首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
彭文兴  李焕德  周宏灏 《药学学报》2004,39(11):892-896
目的探讨大豆苷元在人肝微粒中羟基化代谢所涉及的肝细胞色素P450(CYP)同工酶,为研究其在人体内的代谢提供基础。方法通过分析大豆苷元在肝微粒体中和重组CYP酶中形成的单羟化代谢物的酶促动力学,分析其酶学模型,然后用不同CYP同工酶选择性抑制剂或底物进行抑制实验,初步筛选出介导大豆苷元单羟化代谢所涉及的CYP同工酶。结果代谢物的形成动力学符合米氏方程单酶模型。CYP1A2选择性抑制剂呋喃茶碱和CYP1A2单克隆抗体均能明显抑制3种单羟化代谢物的形成。而其他CYP选择性的抑制剂对3种代谢物的形成没有或较小产生抑制作用。用重组酶实验得出相同结果。结论体外肝微粒体研究表明,大豆苷元的单羟基代谢主要由CYP1A2所介导。  相似文献   

2.
Recombinant cytochrome P450 (CYP) 1A2, 3A4, 2C9 or 2D6 enzymes obtained from Escherichia coli and human liver microsomes samples were used to investigate the ability of human CYP enzymes to metabolize the two dietary flavonoids, genistein and tangeretin. Analysis of the metabolic profile from incubations with genistein and human liver microsomes revealed the production of five different metabolites, of which three were obtained in sufficient amounts to allow a more detailed elucidation of the structure. One of these metabolites was identified as orobol, the 3'-hydroxylated metabolite of genistein. The remaining two metabolites were also hydroxylated metabolites as evidenced by LC/MS. Orobol was the only metabolite formed after incubation with CYP1A2. The two major product peaks after incubation of tangeretin with human microsomes were identical with 4'-hydroxy-5,6,7,8-tetramethoxyflavone and 5,6-dihydroxy-4',7,8-trimethoxyflavone, previously identified in rat urine in our laboratory. By comparison with UV spectra and LC/MS fragmentation patterns of previously obtained standards, the remaining metabolites eluting after 14, 17 and 20 min. were found to be demethylated at the 4',7-, 4',6-positions or hydroxylated at the 3'- and demethylated at the 4'-positions, respectively. Metabolism of tangeretin by recombinant CYP1A2, 3A4, 2D6 and 2C9 resulted in metabolic profiles that qualitatively were identical to those observed in the human microsomes. Inclusion of the CYP1A2 inhibitor fluvoxamine in the incubation mixture with human liver microsomes resulted in potent inhibition of tangeretin and genistein metabolism. Other isozymes-selective CYP inhibitors had only minor effects on tangeretin or genistein metabolism. Overall the presented observations suggest major involvement of CYP1A2 in the hepatic metabolism of these two flavonoids.  相似文献   

3.
The inhibitory effects of isoflavones (daidzein, genistein, and glycitein) on human cytochrome P450 (CYP) 2A6 activities were investigated. Daidzein, genistein, and glycitein uncompetitively inhibited nicotine C-oxidation catalyzed by recombinant CYP2A6 expressed in baculovirus-infected insect cells with Ki values of 1.3 +/- 0.3 microM, 0.7 +/- 0.2 microM, and 5.2 +/- 0.8 microM, respectively, but not coumarin 7-hydroxylation. Effects of the intake of soy isoflavones on in vivo nicotine metabolism were investigated with 7 healthy Japanese homozygotes of CYP2A6*1. The cotinine/nicotine ratio of the plasma concentrations 2 hours after chewing 1 piece of nicotine gum under the basal condition (after abstaining from soy foods for 1 week) was 8.8 +/- 2.6 (4.4-11.4). The ratio was significantly (P < .05) reduced to 6.7 +/- 1.6 (4.0-8.2) after consumption of a soy isoflavone supplement (60 mg of total isoflavones/d) for 5 days. The authors found that isoflavone contained in soy products significantly decreased nicotine metabolism.  相似文献   

