首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
McCool BA  Botting SK 《Brain research》2000,859(2):341-351
Large concentrations of the beta-amino acid, taurine, can be found in many forebrain areas such as the basolateral amygdala, a portion of the limbic forebrain intimately associated with the regulation of fear/anxiety-like behaviors. In addition to its cytoprotective and osmoregulatory roles, taurine may also serve as an agonist at GABA(A)- and strychnine-sensitive glycine receptors. In this latter context, the present study demonstrates that application of taurine to acutely isolated neurons from the basolateral amygdala of adult rats causes significant alterations in resting membrane current, as measured by whole-cell patch clamp electrophysiology. Using standard pharmacological approaches, we find that currents gated by concentrations of taurine 相似文献   

2.
Gephyrin has been shown to be essential for the synaptic localization of the inhibitory glycine receptor and major GABA(A) receptor (GABA(A)R) subtypes. However, in retina certain GABA(A)R subunits are found at synaptic sites in the absence of gephyrin. Here, we quantitatively analyzed GABA(A)R alpha1, alpha2, alpha3, alpha5, beta2/3, and gamma2 subunit immunoreactivities in spinal cord sections derived from wild-type and gephyrin-deficient (geph -/-) mice. The punctate staining of GABA(A)R alpha1 and alpha5 subunits was unaltered in geph -/- mice, whereas the numbers of alpha2-, alpha3-, beta2/3-, and gamma2-subunit-immunoreactive synaptic sites were significantly or even strikingly reduced in the mutant animals. Immunostaining with an antibody specific for the vesicular inhibitory amino acid transporter revealed that the number of inhibitory presynaptic terminals is unaltered upon gephyrin deficiency. These data show that in addition to gephyrin other clustering proteins must exist that mediate the synaptic localization of selected GABA(A)R subtypes.  相似文献   

3.
4.
Accumulation of [3H]glycine into synaptosomal fractions occurs by high affinity systems in cerebral cortex, optic tectum, brain stem and spinal cord of the frog. Specific [3H]strychnine binding which appears associated with postsynaptic glycine receptors is also demonstrable in these regions. By contrast, only very low levels of strychnine binding and high affinity glycine uptake occur in higher centers of the rat central nervous system. The relative potencies of small neutral amino acids in competing for [3H]strychnine binding are similar in frog brain and spinal cord. No evidence for a high affinity accumulation of [3H]taurine by synaptosomal fractions of frog spinal cord can be demonstrated. These observations favor glycine rather than taurine as an inhibitory transmitter in frog spinal cord. Moreover, these findings suggest that glycine may have a synaptic role in higher brain centers in the frog.  相似文献   

5.
Functional coassembly of gamma-aminobutyric acid (GABA)C rho1 subunits with GABAA (alpha1, beta2, and gamma2S) or glycine (alpha1, alpha2, and beta) subunits was examined using two-electrode voltage-clamp recordings in the Xenopus laevis oocyte expression system. To facilitate this study, we took advantage of the unique gating and pharmacological properties of two mutant rho1 subunits, rho1(T314A) and rho1(T314A/L317A). When the rho1(T314A) subunit was coexpressed with GABA gamma2S, glycine alpha1 or glycine alpha2 subunits, GABA response properties were different from those of homomeric rho1(T314A) receptors. Additionally, the sensitivity of heteromeric rho1(T314A) and gamma2S receptors to picrotoxinin (PTX) blockade of GABA-evoked responses was altered compared to that of homomeric rho1(T314A) receptors. Changes in GABA response properties and picrotoxinin sensitivity were also observed when rho1(T314A) subunits were coexpressed with wild-type rho1 subunits. When rho1(T314A/L317A) subunits were coexpressed with GABA gamma2S, glycine alpha1 or glycine alpha2 subunits, suppression by GABA of spontaneously active current was reduced compared to that of homomeric rho1(T314A/L317A) receptors. Recovery of the spontaneous current from inhibition by GABA for GABA rho1(T314A/L317A)/gamma2S heteromeric receptors displayed an additional component. Coinjection of wild-type rho1 with gamma2S cRNAs at a ratio of 1 : 1 resulted in a > 10-fold reduction in GABA-evoked current. Furthermore, coexpression of wild-type rho1 and gamma2S subunits was found to shift the GABA dose-response curve. Our results provide functional evidence that the GABAC rho1 subunit can coassemble with the GABAA gamma2S subunit, and, at least in its mutated form, rho1 can also form heteromeric receptors with glycine alpha1 or alpha2 subunits in vitro.  相似文献   

