首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tumor-induced skeletal muscle wasting (SMW) contributes to the fatigue and weakness experienced by persons with cancer cachexia. Tumor necrosis factor-alpha (TNFa) and cyclooxygenase (COX) activity have been implicated in SMW in some animal models of cancer cachexia. We report that indomethacin, a nonspecific inhibitor of COX, and NS398, a specific inhibitor of COX2, preserved muscle mass and reduced type 1 TNF receptors in muscles of mice bearing the Lewis lung carcinoma, but not in mice bearing the B16 melanoma. These data suggest that tumor-induced SMW can occur via a COX2-independent pathway. The COX2-dependent pathway may involve reducing the catabolic effects of TNFa in muscle. Further study is needed to understand the relationship between COX and SMW, and whether patients with cancer cachexia might benefit from COX inhibitors.  相似文献   

2.
Conjugated linoleic acid (CLA), which is found in dairy products, reduces synthesis of tumor necrosis factor-alpha (TNFa), a pro-inflammatory cytokine that plays a major role in tumor-induced skeletal muscle wasting (SMW). The B16 melanoma expresses TNFa mRNA, and induced SMW with no change in muscle levels of TNFa type 1 receptor (TNFR1) protein. A diet containing .5% CLA had no effect on SMW or TNFR1 in mice bearing B16 tumors. In contrast, the Lewis lung carcinoma expresses low levels of TNFa mRNA, induced SMW, and increased muscle levels of TNFR1. A diet containing .5% CLA reduced SMW, but had no effect on muscle levels of TNFR1. We conclude that that tumor-induced SMW can occur independent of muscle levels of TNFR1. Further study is needed before CLA can be tested in persons with cancer cachexia.  相似文献   

3.
Skeletal muscle wasting is a prominent feature of cancer cachexia and involves decreased muscle protein synthesis and increased activity of the ubiquitin-proteasome pathway of protein degradation. We report that both indomethacin and ibuprofen improved body weight and weight of the gastrocnemius muscle in tumor-bearing mice. Ibuprofen increased the soluble protein content of the muscle without affecting muscle levels of phosphorylated p70 S6 kinase, a ribosomal kinase involved in protein synthesis. Paradoxically, indomethacin increased levels of ubiquitin-conjugated proteins. Further study is needed to understand the mechanism of action by which indomethacin and ibuprofen preserve body weight and muscle mass in the tumor-bearing mice. The data suggest that ibuprofen may have beneficial effects in the treatment of cancer cachexia.  相似文献   

4.
Tumor necrosis factor-alpha (TNF) is an immunoregulatory cytokine that plays a major role in tumor-induced anorexia and weight loss. Conjugated linoleic acids (CLA) are naturally occurring isomers of linoleic acid that, when added to the diet, improve food intake and body weight in mice injected with TNF. The purpose of the present study was to examine the effects of a diet supplemented with 0.5% CLA on the nutritional status of rats implanted with the Morris 7777 hepatoma. Body weight, food intake, serum levels of insulin-like growth factor, and splenocyte synthesis of TNF were not different in tumor-bearing animals fed CLA versus the control diet. However, insulin levels were increased in both tumor-bearing and control animals given CLA. The 0.5% CLA did not improve the nutritional status nor alter TNF synthesis in hypophagic tumor-bearing rats. The biological significance of increased insulin levels in animals given CLA remains to be determined.  相似文献   

5.
In this report we describe an experimental model of cachexia that fulfills the criteria of an early effect with a small tumor mass not related to the growth rate of the tumor, and progressive wasting of muscle and fat without a detectable loss of appetite. C-26.IVX is a cell line derived from murine colon-26 adenocarcinoma which retains the transplantability of the original tumor and induces true cachexia in syngeneic hosts. Evidence is presented to support a role for interleukin (IL-6) as a cachectic factor in the development of cancer cachexia in this model system. Thus, increasing levels of IL-6 in C-26.IVX-bearing mice correlate with the development of cachexia. If the primary tumors were resected, mice gained weight and the levels of IL-6 in the serum were reduced significantly. Moreover, monoclonal antibody to murine IL-6 (but not anti-tumor necrosis factor antibody) was able to significantly suppress the development of key parameters of cachexia in tumor bearing mice.  相似文献   

