首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Objective We characterized the kinetics of indomethacin glucuronidation by recombinant UDP-glucuronosyltransferase (UGT) isozymes and human liver microsomes (HLM) and identified the human UGT isozymes involved. Methods Indomethacin glucuronidation was investigated using HLM and recombinant human UGT isozymes. Human UGTs involved in indomethacin glucuronidation were assessed in kinetic studies, chemical inhibition studies, and correlation studies. Results Among the UGT isozymes investigated, UGT1A1, 1A3, 1A9, and 2B7 showed glucuronidation activity for indomethacin, with UGT1A9 possessing the highest activity, followed by UGT2B7. Glucuronidation of indomethacin by recombinant UGT1A9 and 2B7 showed substrate inhibition kinetics with K m values of 35 and 32 μM, respectively. The glucuronidation of indomethacin was significantly correlated with morphine 3OH-glucuronidation (r = 0.69, p < 0.05) and 3′-azido-3′-deoxythymidine glucuronidation (r = 0.82, p < 0.05), a reaction mainly catalyzed by UGT2B7. Propofol inhibited indomethacin glucuronidation in HLM with an IC50 value of 248 μM, which is between the IC50 value in recombinant UGT1A9 (106 μM) and UGT2B7 (> 400 μM). Conclusions These findings suggest that UGT2B7 plays a predominant role in indomethacin glucuronidation in the human liver and that UGT1A9 is partially involved.  相似文献   

2.
Abstract

1.?UDP-glucuronosyltransferases (UGTs) are versatile and important conjugation enzymes in the metabolism of drugs and other xenobiotics.

2.?We have developed a convenient quantitative multi-well plate assay to measure the glucuronidation rate of 7-hydroxy-4-trifluoromethylcoumarin (HFC) for several UGTs.

3.?We have used this method to screen 11 recombinant human UGTs for HFC glucuronidation activity and studied the reaction kinetics with the most active enzymes. We have also examined the HFC glucuronidation activity of liver microsomes from human, pig, rabbit and rat.

4.?At a substrate concentration of 20?µM, the most active HFC glucuronidation catalysts were UGT1A10 followed by UGT1A6 >UGT1A7 >UGT2A1, whereas at 300?µM UGT1A6 was about 10 times better catalyst than the other recombinant UGTs. The activities of UGTs 1A3, 1A8, 1A9, 2B4 and 2B7 were low, whereas UGT1A1 and UGT2B17 exhibited no HFC glucuronidation activity. UGT1A6 exhibited a significantly higher Vmax and Km values toward both HFC and UDP-glucuronic acid than the other UGTs.

5.?Human, pig and rabbit, but not rat liver microsomes, catalyzed HFC glucuronidation at high rates.

6.?This new method is particularly suitable for fast activity screenings of UGTs 1A6, 1A7, 1A10 and 2A1 and HFC glucuronidation activity determination from various samples.  相似文献   

3.
The nicotine-derived tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), is one of the most potent and abundant procarcinogens found in tobacco and tobacco smoke, and glucuronidation of its major metabolite, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), is an important mechanism for NNK detoxification. In cigarette smokers and tobacco chewers, there is a wide variation in the urinary levels of the ratio of NNAL to NNAL glucuronide (NNAL-Gluc). To determine whether genetic variation plays a potential role in this inter-individual variability, NNAL-glucuronidating activities were analysed in a series of human liver microsomal specimens and compared with UGT2B17 deletion genotypes in the same subjects. Assays performed in vitro demonstrated that over-expressed UGT2B17 exhibits high O-glucuronidating activity against NNAL. When stratifying subjects by UGT2B17 genotype, a significant or near-significant decrease in NNAL-O-Gluc formation was observed in liver microsomes from individuals who were either heterozygous [(+/0), P=0.07] or homozygous [(0/0), P=0.016] for the UGT2B17 deletion compared to liver microsomes from individuals with intact UGT2B17 alleles [(+/+)]. There was a significant (P<0.01) association between the level of liver microsomal NNAL-O-glucuronide formation and increasing numbers of the UGT2B17 null alleles in the liver microsomal specimens examined in this study, and a significant decrease in NNAL-O-Gluc formation was observed when comparing liver microsomes from individuals who had at least one UGT2B17 allele deleted [(+/0)+(0/0)] versus microsomes from UGT2B17 (+/+) subjects (P=0.004). When stratifying by the median value of NNAL-O-Gluc formation activity, a significantly (P=0.015) higher number of subjects with liver microsomes having low NNAL-O-Gluc formation activity contained the UGT2B17 null genotype compared to subjects with liver microsomes exhibiting high NNAL-O-Gluc formation activity. When stratifying by UGT2B7/UGT2B17 haplotypes, the association between the level of liver microsomal NNAL-O-glucuronide formation and increasing numbers of the UGT2B17 null allele was at the level of statistical significance for subjects with the UGT2B7 (*1/*2) (P=0.05) or UGT2B7 (*2/*2) (P<0.02) genotypes. These data suggest that the UGT2B17 deletion polymorphism is associated with a reduced rate of NNAL detoxification in vivo and may increase individual susceptibility to tobacco-related cancers.  相似文献   

