMCs. Transplanting aliquots containing similar numbers of c-kit+ cells reduced the difference between mPBSCs and BMCs, but lower levels of chimerism were nonetheless observed in mPBSC recipients. Chimerism levels correlated more closely with the number of transplanted progenitor cells as determined by colony-forming unit assays. IS did not affect chimerism levels, indicating that the donor CD45 isoform or other minor disparities do not pose a major barrier to engraftment. Our findings indicate that under nonmyeloablative conditions, progenitor cells contained in mPBSCs have an engraftment capacity similar to progenitor cells from BMCs, allowing induction of lasting mixed chimerism with moderate cell numbers. On a cell-per-cell basis, unseparated BMCs have some advantages that may be minimized if the number of progenitor cells is equalized. These results are expected to facilitate the development of mPBSC-based allogeneic tolerance protocols.  相似文献   

13.
Hematopoietic stem cell chimerism can be established after low-dose conditioning regimens, although the risk of donor cell rejection increases for unrelated donor transplantations. We added pretransplantation rabbit antithymocyte globulin (6 mg/kg) to an established conditioning regimen of fludarabine (90 mg/m2) and single-fraction total body irradiation (200 cGy) followed by postgrafting immunosuppression with cyclosporine A and mycophenolate mofetil for 22 patients with hematologic malignancies. One patient rejected the graft and successfully underwent transplantation with cells from a second donor by using the same conditioning regimen. The actuarial probability of developing acute graft-versus-host disease grade II to IV before day 100 was 40%, although 9 of 14 patients who survived beyond 100 days developed chronic graft-versus-host disease. These data support a hypothesis that the addition of antithymocyte globulin decreases the risk of graft-versus-host and host-versus-graft reactions when combined with a nonmyeloablative conditioning regimen of fludarabine and total body irradiation.  相似文献   

14.
Tolerance in mixed chimerism – a role for regulatory cells?   总被引:1,自引:0,他引:1  
The establishment of mixed hematopoietic chimerism induces life-long donor-specific organ graft tolerance while obviating the need for chronic immunosuppression. Recent advances have dramatically reduced the conditioning toxicity required to achieve mixed chimerism. We argue that the achievement of high levels of donor chimerism ensures life-long deletion of donor-reactive T cells, precluding and obviating the need for regulatory mechanisms in the maintenance of tolerance. However, in situations where high levels of donor chimerism cannot be established or sustained, control of immune responsiveness can be achieved through additional mechanisms, including regulatory T cells.  相似文献   

15.
Mixed hematopoietic chimerism and transplantation tolerance   总被引:5,自引:0,他引:5  
Durable transplantation tolerance can be reliably achieved by inducing engraftment of hematopoietic cells in recipients initially depleted of T-lymphocytes. Engraftment of donor pluripotent hematopoietic stem cells (PPHSC) produces mixed hematopoietic chimeras in which both host and donor cells coexist and are tolerant of each other. The major mechanism of tolerance in these chimeras is central, intrathymic clonal deletion, which is induced and maintained by immigration of both host and donor marrow-derived cells to the host thymus, ensuring the ongoing central deletion of donorand host-reactive cells. In this article, approaches developed in our laboratory to induce stable mixed hematopoietic chimerism and specific central deletional allogeneic and xenogeneic tolerance without toxic or myeloablative host conditioning are reviewed.  相似文献   

16.
Graft failure is associated with a high mortality rate. To date, regimens invoked for second transplants have resulted in inconsistent engraftment with high transplant-related mortality (TRM). We here report 16 consecutive patients, aged 4-59 years, who received second HSCT (HSCT-2) at a median of 45 days following primary or secondary failure of an initial unmodified (N = 3) or T cell-depleted (TCD) (N = 13) HSCT (HSCT-1). HSCT-1 was administered after myeloablative total body irradiation (TBI)- or alkylator-based conditioning for acute leukemias (N = 7), MDS (N = 6), CML (N = 2), and Fanconi anemia (N = 1). All patients experienced 1 or more infectious complications between HSCT-1 and HSCT-2, and 10 patients had active infections at the time of HSCT-2. Cytoreduction regimens used for HSCT-2 included fludarabine (Flu) in combination with cyclophosphamide (CTX) (N = 9), or thiotepa (Thio) (N = 5). In addition, 1 patient received Flu alone and 1 patient Thio combined with CTX. Antithymocyte globulin (ATG) (N = 11) or Alemtuzumab (N = 3) was added pretransplant to prevent rejection. For HSCT-2, donors included HLA-matched (N = 3) or mismatched (N = 8) related, or matched (N = 2) or mismatched (N = 3) unrelated donors. The primary graft donor was used in 6 of 16 cases. The grafts administered were unmodified peripheral blood stem cell transplantation (PBSCT) (N = 5) or bone marrow transplantation (BMT) (N = 3), TCD PBSCT (N = 8). All patients achieved engraftment at a median of 12 days and evaluable patients achieved complete donor chimerism. Six patients are alive with a median follow-up of 49 months, including 4/9 conditioned with Flu/CTX. In this series, outcome was statistically superior for younger patients (相似文献   