6.
Most patients with pancreatic adenocarcinoma (PDAC) suffer cachexia; some do not. To model heterogeneity, we used patient-derived orthotopic xenografts. These phenocopied donor weight loss. Furthermore, muscle wasting correlated with mortality and murine IL-6, and human IL-6 associated with the greatest murine cachexia. In cell culture and mice, PDAC cells elicited adipocyte IL-6 expression and IL-6 plus IL-6 receptor (IL6R) in myocytes and blood. PDAC induced adipocyte lipolysis and muscle steatosis, dysmetabolism, and wasting. Depletion of IL-6 from malignant cells halved adipose wasting and abolished myosteatosis, dysmetabolism, and atrophy. In culture, adipocyte lipolysis required soluble (s)IL6R, while IL-6, sIL6R, or palmitate induced myotube atrophy. PDAC cells activated adipocytes to induce myotube wasting and activated myotubes to induce adipocyte lipolysis. Thus, PDAC cachexia results from tissue crosstalk via a feed-forward, IL-6 trans-signaling loop. Malignant cells signal via IL-6 to muscle and fat, muscle to fat via sIL6R, and fat to muscle via lipids and IL-6, all targetable mechanisms for treatment of cachexia.  相似文献   

7.
We have developed a murine model of wasting by injecting intracerebrally cells which continuously secrete h-cachectin/TNF (CHO-TNF) to: (a) determine the effects of cachectin/TNF produced continuously in the central nervous system (CNS), and (b) compare the metabolic effects of cachectin/TNF-secreting tumor in the brain to the cachexia caused by CHO-TNF tumor in peripheral tissue (IM). Intracerebral CHO-TNF tumors produced increased serum h-cachectin/TNF levels with lethal hypophagia and weight loss (mean survival time of 11 d); these changes were not observed in association with nonsecretory control brain tumors. The metabolic consequences of intracerebral cachectin/TNF production were indistinguishable from acute, lethal starvation: whole-body lipid content was decreased significantly but protein was conserved. Although intramuscular cachectin/TNF-secreting tumors caused similar increases of serum h-cachectin/TNF levels, profound anorexia did not develop; wasting developed after a longer period of tumor burden (50 d) with classical signs of cachexia (i.e., anemia and depletion of both protein and lipid). These studies provide a reproducible animal model of site-specific cytokine production and suggest that, regardless of serum levels, cachectin/TNF produced locally in brain influences both the rate of development of wasting and its net metabolic effects.  相似文献   

8.
Tumor-induced skeletal muscle wasting involves tumor necrosis factor (TNF) and the ubiquitin-proteasome pathway of muscle protein degradation. In this study, growth of the colon-26 adenocarcinoma in mice was associated with diminished gastrocnemius muscle mass and increased muscle levels of actin, ubiquitin-conjugated proteins, free ubiquitin, E3 ubiquitin ligases, and the type 1 TNF receptor (TNFR1). Indomethacin at 1 or 5 mg/kg/day reduced tumor growth and muscle levels of TNFR1. However, only the 5 mg dose of indomethacin reduced muscle wasting and muscle levels of the E3 ligases and actin. These data suggest that the beneficial effects of indomethacin in the treatment of tumor-induced skeletal muscle wasting may involve inhibition of TNF- and ubiquitin-mediated pathways of muscle protein degradation. These data also demonstrate that E3 ligases, which are involved in disuse atrophy, also are associated with tumor-induced skeletal muscle wasting.  相似文献   

9.
Cancer cachexia is a poorly understood syndrome of anorexia, weight loss, and muscle wasting that negatively impacts quality of life and survival in cancer patients. Research has clearly implicated pro-inflammatory cytokines in the biology of cancer cachexia. More recent research implicates products of arachidonic acid and suggests that cachexia may be a chronic inflammatory condition rather than a nutritional aberration. To date, nutritional support to slow weight loss has focused primarily on increasing calorie intake. Alternatively, many foods contain factors that can modulate the synthesis or activity of pro-inflammatory mediators, especially the synthesis of prostaglandin E2 from arachidonic acid. These factors and foods are sometimes called nutraceuticals, and research is needed to evaluate their efficacy in combating cancer cachexia.  相似文献   