4.
AIMS: To characterize the kinetics of S-naproxen ('naproxen') acyl glucuronidation and desmethylnaproxen acyl and phenolic glucuronidation by human liver microsomes and identify the human UGT isoform(s) catalysing these reactions. METHODS: Naproxen and desmethylnaproxen glucuronidation were investigated using microsomes from six and five livers, respectively. Human recombinant UGTs were screened for activity towards naproxen and desmethylnaproxen. Where significant activity was observed, kinetic parameters were determined. Naproxen and desmethylnaproxen glucuronides were measured by separate high-performance liquid chromatography methods. RESULTS: Naproxen acyl glucuronidation by human liver microsomes followed biphasic kinetics. Mean apparent K(m) values (+/-SD, with 95% confidence interval in parentheses) for the high- and low-affinity components were 29 +/- 13 microm (16, 43) and 473 +/- 108 microm (359, 587), respectively. UGT 1A1, 1A3, 1A6, 1A7, 1A8, 1A9, 1A10 and 2B7 glucuronidated naproxen. UGT2B7 exhibited an apparent K(m) (72 microm) of the same order as the high-affinity human liver microsomal activity, which was inhibited by the UGT2B7 selective 'probe' fluconazole. Although data for desmethylnaproxen phenolic glucuronidation by human liver microsomes were generally adequately fitted to either the single- or two-enzyme Michaelis-Menten equation, model fitting was inconclusive for desmethylnaproxen acyl glucuronidation. UGT 1A1, 1A7, 1A9 and 1A10 catalysed both the phenolic and acyl glucuronidation of desmethylnaproxen, while UGT 1A3, 1A6 and 2B7 formed only the acyl glucuronide. Atypical glucuronidation kinetics were variably observed for naproxen and desmethylnaproxen glucuronidation by the recombinant UGTs. CONCLUSION: UGT2B7 is responsible for human hepatic naproxen acyl glucuronidation, which is the primary elimination pathway for this drug.  相似文献   

5.

AIMS

To characterize: i) the kinetics of aldosterone (ALDO) 18β-glucuronidation using human liver and human kidney microsomes and identify the human UGT enzyme(s) responsible for ALDO 18β-glucuronidation and ii) the inhibition of ALDO 18β-glucuronidation by non-selective NSAIDs.

METHODS

Using HPLC and LC-MS methods, ALDO 18β-glucuronidation was characterized using human liver (n= 6), human kidney microsomes (n= 5) and recombinant human UGT 1A1, 1A3, 1A4, 1A5, 1A6, 1A7, 1A8, 1A9, 1A10, 2B4, 2B7, 2B10, 2B15, 2B17 and 2B28 as the enzyme sources. Inhibition of ALDO 18β-glucuronidation was investigated using alclofenac, cicloprofen, diclofenac, diflunisal, fenoprofen, R- and S-ibuprofen, indomethacin, ketoprofen, ketorolac, meclofenamic acid, mefenamic acid, S-naproxen, pirprofen and tiaprofenic acid. A rank order of inhibition (IC50) was established and the mechanism of inhibition investigated using diclofenac, S-ibuprofen, indomethacin, mefenamic acid and S-naproxen.

RESULTS

ALDO 18β-glucuronidation by hepatic and renal microsomes exhibited Michaelis-Menten kinetics. Mean (±SD) Km, Vmax and CLint values for HLM and HKCM were 509 ± 137 and 367 ± 170 µm, 1075 ± 429 and 1110 ± 522 pmol min−1 mg−1, and 2.36 ± 1.12 and 3.91 ± 2.35 µl min−1 mg−1, respectively. Of the UGT proteins, only UGT1A10 and UGT2B7 converted ALDO to its 18β-glucuronide. All NSAIDs investigated inhibited ALDO 18β-G formation by HLM, HKCM and UGT2B7. The rank order of inhibition (IC50) of renal and hepatic ALDO 18β-glucuronidation followed the general trend: fenamates > diclofenac > arylpropionates.