4.
This study determined the cytochrome P450 (P450) isoforms responsible for metabolism of isoflavones using human liver microsomes (HLM) and expressed P450s. The primary metabolite of genistein is 3'-OH-genistein, as identified with an authentic chemically synthesized standard. CYP1A2 was predominantly responsible for 3'-OH-genistein formation since its formation was inhibited (>50%, p < 0.05) by a monoclonal antibody specific for CYP1A2, was correlated with CYP1A2 activities of HLM, and was catalyzed by expressed CYP1A2. In addition to CYP1A2, CYP2E1 also catalyzed, although to a lesser extent, its formation. The contribution of these P450s to the formation of 3'-OH-genistein was also confirmed with a panel of expressed enzymes. Methylated isoflavones biochanin A, prunetin, and formononetin (10-100 microM) were rapidly converted by HLM and expressed CYP1A2 to more active genistein and daidzein. The conversion of biochanin A to genistein appears to be mainly mediated by CYP1A2 because of the strong correlation between the conversion rates and CYP1A2 activities in HLM. Thus, CYP1A2 is an effective prodrug-converting enzyme for less active methylated isoflavones. CYP1A2-catalyzed conversion of biochanin A to genistein (Km, 7.80 microM; Vmax, 903 pmol/min/mg of protein; Vmax/Km, 116 microl/min/mg of protein) was much faster than 3'-hydroxylation of genistein (Km, 12.7 microM and Vmax, 109 pmol/min/mg of protein; Vmax/Km, 8.6 microl/min/mg of protein). The interaction studies showed that genistein inhibited formation of acetaminophen from phenacetin with an IC50 value of 16 microM. Additional studies showed that phenacetin and genistein were mutually inhibitory. In conclusion, CYP1A2 and CYP2E1 metabolized genistein and CYP1A2 acted as prodrug-converting enzymes for other less active methylated isoflavones.  相似文献   

5.
Imidafenacin (IM), 4-(2-methyl-1H-imidazol-1-yl)-2,2-diphenylbutanamide, is a newly synthesized antimuscarinic drug developed for the treatment of overactive bladder. To predict clinically relevant drug interactions in the metabolism of IM, the paper investigated: (1) the major enzymes responsible for the metabolism of IM, (2) the effects of concomitant drugs on the inhibition of metabolism of IM, and (3) the effects of IM and its metabolites on the inhibition of human cytochrome P450 (CYP). The elimination of IM and production of oxidative metabolites were mainly catalysed by recombinant CYP3A4, and the elimination of IM by human liver microsomes (HLM) was markedly inhibited by co-incubation with ketoconazole. The production of the N-glucuronide metabolite was only catalysed by recombinant UGT1A4. Clinically established CYP3A4 inhibitors including itraconazole, ketoconazole, erythromycin and clarithromycin inhibited the elimination of IM in HLM. IM and its major metabolites did not affect the activities of CYP enzymes in vitro. The results suggest that the major enzymes responsible for the metabolism of IM are CYP3A4 and UGT1A4, and oxidative metabolism of IM is reduced by concomitant administration of CYP3A4 inhibitors. In contrast, IM and its metabolites have no inhibitory effect on the CYP-mediated metabolism of concomitant drugs.  相似文献   

6.
Liquiritigenin (7,4'-dihydroxyflavone), the primary active component of a traditional Chinese medicine Glycyrrhizae radix, has a wide range of pharmacological activities. Six oxidative metabolites of liquiritigenin (7,3',4'-trihydroxyflavone, a hydroxyl quinine metabolite, two A-ring dihydroxymetabolites, 7,4'-dihydroxyflavone, and 7-hydroxychromone) have been detected in rat liver microsomes (RLMs), and one CYP3A4-catalyzed metabolite (7,4'-dihydroxyflavone) has been identified in human liver microsomes (HLMs) recently. In this study, a novel mono-hydroxylated metabolite was detected in reaction catalyzed by HLMs, and was identified as 4',5,7-trihydroxyflavanone by comparing the tandem mass spectra and the chromatographic retention time with that of the standard compound. Significant difference in CL(int) (9-fold) was found between these two oxidative pathways of liquiritigenin, and C5-hydroxylation pathway was identified as the major oxidative metabolism of liquiritigenin. The study with chemical selective inhibitor, cDNA-expressed human CYPs, correlation assay, and kinetic study demonstrated that CYP1A2 was the specific isozyme responsible for the C5-hydroxylation metabolism of liquiritigenin in HLMs.  相似文献   