6.
Saturable, specific [3H]strychnine binding can be demonstrated in homogenates of bovine retina. Scatchard plots revealed only one set of binding sites with a dissociation constant (Kd) of about 60 nM and a maximal number of binding sites of about 1.5 pmol/mg protein. The structural specificity of [3H]strychnine binding sites in bovine retina parallels the properties found for [3H]strychnine binding sites in the spinal cord of several vertebrates. Thus, the data do not give any evidence that specific [3H]strychnine binding in bovine retina labels taurine rather than glycine receptors and favors glycine rather than taurine as inhibitory neurotransmitter in bovine retina. The subcellular distribution of specific [3H]strychnine binding in bovine retina parallels that of sodium-dependent, high-affinity uptake of glycine and taurine. All 3 parameters are mainly found in the P2 fractions of bovine retina homogenates, containing conventional synaptosomes, most abundant in the inner plexiform layer, but can also be found in the P1 fractions, containing large synaptosomes from the photoreceptor cell layer.  相似文献   

7.
gamma-Aminobutyric acid (GABA), is a main source of inhibitory modulation of the rod pathway in the mammalian retina. The authors previously showed that rod bipolar cells express at least three types of ionotropic GABA receptors. Here, the authors sought to determine which neurons are the presynaptic partners at these synapses in the rabbit retina. Indoleamine-accumulating amacrine cells (IACs) were immunolabeled with an antiserum against serotonin (5HT) in vertical sections and wholemounts of rabbit retinae that had been preloaded with 5HT. The tissue was double labeled for the rho subunits of the GABA(C) receptor or the alpha3 subunit of the GABA(A) receptor. Punctate immunofluorescence was observed for both receptor subunits and was found to coincide with the dendrites and varicosities of IACs. The localization of rho subunits was examined at the ultrastructural level by using postembedding techniques on slam-frozen, cryosubstituted tissue. Double labeling at the electron microscopic level revealed that 5HT-immunoreactive processes were presynaptic to rod bipolar cells through GABA(C) receptors. Intracellular injection of the two morphologic subclasses of IAC amacrine cells, S1 and S2, with Lucifer yellow followed by immunolabeling for the alpha3 or rho subunits revealed that varicosities on the dendrites of both cell types were in register with alpha3- and rho-immunoreactive puncta. Taken together, these results suggest that IACs are presynaptic to rod bipolar cells through GABA(C) receptors and possibly through GABA(A) receptors.  相似文献   

8.
Clustering of neurotransmitter receptors in postsynaptic densities involves proteins that aggregate the receptors and link them to the cytoskeleton. In the case of glycine and GABA(A) receptors, gephyrin has been shown to serve this function. However, it is unknown whether gephyrin is involved in the clustering of all glycine and GABA(A) receptors or whether it interacts only with specific isoforms. This was studied in the retinae of mice, whose gephyrin gene was disrupted, with immunocytochemistry and antibodies that recognize specific subunits of glycine and GABA(A) receptors. Because homozygous (geph -/-) mutants die around birth, an organotypic culture system of the mouse retina was established to study the clustering of gephyrin and the receptors in vitro. We found that all gephyrin and all glycine receptor clusters (hot spots) were abolished in the geph (-/-) mouse retina. In the case of GABA(A) receptors, there was a significant reduction of clusters incorporating the gamma2, alpha2, and alpha3 subunits; however, a substantial number of hot spots was still present in geph (-/-) mutant retinae. This shows that gephyrin interacts with all glycine receptor isoforms but with only certain forms of GABA(A) receptors. In heterozygous geph (+/-) mutants, no reduction of hot spots was observed in the retina in vivo, but a significant reduction was found in the organotypic cultures. This suggests that mechanisms may exist in vivo that allow for the compensation of a partial gephyrin deficit.  相似文献   