CONCLUSION

A NSAID-ALDO interaction in vivo may result in elevated intra-renal concentrations of ALDO that may contribute to the adverse renal effects of NSAIDs and their effects on antihypertensive drug response.  相似文献   

6.
Glucuronidation, which may take place on the phenolic hydroxyl and carboxyl groups, is a major pathway of metabolism for thyroxine (T4) and triiodothyronine (T3). In this study, a liquid chromatography/mass spectrometry (LC/MS) method was developed to separate phenolic and acyl glucuronides of T4 and T3. The method was used to collect the phenolic glucuronide of T4 for definitive characterization by NMR and to determine effects of incubation pH, species differences, and human UDP-glucuronosyltransferases (UGTs) involved in the formation of the glucuronides. Formation of T4 phenolic glucuronide was favored at pH 7.4, whereas formation of T4 acyl glucuronide was favored at pH 6.8. All the UGTs examined catalyzed the formation of T4 phenolic glucuronide except UGT1A4; the highest activity was detected with UGT1A3, UGT1A8, and UGT1A10, followed by UGT1A1 and UGT2B4. Formation of T3 phenolic glucuronide was observed in the order of UGT1A8 > UGT1A10 > UGT1A3 > UGT1A1; trace activity was observed with UGT1A6 and UGT1A9. UGT1A3 was the major isoform catalyzing the formation of T4 and T3 acyl glucuronides. In liver microsomes, phenolic glucuronidation was the highest in mice for T4 and in rats for T3 and lowest in monkeys for both T4 and T3. Acyl glucuronidation was highest in humans and lowest in mice for T4 and T3. Phenolic glucuronidation was higher than acyl glucuronidation for T4 in humans; in contrast, the acyl glucuronidation was slightly higher than phenolic glucuronidation for T3. UGT activities were lower toward T3 than T4 in all the species. The LC/MS method was a useful tool in studying glucuronidation of T4 and T3.  相似文献   

7.
1. Almokalant, a class III antiarrythmic drug, is metabolized to form isomeric glucuronides identified in human urine. Synthesis of the total glucuronide was studied in human liver and kidney microsomes. Recombinant UDP-glucuronosyltransferases (UGTs) were screened for activity and kinetic analysis was performed to identify the isoform(s) responsible for the formation of almokalant glucuronide in man.

2. From a panel of recombinant isoforms used, both UGT1A9 and 2B7 catalysed the glucuronidation of almokalant. The Km values in both instances were similar with 1.06?mM for the 1A9 and 0.97?mM for the 2B7. Vmax for 1A9 was fourfold higher than that measured for UGT2B7, 92 compared with 21?pmol?min?1?mg?1, respectively, but UGT1A9 was expressed at approximately twofold higher level than the UGT2B7 in the recombinant cell lines. Therefore, the contribution of UGT2B7 to almokalant glucuronidation could be as significant as that of UGT1A9 in man.

3. Liver and kidney microsomes displayed similar Km values to the cloned expressed UGTs, with the liver and kidney microsomes at 1.68 and 1.06?mM almost identical to the 1A9.

4. The results suggest a significant role for UGT1A9 and 2B7 in the catalysis of almokalant glucuronidation.  相似文献   

8.
1. Almokalant, a class III antiarrythmic drug, is metabolized to form isomeric glucuronides identified in human urine. Synthesis of the total glucuronide was studied in human liver and kidney microsomes. Recombinant UDP-glucuronosyltransferases (UGTs) were screened for activity and kinetic analysis was performed to identify the isoform(s) responsible for the formation of almokalant glucuronide in man. 2. From a panel of recombinant isoforms used, both UGT1A9 and 2B7 catalysed the glucuronidation of almokalant. The Km values in both instances were similar with 1.06 mM for the 1A9 and 0.97 mM for the 2B7. Vmax for 1A9 was fourfold higher than that measured for UGT2B7, 92 compared with 21 pmol min(-1) mg(-1), respectively, but UGT1A9 was expressed at approximately twofold higher level than the UGT2B7 in the recombinant cell lines. Therefore, the contribution of UGT2B7 to almokalant glucuronidation could be as significant as that of UGT1A9 in man. 3. Liver and kidney microsomes displayed similar Km values to the cloned expressed UGTs, with the liver and kidney microsomes at 1.68 and 1.06 mM almost identical to the 1A9. 4. The results suggest a significant role for UGT1A9 and 2B7 in the catalysis of almokalant glucuronidation.  相似文献   