10.
Progressive wasting of skeletal muscle is a significant side effect of malignancy. Perturbations in protein metabolism contribute to this state of wasting. Resistance exercise increases protein synthesis and mass of healthy muscles and counteracts muscle wasting associated with several catabolic conditions. It is not known whether resistance exercise training can counteract cancer-induced muscle wasting. This study examined the effect of resistance exercise training on muscle mass and protein content in 9 mice bearing the colon-26 adenocarcinoma. The dorsiflexor (extensor digitorum longus [EDL] and tibialis anterior) and plantar flexor (soleus, plantaris, and gastrocnemius) muscles of 1 leg of the tumor-bearing and the control mice were stimulated to contract eccentrically and concentrically, respectively, using an electrical stimulation protocol consisting of 10 sets of 6 repetitions per session. The muscles were stimulated on alternate days for a total of 8 sessions. The weight and protein content of the stimulated EDL muscle in the tumor-bearing mice were significantly higher (62% and 25%, respectively) than those of the nonstimulated EDL. Training did not have significant effects on the weight or protein content of the other muscles of the tumor-bearing mice, nor did it have significant effects on the muscles of the controls. These findings demonstrated that resistance training attenuated cancer-induced muscle wasting and protein depletion in the EDL muscle. The lack of an effect of the same training protocol on the EDL muscle in the control mice suggests that the amount and intensity of exercise training that is adequate to attenuate muscle wasting may not be adequate to induce hypertrophy of healthy muscles.  相似文献   

11.
The 'cancer cachectic factor'   总被引:5,自引:0,他引:5  
The object of this study was to summarize information on catabolic factors produced by tumours which lead to tissue catabolism in cancer cachexia and to use this information for the development of effective therapy. The study population was made up of patients with cancer cachexia and weight loss greater than 1 kg month(-1). They had a varied range of carcinomas, particularly pancreatic, but also of the breast, ovary, lung, colon and rectum. Cachectic factors were isolated by standard biochemical methods, and the mechanism of tissue catabolism was evaluated in vitro and in vivo. We isolated a 24-kDa sulphated glycoprotein produced by cachexia-inducing murine and human tumours, which induces catabolism of myofibrillar proteins in skeletal muscle and for this reason has been named proteolysis-inducing factor (PIF). PIF was shown to be present in a diverse range of carcinomas in patients whose rate of weight loss exceeded 1.0 kg month(-1). Administration of PIF to normal mice produced a rapid decrease in body weight, which arose primarily from a loss of skeletal muscle, accompanied by increased mRNA levels for ubiquitin, the ubiquitin-carrier protein (E2(14k)), and proteasome subunits. This suggests that PIF induces protein catabolism through an increased expression of the key components of the ATP-ubiquitin-dependent proteolytic pathway. The action of PIF was attenuated both in vitro and in vivo by eicosapentaenoic acid (EPA). Oral EPA has been found to stabilize the body weight of patients with advanced pancreatic cancer and, when combined with an energy- and protein-rich nutritional supplement, to produce weight gain arising solely from an increase in lean body mass. Nutritional supplementation alone is unable to reverse the process of muscle wasting in cancer patients, since this arises from activation of the ubiquitin proteasome pathway by PIF, which is independent of nutrient intake. EPA is able to down-regulate the increased expression of this pathway and prevents muscle wasting in cancer patients.  相似文献   

12.
Fatigue is the most frequently reported symptom by cancer patients. Many of these patients perceive fatigue as the most distressing symptom associated with their illness because it imposes limitations on their physical activity level. Skeletal muscle wasting, which occurs as part of cancer cachexia, is one of the mechanisms that contribute to fatigue. Cancer-induced skeletal muscle wasting may occur despite normal food intake and is not prevented by nutritional supplementation. Evidence suggests that endurance exercise ameliorates cancer-related fatigue. There is no compelling evidence to support that exercise-induced reduction in fatigue is related to preservation of muscle mass. Resistance exercise attenuates muscle wasting associated with a variety of catabolic conditions. However, its effects on cancer-induced muscle wasting have not been adequately studied. This article describes the physiological mechanisms implicated in the induction of cancer-related muscle wasting, summarizes findings from endurance and resistance exercise studies in relation to fatigue and muscle wasting during cancer and selected clinical conditions, and proposes directions for future research.  相似文献   