7.
PURPOSE: This study aims to evaluate a cytochrome P450-based tamoxifen-isoflavone interaction and to determine the mechanisms responsible for inhibitory effects of isoflavones (e.g., genistein) on the formation of alpha-hydroxytamoxifen. METHODS: Metabolism studies were performed in vitro using female rat liver microsomes. The effects of genistein and an isoflavone mixture on tamoxifen metabolism and the inhibition mechanism were determined using standard kinetic analysis, preincubation, and selective chemical inhibitors of P450. RESULTS: Metabolism of tamoxifen was saturable with Km values of 4.9+/-0.6, 14.6+/-2.2, 25+/-5.9 microM and Vmax values of 34.7+/-1.4, 297.5+/-19.2, 1867+/-231 pmol min(-1) mg(-1) for a-hydroxylation, N-desmethylation, and N-oxidation, respectively. Genistein (25 microM) inhibited alpha-hydroxylation at 2.5 microM tamoxifen by 64% (p < 0.001) but did not affect the 4-hydroxylation, N-desmethylation, and N-oxidation. A combination of three (genistein, daidzein, and glycitein) to five isoflavones (plus biochanin A and formononetin) inhibited tamoxifen alpha-hydroxylation to a greater extent but did not decrease the formation of identified metabolites. The inhibition on alpha-hydroxylation by genistein was mixed-typed with a Ki, value of 10.6 microM. Studies using selective chemical inhibitors showed that tamoxifen alpha-hydroxylation was mainly mediated by rat CYP1A2 and CYP3A1/2 and that genistein 3'-hydroxylation was mainly mediated by rat CYP1A2, CYP2C6 and CYP2D1. CONCLUSIONS: Genistein and its isoflavone analogs have the potential to decrease side effects of tamoxifen through metabolic interactions that inhibit the formation of a-hydroxytamoxifen via inhibition of CYP1A2.  相似文献   

8.
Imidafenacin (IM), 4-(2-methyl-1H-imidazol-1-yl)-2,2-diphenylbutanamide, is a newly synthesized antimuscarinic drug developed for the treatment of overactive bladder. To predict clinically relevant drug interactions in the metabolism of IM, the paper investigated: (1) the major enzymes responsible for the metabolism of IM, (2) the effects of concomitant drugs on the inhibition of metabolism of IM, and (3) the effects of IM and its metabolites on the inhibition of human cytochrome P450 (CYP). The elimination of IM and production of oxidative metabolites were mainly catalysed by recombinant CYP3A4, and the elimination of IM by human liver microsomes (HLM) was markedly inhibited by co-incubation with ketoconazole. The production of the N-glucuronide metabolite was only catalysed by recombinant UGT1A4. Clinically established CYP3A4 inhibitors including itraconazole, ketoconazole, erythromycin and clarithromycin inhibited the elimination of IM in HLM. IM and its major metabolites did not affect the activities of CYP enzymes in vitro. The results suggest that the major enzymes responsible for the metabolism of IM are CYP3A4 and UGT1A4, and oxidative metabolism of IM is reduced by concomitant administration of CYP3A4 inhibitors. In contrast, IM and its metabolites have no inhibitory effect on the CYP-mediated metabolism of concomitant drugs.  相似文献   

9.
Antioxidant and free radical scavenging activity of isoflavone metabolites   总被引:1,自引:0,他引:1  
1. Soy isoflavones have been extensively studied because of their possible health-promoting effects. Genistein and daidzein, the major isoflavone aglycones, have received most attention; however, they undergo extensive metabolism in the gut and liver, which might affect their biological properties. 2. The antioxidant activity, free radical-scavenging properties and selected cellular effects of the isoflavone metabolites equol, 8-hydroxydaidzein, O-desmethylangiolensin, and 1,3,5 trihydroxybenzene were investigated in comparison with their parent aglycones, genistein and daidzein. 3. Electron spin resonance spectroscopy indicated that 8-hydroxydaidzein was the most potent scavenger of hydroxyl and superoxide anion radicals. Isoflavone metabolites also exhibited higher antioxidant activity than parent compounds in standard antioxidant (FRAP and TEAC) assays. However, for the suppression of nitric oxide production by activated macrophages, genistein showed the highest potency, followed by equol and daidzein. 4. The metabolism of isoflavones affects their free radical scavenging and antioxidant properties, and their cellular activity, but the effects are complex.  相似文献   