9.
Human UDP-glucuronosyltransferases (UGT, EC 2.4.1.17) involved in the biotransformation of pyrene were investigated by a sensitive fluorometric high-performance liquid chromatography (HPLC)method developed for determining activities toward 1-hydroxypyrene. The endpoint metabolite of pyrene, 1-pyrenylglucuronide, is a well-known urinary biomarker for the assessment of human exposure to polycyclic aromatic hydrocarbons. 1-Pyrenylglucuronide was synthesized using rat liver microsomes as biocatalyst. The yield was satisfactory, 22%. 1-Pyrenylglucuronide, identified by (1)H NMR and by electrospray mass spectrometry, was used for method validation and calibration. The HPLC assay was very sensitive with a quantitation limit of 3 pg (8 fmol) for 1-pyrenylglucuronide. The assay was precise, showing a relative standard deviation of 5% or less at 0.1 to 300 microM 1-hydroxypyrene. Only 2 microg of microsomal protein was required for the assay in human liver. The glucuronidation of 1-hydroxypyrene was catalyzed at high rates in microsomes from pooled or three individual liver samples, showing comparable apparent K(m) values. The formation of 1-pyrenylglucuronide was catalyzed by recombinant human UGT1A6, UGT1A7, and UGT1A9, the K(m) values being 45, 12, and 1 microM, respectively. The apparent K(m) values in human liver microsomes, ranging from 6.9 to 8.6 microM, agreed well with these results. The method provides a sensitive tool for measuring extremely low UGT activities and a specific means for assessing interindividual differences in 1-hydroxypyrene-metabolizing UGT activities in human liver and other tissues.  相似文献   

10.
AIMS: Formoterol is a beta2-adrenoceptor agonist marketed as a racemic mixture of the active (R; R)- and inactive (S; S)-enantiomers (rac-formoterol). The drug produces prolonged bronchodilation by inhalation but there is significant interpatient variability in duration of effect. Previous work has shown that in humans formoterol is metabolized by conjugation with glucuronic acid but little is known about the stereoselectivity of this reaction. The aim of the present study was to investigate the glucuronidation of formoterol enantiomers in vitro by human liver microsomes. METHODS: The kinetics of formation of formoterol glucuronides during incubation of racemate and of single formoterol enantiomers with human liver microsomes (n=9) was characterized by chiral h.p.l.c. assay. RESULTS: The kinetics of glucuronidation of the two formoterol enantiomers obeyed the Michaelis-Menten equation. Glucuronidation of formoterol was stereoselective and occurred more than two times faster for (S; S)-formoterol than for (R; R)-formoterol. In incubations with single formoterol enantiomers, the median (n=9) Km values for (R; R)-glucuronide and (S; S)-glucuronide were 827.6 and 840.4 microm, respectively, and the median V max values were 2625 and 4304 pmol min-1 mg-1, respectively. Corresponding values determined in incubations with rac-formoterol were 357.2 and 312.1 microm and 1435 and 2086 pmol min-1 mg-1 for (R; R)- and (S; S)-glucuronide, respectively. Interindividual variation was large with the ratio of V max/Km (S; S/R; R) ranging from 0.57 to 6.90 for incubations with rac-formoterol. CONCLUSIONS: Our study demonstrates that glucuronidation of formoterol by human liver microsomes is stereoselective and subject to high interindividual variability. These findings suggest that clearance of formoterol in humans is subject to variable stereoselectivity which could explain the variation in duration of bronchodilation produced by inhaled formoterol in patients with asthma.  相似文献   