13.
Cachexia is a potentially lethal syndrome of unknown etiology characterized by anorexia, weight loss, and protein wasting that frequently complicates the treatment of chronic inflammation and cancer. Cachectin/TNF was isolated during the search for a humoral mediator of cachexia and found to stimulate the breakdown of energy stores from adipocytes and myocytes in vitro, but the chronic effects of the monokine in vivo are not known. Sublethal doses of recombinant human cachectin administered twice daily for 7-10 d caused cachexia in rats, as evidenced by reduced food intake, weight loss, and depletion of whole-body lipid and protein stores. Significant anemia is also observed and found to be the result of decreased red blood cell mass, not expanded plasma volume. Leukocytosis and histopathological evidence of tissue injury and inflammation are observed in several organs, including omentum, liver, spleen, and heart. These data suggests that the exposure of the normal host to cachectin is capable of inducing a pathophysiological syndrome of cachexia, anemia, and inflammation similar to that observed during inflammatory states or malignancy.  相似文献   

14.
Cardiac cachexia     
Chronic heart failure (CHF) remains an important and increasing public health care problem. It is a complex syndrome affecting many body systems. Body wasting (i.e., cardiac cachexia) has long been recognised as a serious complication of CHF. Cardiac cachexia is associated with poor prognosis, independently of functional disease severity, age, and measures of exercise capacity and cardiac function. Patients with cardiac cachexia suffer from a general loss of fat tissue, lean tissue, and bone tissue. Cachectic CHF patients are weaker and fatigue earlier, which is due to both reduced skeletal muscle mass and impaired muscle quality. The pathophysiologic alterations leading to cardiac cachexia remain unclear, but there is increasing evidence that metabolic, neurohormonal and immune abnormalities may play an important role. Cachectic CHF patients show raised plasma levels of epinephrine, norepinephrine, and cortisol, and they show high plasma renin activity and increased plasma aldosterone level. Several studies have also shown that cardiac cachexia is linked to raised plasma levels of tumour necrosis factor alpha and other inflammatory cytokines. The degree of body wasting is strongly correlated with neurohormonal and immune abnormalities. The available evidence suggests that cardiac cachexia is a multifactorial neuroendocrine and metabolic disorder with a poor prognosis. A complex imbalance of different body systems may cause the development of body wasting.  相似文献   

15.
Cardiac cachexia     
Chronic heart failure (CHF) remains an important and increasing public health care problem. It is a complex syndrome affecting many body systems. Body wasting (i.e., cardiac cachexia) has long been recognised as a serious complication of CHF. Cardiac cachexia is associated with poor prognosis, independently of functional disease severity, age, and measures of exercise capacity and cardiac function. Patients with cardiac cachexia suffer from a general loss of fat tissue, lean tissue, and bone tissue. Cachectic CHF patients are weaker and fatigue earlier, which is due to both reduced skeletal muscle mass and impaired muscle quality. The pathophysiologic alterations leading to cardiac cachexia remain unclear, but there is increasing evidence that metabolic, neurohormonal and immune abnormalities may play an important role. Cachectic CHF patients show raised plasma levels of epinephrine, norepinephrine, and cortisol, and they show high plasma renin activity and increased plasma aldosterone level. Several studies have also shown that cardiac cachexia is linked to raised plasma levels of tumour necrosis factor alpha and other inflammatory cytokines. The degree of body wasting is strongly correlated with neurohormonal and immune abnormalities. The available evidence suggests that cardiac cachexia is a multifactorial neuroendocrine and metabolic disorder with a poor prognosis. A complex imbalance of different body systems may cause the development of body wasting.  相似文献   