17.
Organ transplant recipients require life-long treatment with immunosuppressive drugs. Currently available immunosuppression is associated with substantial morbidity and mortality, and is ineffective in inhibiting chronic rejection and graft loss. Therefore, a permanent state of donor-specific tolerance remains a primary goal for transplantation research. The induction of mixed hematopoietic chimerism is an attractive concept in this regard. Hematopoietic chimerism modulates the immunologic repertoire by extending the mechanisms of self-tolerance to donor-specific allotolerance. Despite recent progress in developing nontoxic bone marrow transplantation protocols for rodents, translation to large animals has remained difficult. Here, we outline the concept of tolerance via mixed chimerism, and review recent progress and remaining challenges in bringing this approach to the clinical setting.  相似文献   

18.
Patients with class 3 thalassemia with high-risk features for adverse events after high-dose chemotherapy with hematopoietic stem cell transplantation (HSCT) are difficult to treat, tending to either suffer serious toxicity or fail to establish stable graft function. We performed HSCT in 18 such patients age ≥7 years and hepatomegaly using a novel approach with pretransplant immunosuppression followed by a myeloablative reduced-toxicity conditioning regimen (fludarabine and i.v. busulfan [Flu-IV Bu]) and then HSCT. The median patient age was 14 years (range, 10 to 18 years). Before the Flu-IV Bu + antithymocyte globulin conditioning regimen, all patients received 1 to 2 cycles of pretransplant immunosuppression with fludarabine and dexamethasone. Thirteen patients received a related donor graft, and 5 received an unrelated donor graft. An initial prompt engraftment of donor cells with full donor chimerism was observed in all 18 patients, but 2 patients developed secondary mixed chimerism that necessitated withdrawal of immunosuppression to achieve full donor chimerism. Two patients (11%) had acute grade III-IV graft-versus-host disease, and 5 patients had limited chronic graft-versus-host disease. The only treatment-related mortality was from infection, and with a median follow-up of 42 months (range, 4 to 75), the 5-year overall survival and thalassemia-free survival were 89%. We conclude that this novel sequential immunoablative pretransplantation conditioning program is safe and effective for patients with high-risk class 3 thalassemia exhibiting additional comorbidities.  相似文献   

19.
Organ transplantation is the treatment of choice for patients with end‐stage organ failure, but chronic immunosuppression is taking its toll in terms of morbidity and poor efficacy in preventing late graft loss. Therefore, a drug‐free state would be desirable where the recipient permanently accepts a donor organ while remaining otherwise fully immunologically competent. Mouse studies unveiled mixed chimerism as an effective approach to induce such donor‐specific tolerance deliberately and laid the foundation for a series of clinical pilot trials. Nevertheless, its widespread clinical implementation is currently prevented by cytotoxic conditioning and limited efficacy. Therefore, the use of mouse studies remains an indispensable tool for the development of novel concepts with potential for translation and for the delineation of underlying tolerance mechanisms. Recent innovations developed in mice include the use of pro‐apoptotic drugs or regulatory T cell (Treg) transfer for promoting bone marrow engraftment in the absence of myelosuppression and new insight gained in the role of innate immunity and the interplay between deletion and regulation in maintaining tolerance in chimeras. Here, we review these and other recent advances in murine studies inducing transplantation tolerance through mixed chimerism and discuss both the advances and roadblocks of this approach.  相似文献   

20.
Donor-specific tolerance to cardiac grafts may be induced by hematopoietic chimerism. This study evaluates the potential of localized bone marrow transplantation (BMT) performed by isolated limb (IL) perfusion to induce tolerance to secondary cardiac grafts without myeloablative conditioning. BALB/c recipients (H2d) preconditioned with lethal and sublethal doses of busulfan were injected i.v. and IL with 10(7) whole bone marrow cells (wBMCs) from B10 donors (H2(b)). Two hours after IL infusion of PKH-labeled wBMCs into myeloablated hosts, there were few labeled cells in the host peripheral blood (p < 0.001 versus i.v.) and femurs of the infused limb contained 57% +/- 7% PKH-labeled blasts (p < 0.001 versus 8% +/- 0.6% after i.v.). Femurs of the noninfused limbs contained 60-70 PKH-labeled blasts (p < 0.001 versus i.v.-BMT) after 2 days and 47% +/- 5% of 0.32 x 10(7) donor cells (p < 0.001 versus 78% +/- 4% of 1.2 x 10(7) donor cells in infused femurs) after 4 weeks. The survival rates of myeloablated hosts were 90% and 80% after i.v. and IL infusion, respectively, and the chimeras had 78%-84% donor peripheral blood cells. In recipients conditioned with 35 mg/g busulfan, the levels of donor chimerism in peripheral blood were 33% +/- 4% and 21% +/- 4% at 3 weeks after i.v.- and IL-BMT, respectively. Transplantation of donor-matched (H2(b)) secondary vascularized hearts in these chimeras after 3 weeks resulted in graft survival for periods exceeding 8 weeks, while third-party (H2(k)) allografts were acutely rejected (p < 0.001 versus H2(b)). These data indicate that IL perfusion is a reliable alternative procedure for establishment of hematopoietic chimerism and donor-specific tolerance without myeloablative conditioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号