11.
Tamoxifen (TAM), a nonsteroidal antiestrogen, is the most widely used drug for chemotherapy of hormone-dependent breast cancer in women. In the present study, we found a new potential metabolic pathway of TAM via N-linked glucuronic acid conjugation for excretion in humans. TAM N(+)-glucuronide was isolated from a reaction mixture consisting of TAM and human liver microsomes fortified with UDP-glucuronic acid (UDPGA) and identified with a synthetic specimen by high-performance liquid chromatography-electrospray ionization-mass spectrometry. However, no TAM-glucuronidating activity was detected in microsomes from rat, mouse, monkey, dog, and guinea pig livers. A strong correlation (r(2) =0.92 ) was observed between N-glucuronidating activities toward TAM and trifluoperazine, a probe substrate for human UDP-glucuronosyltransferase (UGT) 1A4, in human liver microsomes from eight donors (five females, three males). However, no correlation ( (r(2) =0.02 )) was observed in the activities between 7-hydroxy-4-(trifluoromethyl)coumarin and TAM. Only UGT1A4 catalyzed the N-linked glucuronidation of TAM among recombinant UGTs (UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, UGT2B4, UGT2B7, UGT2B15, and UGT2B17) expressed in insect cells. Apparent K(m) values for TAM N-glucuronidation by human liver microsomes and recombinant UGT1A4 were 35.8 and 32.4 microM, respectively. These results strongly suggested that UGT1A4 could play a role in metabolism and excretion of TAM without Phase I metabolism in human liver. TAM N(+)-glucuronide still had binding affinity similar to TAM itself for human estrogen receptors, ERalpha and ERbeta, suggesting that TAM N(+)-glucuronide might contribute to the biological activity of TAM in vivo.  相似文献   

12.
Olanzapine is a widely used, newer antipsychotic agent, which is metabolized by various pathways: hydroxylation and N-demethylation by cytochrome P450, N-oxidation by flavin monooxygenase and direct glucuronidation. In vivo studies have pointed towards the latter pathway as being of major importance. Accordingly, the glucuronidation reaction was studied in vitro using cDNA-expressed human UDP-glucuronosyltransferase (UGT) enzymes and a pooled human liver microsomal preparation (HLM). Glucuronidated olanzapine was determined by HPLC after acid or enzymatic hydrolysis. The following UGT-isoenzymes were screened for their ability to glucuronidate olanzapine: 1A1, 1A3, 1A4, 1A6, 1A9, 2B7 and 2B15. Only UGT1A4 was able to glucuronidate olanzapine obeying saturation kinetics. The K(m) value was 227 micromol/l (SE 43), i.e. of the same order of magnitude as for other psychotropic drugs, and the V(max) value was 2370 pmol/(min mg) (SE 170). Glucuronidation was also mediated by the HLM preparation, but a saturation level was not reached. The olanzapine glucuronidation reaction was inhibited by several drugs known as substrates for UGT1A4, e.g. amitriptyline, trifluoperazine and lamotrigine. Thus, competition for glucuronidation by UGT1A4 represents a possibility for drug-drug interactions in subjects receiving several of these psychotropic drugs at the same time. Whether such possible interactions are of any clinical importance may await further studies in patients.  相似文献   

13.
14.
Glucuronidation studies using microsomes and recombinant uridine diphosphoglucuronosyltransferases (UGTs) can be complicated by the presence of endogenous beta-glucuronidases, leading to underestimation of glucuronide formation rates. Saccharolactone is the most frequently used beta-glucuronidase inhibitor, although it is not clear whether this reagent should be added routinely to glucuronidation incubations. Here we have determined the effect of saccharolactone on eight different UGT probe activities using pooled human liver microsomes (pHLMs) and recombinant UGTs (rUGTs). Despite the use of buffered incubation solutions, it was necessary to adjust the pH of saccharolactone solutions to avoid effects (enhancement or inhibition) of lowered pH on UGT activity. Saccharolactone at concentrations ranging from 1 to 20 mM did not enhance any of the glucuronidation activities evaluated that could be considered consistent with inhibition of beta-glucuronidase. However, for most activities, higher saccharolactone concentrations resulted in a modest degree of inhibition. The greatest inhibitory effect was observed for glucuronidation of 5-hydroxytryptamine and estradiol by pHLMs, with a 35% decrease at 20 mM saccharolactone concentration. Endogenous beta-glucuronidase activities were also measured using various human tissue microsomes and rUGTs with estradiol-3-glucuronide and estradiol-17-glucuronide as substrates. Glucuronide hydrolysis was observed for pHLMs, lung microsomes and insect-cell expressed rUGTs, but not for kidney, intestinal or human embryonic kidney HEK293 microsomes. However, the extent of hydrolysis was relatively small, representing only 9-19% of the glucuronide formation rate measured in the same preparations. Consequently, these data do not support the routine inclusion of saccharolactone in glucuronidation incubations. If saccharolactone is used, concentrations should be titrated to achieve activity enhancement without inhibition.  相似文献   