16.
The pathogenesis of cachexia in patients with uremia is unknown. We tested the hypothesis that uremia-associated cachexia is caused by leptin signaling through the hypothalamic melanocortin receptor 4 (MC4-R). We performed either subtotal nephrectomy (N) or sham operations in WT, leptin receptor-deficient (db/db), and MC4-R knockout (MC4-RKO) mice. The animals were on 17% protein diets, and none of the uremic animals were acidotic. WT-N mice produced a classic syndrome of cachexia characterized by decreased food intake, increased metabolic rate, and loss of lean body mass. Corrected leptin levels were elevated. db/db mice and MC4-RKO mice resisted the cachexic effects of uremia on weight gain, body composition, and metabolic rate. Likewise, treatment of WT mice with intracranial agouti-related peptide reversed the cachexic effects of uremia on appetite, weight gain, body composition, and metabolic rate. Gene expression of ubiquitin C and proteasome subunits C2, C3, and C9 was not changed in the uremic animals, suggesting that other pathways are involved in this model of nonacidotic uremic cachexia. The results of this study suggest that elevated circulating levels of cytokines such as leptin may be an important cause of uremia-associated cachexia via signaling through the central melanocortin system.  相似文献   

17.
18.
Cachectin/TNF (tumor necrosis factor), an endotoxin-induced murine macrophage hormone implicated in the pathogenesis of cachexia and shock, has been found capable of stimulating collagenase and prostaglandin E2 (PGE2) production by isolated human synovial cells and dermal fibroblasts. This bioactivity associated with cachectin is comparable to that observed with the monokine interleukin 1 (IL-1), previously suggested as the major mediator of proteolysis. The ability of cachectin/TNF to stimulate collagenase and PGE2 production suggests that it may play a role in tissue destruction and remodelling, as these processes occur in inflammatory diseases.  相似文献   

19.
The mechanisms responsible for decreased serum albumin levels in patients with cachexia-associated infection, inflammation, and cancer are unknown. Since tumor necrosis factor-alpha (TNF alpha) is elevated in cachexia-associated diseases, and chronic administration of TNF alpha induces cachexia in animal models, we assessed the regulation of albumin gene expression by TNF alpha in vivo. In this animal model of cachexia, Chinese hamster ovary cells transfected with the functional gene for human TNF alpha were inoculated into nude mice (TNF alpha mice). TNF alpha mice became cachectic and manifested decreased serum albumin levels, albumin synthesis, and albumin mRNA levels. However, even before the TNF alpha mice lost weight, their albumin mRNA steady-state levels were decreased approximately 90%, and in situ hybridization revealed a low level of albumin gene expression throughout the hepatic lobule. The mRNA levels of several other genes were unchanged. Hepatic nuclei from TNF alpha mice before the onset of weight loss were markedly less active in transcribing the albumin gene than hepatic nuclei from control mice. Therefore, TNF alpha selectively inhibits the genetic expression of albumin in this model before weight loss.  相似文献   

20.
Recently, we have established a human squamous cell carcinoma of the maxilla (called MH-85) associated with hypercalcemia, leukocytosis, and cachexia in culture. MH-85 tumor cells caused the same paraneoplastic syndromes in tumor-bearing nude mice. We found that there was a sixfold increase in splenic size in MH-85 tumor-bearing mice. This increase paralleled tumor growth and was reversed by surgical removal of the tumor. Splenectomy in nude mice 1 wk before or 6 wk after tumor inoculation resulted in a decrease in tumor growth, and impairment of hypercalcemia, leukocytosis, and cachexia. In MH-85 tumor-bearing animals that had been pretreated by splenectomy, intravenous injection of fresh normal spleen cells caused an immediate reversal of leukocytosis, hypercalcemia, and cachexia. Since the presence of cachexia in both the patient and the mice carrying the tumor suggested tumor necrosis factor (TNF) may be overproduced, we injected polyclonal neutralizing antibodies raised against murine TNF into tumor-bearing mice. There was a rapid and reproducible decrease in blood ionized calcium, accompanied by suppression of osteoclast activity. No changes in blood ionized calcium were seen in mice injected with normal immune sera. In addition, there was an increase in body weight and decrease in white cell count. Plasma immunoreactive TNF was increased almost fourfold in tumor-bearing nude mice compared with control nude mice. Although TNF activity was undetectable in MH-85 culture supernatants, cells of the macrophage lineage, including spleen cells, released increased amounts of TNF when cultured with MH-85 tumor-conditioned media. These results suggest that splenic cytokines such as TNF may influence the development of the paraneoplastic syndromes of hypercalcemia, leukocytosis, and cachexia in these animals, as well as tumor growth. They also show that paraneoplastic syndromes may be due to factors produced by normal host cells stimulated by the presence of the tumor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号