10.
1. Soy isoflavones have been extensively studied because of their possible health-promoting effects. Genistein and daidzein, the major isoflavone aglycones, have received most attention; however, they undergo extensive metabolism in the gut and liver, which might affect their biological properties. 2. The antioxidant activity, free radical-scavenging properties and selected cellular effects of the isoflavone metabolites equol, 8-hydroxydaidzein, O-desmethylangiolensin, and 1,3,5 trihydroxybenzene were investigated in comparison with their parent aglycones, genistein and daidzein. 3. Electron spin resonance spectroscopy indicated that 8-hydroxydaidzein was the most potent scavenger of hydroxyl and superoxide anion radicals. Isoflavone metabolites also exhibited higher antioxidant activity than parent compounds in standard antioxidant (FRAP and TEAC) assays. However, for the suppression of nitric oxide production by activated macrophages, genistein showed the highest potency, followed by equol and daidzein. 4. The metabolism of isoflavones affects their free radical scavenging and antioxidant properties, and their cellular activity, but the effects are complex.  相似文献   

11.
Phytoestrogens (PE) including isoflavones and lignans, are a group of substances of plant origin which can act as estrogen agonists or antagonists. While the immunomodulatory effects of isoflavones have been studied, little is known about the impact of lignans and other PE metabolites on the immune system. The aim of the present study was to assess whether PE and their metabolites modulate human leukocyte functions in vitro. We investigated the effects of genistein, daidzein, matairesinol, and secoisolariciresinol, including metabolites such as equol, O-desmethylangolensin, enterodiol, and enterolactone on natural killer cell activity, proliferation, cytokine secretion, as well as apoptotic and necrotic rate of human leukocytes. Genistein, daidzein, and its metabolite equol were the most potent inhibitors of leukocyte functions. Ten micromolars of genistein decreased proliferation, lytic activity of natural killer cells, and cytokine secretions. The latter proved to be the most sensitive marker of immune functions. Lignans and their metabolites had minor effects on the immune system. The antiestrogens Tamoxifen and Fulvestrant did not block the inhibition of cytokine secretion by genistein and equol. In conclusion, while physiological concentrations of isoflavones have minor effects on cytokine secretion, lignans including their major metabolites do not modulate human leukocyte functions in vitro.  相似文献   

12.
Recent studies have demonstrated cytochrome P450 CYP1-mediated metabolism and CYP1-enzyme induction by naturally occurring flavonoids in cancer cell line models. The arising metabolites often exhibit higher activity than the parent compound. In the present study we investigated the CYP1-mediated metabolism of the citrus polymethoxyflavone nobiletin by recombinant CYP1 enzymes and MCF7 breast adenocarcinoma cells. Incubation of nobiletin in MCF7 cells produced one main metabolite (NM1) resulting from O-demethylation in either A or B rings of the flavone moiety. Among the three CYP1 isoforms, CYP1A1 exhibited the highest rate of metabolism of nobiletin in recombinant CYP microsomal enzymes. The intracellular CYP1-mediated bioconversion of the flavone was reduced in the presence of the CYP1A1 and CYP1B1-selective inhibitors α-napthoflavone and acacetin. In addition nobiletin induced CYP1 enzyme activity, CYP1A1 protein and CYP1B1 mRNA levels in MCF7 cells at a concentration dependent manner. MTT assays in MCF7 cells further revealed that nobiletin exhibited significantly lower IC50 (44 μM) compared to cells treated with nobiletin and CYP1A1 inhibitor (69 μM). FACS analysis demonstrated cell a cycle block at G1 phase that was attenuated in the presence of CYP1A1 inhibitor. Taken together the data suggests that the dietary flavonoid nobiletin induces its own metabolism and in turn enhances its cytostatic effect in MCF7 breast adenocarcinoma cells, via CYP1A1 and CYP1B1 upregulation.  相似文献   

13.
1. Biotransformations by gut microflora play a pivotal role in determining the biological activity of isoflavones that occur in soya-based foods predominantly as betaglycosyl conjugates. Microflora prepared from rat caecae and human faeces were used to investigate the metabolic fate of genistein beta-glycosides extracted from soya flour. The end-products of such metabolism were determined by parallel incubations of microflora with [2',3,5',6'-3H] and [4-14C]-labelled genistein. 2. Quantitative analysis by LC-MS/IS indicated very rapid and complete degradation of genistin, which was associated with a transient increase in genistein. Qualitative studies indicated that the malonyl and acetyl glycosides of genistein were also degraded by the microflora. 3. Incubation of caecal and faecal microflora with [3H] and [14C]genistein yielded similar radiolabelled metabolites, which were identified by radio-LC-MS(n) as the intermediates dihydrogenistein and 6'-hydroxy-O-desmethylangolensin and end-product 4-hydroxyphenyl-2-propionic acid. This profile of genistein metabolites indicated selective hydrolysis of 6'-hydroxy-O-desmethylangolensin between carbon atoms 1' and 1 to yield the end-products 4-hydroxyphenyl-2-propionic acid and 1,3,5-trihydroxybenzene. 4. The biological significance of the products of genistein metabolism warrant further investigation since they may play an important role in mediating the beneficial antioxidant health effects associated with the consumption of isoflavones in food.  相似文献   