15.
Genistein is a natural phytoestrogen of the soybean, and bisphenol A (BPA) is a synthetic chemical used in the production of polycarbonate plastics. Both genistein and BPA disrupt the endocrine system in vivo and in vitro. Growing concerns of altered xenobiotic metabolism due to concomitant exposures from soy milk in BPA-laden baby bottles has warranted the investigation of the glucuronidation rate of genistein in the absence and presence (25 μM) of BPA by human liver microsomes (HLM) and rat liver microsomes (RLM). HLM yield V(max) values of 0.93 ± 0.10 nmol · min(-1) · mg(-1) and 0.62 ± 0.05 nmol · min(-1) · mg(-1) in the absence and presence of BPA, respectively. K(m) values for genistein glucuronidation by HLM in the absence and presence of BPA are 15.1 ± 7.9 μM and 21.5 ± 7.7 μM, respectively, resulting in a K(i) value of 58.7 μM for BPA. Significantly reduced V(max) and unchanged K(m) in the presence of BPA in HLM are suggestive of noncompetitive inhibition. In RLM, the presence of BPA resulted in a K(i) of 35.7 μM, an insignificant change in V(max) (2.91 ± 0.26 nmol · min(-1) · mg(-1) and 3.05 ± 0.41 nmol · min(-1) · mg(-1) in the absence and presence of BPA, respectively), and an increase in apparent K(m) (49.4 ± 14 μM with no BPA and 84.0 ± 28 μM with BPA), indicative of competitive inhibition. These findings are significant because they suggest that BPA is capable of inhibiting the glucuronidation of genistein in vitro, and that the type of inhibition is different between HLM and RLM.  相似文献   

16.
In the present study, the potential inhibition behaviors of notoginseng total saponins (NS), safflower total flavonoids (SF), and their combination (CNS) towards three major isoforms of UDP-glucuronosyltransferases (UGTs) in human liver microsomes (HLMs) were investigated to study the mechanism of the synergistic effect of CNS. Etoposide, trifluoperazine and azidothymidine were selected as the probe drugs to elucidate the activities of UGT1A1, 1A4 and 2B7 by UPLC-MS/MS method, respectively. The results showed that CNS, NS and SF significantly inhibited the activities of UGT1A1, 1A4 and 2B7 (P<0.05)with the IC50values less than 30 mg/mL. Furthermore, the inhibitory effects of CNS towards UGT1A1, 1A4 and 2B7 were stronger than those of NS and SF (P<0.05). In conclusion, the combination of NS and SF could increase their inhibitory effects on UGT1A1, 1A4 and 2B7 activities in HLMs and might be conducive to reduce the phase II metabolism of the effective constituents in CNS. The potential herb-drug interactions of CNS based on UGT enzymes provided a useful experimental basis for its further research and development.  相似文献   

17.
Liu K  Zhong D  Chen X 《Bioanalysis》2009,1(3):561-576
Today, approximately 60% of synthetic drugs are chiral and 88% of these chiral synthetic drugs are used therapeutically as racemates. However, for many racemic drugs, their stereospecific plasma pharmacokinetics in humans are not known due to the limitations of the analytical methods. Nowadays, liquid chromatography (LC)-tandem mass spectrometry (MS/MS) methods based on various chiral stationary phases (CSPs), with a high degree of specificity and sensitivity, have been widely used in enantioselective determination of chiral drugs and/or their metabolites in human plasma. The technologies and issues when coupling chiral chromatography with MS/MS detection in bioanalytical methods will be reviewed herein. The introduction and applications of various CPSs, including polysaccharide-, macrocyclic glycopeptide-, protein- and cyclodextrin-based phases, are described here. This review also includes a discussion of interface and matrix effects in enantioselective LC-MS/MS methods.  相似文献   