14.
Soybean products containing isoflavones are widely consumed in Western and Asian diets for putative health benefits, but adverse effects are also possible. The conjugated forms of isoflavones present in a soy nutritional supplement (predominately acetyl glucosides) and in blood from two human volunteers after consuming the supplement (7- and 4'-glucuronides and sulfates) were identified using liquid chromatography coupled with electrospray/tandem mass spectrometry. Circulating conjugates of genistein and daidzein were quantified using selective enzymatic hydrolysis and deuterated internal standards for liquid chromatography-electrospray/mass spectrometry. The levels of isoflavone glucuronides were much greater than the corresponding sulfates or aglycones. The substrate activities of genistein and daidzein were evaluated with recombinant human UDP glucuronosyl transferase (UGT) and sulfotransferase (SULT) by using enzyme kinetics. The SULTs 1A1*2, 1E, and 2A1 catalyzed formation of a single genistein sulfate; however, SULTs 1A2*1 and 1A3 had no observed activity. None of the SULTs showed activity with daidzein. Although several UGTs (1A1, 1A4, 1A6, 1A7, 1A9, and 1A10) catalyzed 7- and 4'-glucuronidation of genistein or daidzein, the UGT 1A10 isoform, which is found in human colon but not liver, was found to be specific for genistein. Glucuronidation of only genistein was observed in human colon microsomes, although nearly equal activity was observed for daidzein in human liver and kidney microsomes. These findings suggest a prominent role for glucuronidation of genistein in the intestine concomitant with absorption, although hepatic glucuronidation of absorbed genistein and daidzein aglycones is also likely.  相似文献   

15.
16.
Hydroxylated polybrominated diphenyl ethers (PBDEs) have been found in human serum, suggesting that they are formed by in vivo oxidative metabolism of PBDEs. However, the biotransformation of 2,2',4,4',5-pentabromodiphenyl ether (BDE-99), a major PBDE detected in human tissue and environmental samples, is poorly understood. In the present study, the oxidative metabolism of BDE-99 was assessed using pooled and single-donor human liver microsomes, a panel of human recombinant cytochrome P450 (CYP) enzymes, and CYP-specific antibodies. Hydroxylated metabolites were quantified using a liquid chromatography/tandem mass spectrometry-based method. In total, 10 hydroxylated metabolites of BDE-99 were produced by human liver microsomes. Six metabolites were identified as 2,4,5-tribromophenol (2,4,5-TBP), 4-OH-BDE-90, 5'-OH-BDE-99, 6'-OH-BDE-99, 4'-OH-BDE-101, and 2-OH-BDE-123 using authentic standards. Three monohydroxy- and one dihydroxy-pentabrominated metabolites were unidentified. Rates of formation of the three major metabolites (2,4,5-TBP, 5'-OH-BDE-99, and 4'-OH-BDE-101) by human liver microsomes ranged from 24.4 to 44.8 pmol/min/mg protein. Additional experiments demonstrated that the dihydroxylated metabolite was a primary metabolite of BDE-99 and was not produced by hydroxylation of a monohydroxy metabolite. Among the panel of recombinant CYP enzymes tested, formation of all 10 hydroxylated metabolites was catalyzed solely by CYP2B6. A combined approach using antibodies to CYP2B6 and single-donor liver microsomes expressing a wide range of CYP2B6 levels confirmed that CYP2B6 was responsible for the biotransformation of BDE-99. Collectively, the results show that the oxidative metabolism of BDE-99 by human liver microsomes is catalyzed solely by CYP2B6 and is an important determinant of the toxicity and bioaccumulation of BDE-99 in humans.  相似文献   

17.
The transdermal absorption of the isoflavones, daidzein and genistein, applied on the skin in olive oil was studied in vivo. The concentrations of the isoflavones and their metabolites were monitored in plasma and urine by GC-MS methods. It was found that the concentration of genistein in plasma was 3-fold higher than the plasma concentration of daidzein. In contrast, daidzein excretion was 2-3-fold higher than that of genistein in urine. The excretion rate of the studied phytoestrogens in urine and their concentration in plasma was significantly decreased after repeated transdermal application. The urinary recovery of administered daidzein and genistein after the first application was 15.9% and 7.7%, respectively and this dropped to 1.6% and 0.7% after the second application. The results obtained might suggest that daidzein and genistein are captured in the skin following repeated transdermal application.  相似文献   

18.
1.?Soybean is a common source of protein in many pet foods. Slow glucuronidation of soy-derived isoflavones in cats has been hypothesized to result in accumulation with adverse health consequences. Here, we evaluated species’ differences in soy isoflavone glucuronidation using urine samples from cats and dogs fed a soy-based diet and liver microsomes from cats compared with microsomes from 12 other species.

2.?Significant concentrations of conjugated (but not unconjugated) genistein, daidzein and glycitein, and the gut microbiome metabolites, dihydrogenistein and dihydrodaidzein, were found in cat and dog urine samples. Substantial amounts of conjugated equol were also found in cat urine but not in dog urine.

3.?β-Glucuronidase treatment showed that all these compounds were significantly glucuronidated in dog urine while only daidzein (11%) and glycitein (37%) showed any glucuronidation in cat urine suggesting that alternate metabolic pathways including sulfation predominate in cats.

4.?Glucuronidation rates of genistein, daidzein and equol by cat livers were consistently ranked within the lowest 3 out of 13 species’ livers evaluated. Ferret and mongoose livers were also ranked in the lowest four species.

5.?Our results demonstrate that glucuronidation is a minor pathway for soy isoflavone metabolism in cats compared with most other species.  相似文献   

19.
There is widespread recognition that the ingestion of a meal is associated with a number of physiologic changes (gastric pH, gastric emptying, hepatic blood flow, etc.) that can significantly alter the rate and extent of drug absorption. It is also well recognized that the components of food can alter drug absorption through alterations in drug solubility. The nutritional status of a patient can also contribute to variability in the pharmacokinetics of certain drugs. The more recent finding that grapefruit juice can increase the bioavailability of certain drugs, by reducing presystemic intestinal metabolism, has led to renewed interest in the area of 'food-drug interactions.' Particular interest has focused on the effects of the grapefruit flavonoid, naringin, and the furanocoumarin, 6',7'-dihydroxybergamottin, on the activity of intestinal CYP3A4. The possibility that grapefruit juice might affect drug absorption via an interaction with intestinal P-glycoprotein (P-gp) is also being explored. The growing use of herbal extracts and phytopharmaceuticals raises a new challenge-will the use of these products cause changes in the pharmacokinetics of 'conventional' drugs? As a case in point, consider the phytoestrogenic isoflavones, which are being promoted for a number of health benefits. Isoflavones such as genistein and daidzein can inhibit oxidative and conjugative metabolism in vitro and interact with transporters such as P-gp and the canalicular multispecific organic anion transporter. Given that P-gp and canalicular multispecific organic anion transporter are involved in the intestinal absorption and biliary excretion of a wide range of drugs and metabolites, it is reasonable to suspect that isoflavones may alter drug disposition in humans. However, this possibility has not been explored.  相似文献   

20.
1.?The metabolism of the anti-inflammatory diterpenoid polyandric acid A (PAA), a constituent of the Australian Aboriginal medicinal plant Dodonaea polyandra, and its de-esterified alcohol metabolite, hydrolysed polyandric acid A (PAAH) was studied in vitro using human liver microsomes (HLM) and recombinant UDP-glucuronosyltransferase (UGT) and cytochrome P450 (CYP) enzymes.

2.?Hydrolysis of PAA to yield PAAH occurred upon incubation with HLM. Further incubations of PAAH with HLM in the presence of UGT and CYP cofactors resulted in significant depletion, with UGT-mediated depletion as the major pathway.

3.?Reaction phenotyping utilising selective enzyme inhibitors and recombinant human UGT and CYP enzymes revealed UGT2B7 and UGT1A1, and CYP2C9 and CYP3A4 as the major enzymes involved in the metabolism of PAAH.

4.?Analysis of incubations of PAAH with UDP-glucuronic acid-supplemented HLM and recombinant enzymes by UPLC/MS/MS identified three glucuronide metabolites. The metabolites were further characterised by β-glucuronidase and mild alkaline hydrolysis. The acyl glucuronide of PAAH was shown to be the major metabolite.

5.?This study demonstrates the in vitro metabolism of PAA and PAAH and represents the first systematic study of the metabolism of an active constituent of an Australian Aboriginal medicinal plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号