18.
The stereoselective glucuronidation of propranolol (PL) in human and cynomolgus monkey liver microsomes, and the roles of human hepatic UDP-glucuronosyltransferase (UGT) isoforms involved in the enantiomeric glucuronidation of PL using recombinant UGT enzymes were investigated. In Michaelis-Menten plots, R- and S-PL glucuronidation by human liver microsomes showed sigmoidal kinetics whereas the kinetics of enantiomeric PL glucuronidation by cynomolgus monkey liver microsomes was monophasic. The Km, Vmax and CLint values of cynomolgus monkey liver microsomes were generally higher than the S50, Vmax and CLmax values of human liver microsomes in R- and S-PL glucuronidation. The glucuronidation of R- and S-PL was catalyzed by at least 3 UGT isoforms: UGT1A9, UGT2B4 and UGT2B7. Michaelis-Menten plots for R- and S-PL glucuronidation by UGT1A9 were monophasic, whereas the kinetics of UGT2B7 showed sigmoidal curves. Enantiomeric R-PL glucuronidation by UGT2B4 showed sigmoidal kinetics, whereas S-PL glucuronidation displayed monophasic kinetics. UGT1A9 showed remarkable stereoselectivity in Vmax and CLint values of R-PL < S-PL. These findings demonstrate that the profiles of enantiomeric PL glucuronidation in human and cynomolgus monkey liver microsomes are largely different and suggest that the human hepatic UGT isoforms UGT1A9, UGT2B4 and UGT2B7 play distinctive roles in enantiomeric PL glucuronidation.  相似文献   

19.
Acyl glucuronidation is an important metabolic pathway for fluoroquinolone antibiotics. However, it is unclear which human UDP-glucuronosyltransferase (UGT) enzymes are involved in the glucuronidation of the fluoroquinolones. The in vitro formation of levofloxacin (LVFX), grepafloxacin (GPFX), moxifloxacin (MFLX), and sitafloxacin (STFX) glucuronides was investigated in human liver microsomes and cDNA-expressed recombinant human UGT enzymes. The apparent Km values for human liver microsomes ranged from 1.9 to 10.0 mM, and the intrinsic clearance values (calculated as Vmax/Km) had a rank order of MFLX > GPFX > STFX > > LVFX. In a bank of human liver microsomes (n = 14), the glucuronidation activities of LVFX, MFLX, and STFX correlated highly with UGT1A1-selective beta-estradiol 3-glucuronidation activity, whereas the glucuronidation activity of GPFX correlated highly with UGT1A9-selective propofol glucuronidation activity. Among 12 recombinant UGT enzymes, UGT1A1, 1A3, 1A7, and 1A9 catalyzed the glucuronidation of these fluoroquinolones. Results of enzyme kinetics studies using the recombinant UGT enzymes indicated that UGT1A1 most efficiently glucuronidates MFLX, and UGT1A9 most efficiently glucuronidates GPFX. In addition, the glucuronidation activities of MFLX and STFX in human liver microsomes were potently inhibited by bilirubin with IC50 values of 4.9 microM and 4.7 microM, respectively; in contrast, the glucuronidation activity of GPFX was inhibited by mefenamic acid with an IC50 value of 9.8 microM. These results demonstrate that UGT1A1, 1A3, and 1A9 enzymes are involved in the glucuronidation of LVFX, GPFX, MFLX, and STFX in human liver microsomes, and that MFLX and STFX are predominantly glucuronidated by UGT1A1, whereas GPFX is mainly glucuronidated by UGT1A9.  相似文献   

20.
  1. Lamotrigine (LTG), a diaminotriazine anti-epileptic, is principally metabolized at the 2-position of the triazine ring to form a quaternary ammonium glucuronide (LTGG) by uridine glucuronosyl transferease (UGT) 1A3 and UGT1A4. It has been hypothesized that glucuronidation of anti-epileptic drugs is spared with age, despite a known decrease in liver mass, based on older studies with benzodiazepines such as lorazepam. To examine this, the formation rates of LTGG formation were measured by liquid chromatography-mass spectrometry (LC-MS) in a bank of human liver microsomes (HLMs) obtained from younger and elderly donors at therapeutic concentrations.

  2. The formation rate of LTGG was not significantly different in HLMs obtained from younger and elderly subjects. A four- to five-fold variation for the formation of LTGG was observed within each microsomal bank obtained from elderly and younger donors, and the range of LTGG formation was observed to be 0.15–0.78?nmoles min?1 mg?1 of protein across the entire set of HLMs (n?=?36, elderly and younger HLMs).

  3. UGT1A4 and UGT1A3 catalysed the formation of LTGG with an intrinsic clearances of 0.28 and 0.02?μl min?1 mg?1 protein, respectively. UGT2B7 and UGT2B4 showed no measurable activity. No correlation was observed across the HLM bank for glucuronidation of LTG and valproic acid (a substrate for multiple UGT isoforms including UGT1A4).

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号