9.
The actions of glycine, GABA, alpha-alanine, beta-alanine and taurine were studied by intracellular recordings from lumbar motoneurons of the isolated spinal cord of the frog. All amino acids tested produced a reduction in the amplitude of postsynaptic potentials, a blockade of the antidromic action potential and an increase of membrane conductance. Furthermore, membrane polarizations occurred, which were always in the same direction as the IPSP. All these effects indicate a postsynaptic inhibitory action of these amino acids. When the relative strength of different amino acids was compared, taurine had the strongest inhibitory potency, followed by beta-alanine, alpha-alanine, GABA and glycine. Topically applied strychnine and picrotoxin induced different changes of post-synaptic potentials, indicating that distinct inhibitory systems might be influenced by these two convulsants. Interactions with amino acids showed that picrotoxin seletively diminished the postsymaptic actions of GABA, while strychnine reduced the effects of taurine, glycine, alpha- and beta-alanine. But differences in the susceptibility of these amino acid actions to strychnine could be detected: the action of taurine was more sensitively blocked by strychnine compared with glycine, alpha- and beta-alanine. With regard to these results the importance of taurine and GABA as transmitters of postsynaptic inhibition on motoneurons in the spinal cord of the frog is discussed.  相似文献   

10.
It is well known that the anxiolytic potential of ethanol is maintained during chronic exposure. We have confirmed this using a light-dark box paradigm following chronic ethanol ingestion via a liquid diet. However, cessation from chronic ethanol exposure is known to cause severe withdrawal anxiety. These opposing effects on anxiety likely result from neuro-adaptations of neurotransmitter systems within the brain regions regulating anxiety. Recent work highlights the importance of amygdala ligand-gated chloride channels in the expression of anxiety. We have therefore examined the effects of chronic ethanol exposure on GABA(A) and strychnine-sensitive glycine receptors expressed by acutely isolated adult rat lateral/basolateral amygdala neurons. Chronic ethanol exposure increased the functional expression of GABA(A) receptors in acutely isolated basolateral amygdala neurons without altering strychnine-sensitive glycine receptors. Neither the acute ethanol nor benzodiazepine sensitivity of either receptor system was affected. We explored the likelihood that subunit composition might influence each receptor's response to chronic ethanol. Importantly, when expressed in a mammalian heterologous system, GABA(A) receptors composed of unique alpha subunits were differentially sensitive to acute ethanol. Likewise, the presence of the beta subunit appeared to influence the acute ethanol sensitivity of glycine receptors containing the alpha(2) subunit. Our results suggest that the facilitation of GABA(A) receptors during chronic ethanol exposure may help explain the maintenance of ethanol's anti-anxiety effects during chronic ethanol exposure. Furthermore, the subunit composition of GABA(A) and strychnine-sensitive glycine receptors may ultimately influence the response of each system to chronic ethanol exposure.  相似文献   

11.
In neonatal rats, strychnine-sensitive glycine receptors are widely expressed in the spinal cord, brainstem and forebrain. During development, these 'neonatal' receptors are replaced by an adult isoform, the expression of which becomes restricted primarily to brain stem and spinal cord. Unlike most forebrain regions, functional strychnine-sensitive glycine receptors appear to persist within adult rat amygdala. However, the subunit composition of glycine receptors expressed by amygdala neurons and its relationship to the adult isoform in brain stem/spinal cord has not been defined precisely. In this report, we have utilized RT-PCR and single-cell RT-PCR to demonstrate that the 'neonatal' alpha2-subunit mRNA persists in adult rat amygdala neurons and is the predominant alpha-subunit. We further demonstrate that native amygdala glycine receptors are relatively insensitive to the receptor antagonist picrotoxin, suggesting that alpha2- and beta-subunits may be present together in the same multisubunit complex. We further demonstrate that alpha2- and beta-subunits cloned from adult rat amygdala can form functional channels when expressed in a heterologous system. Together, these studies highlight both the unique characteristics of strychnine-sensitive glycine receptors in the adult rat amygdala as well as the possibility that alpha2/beta channels may represent the adult forebrain isoform of the strychnine-sensitive glycine receptor.  相似文献   

12.
Widely propagating correlated neuronal activity is a hallmark of the developing nervous system. The activity is usually mediated by multiple transmitters, and the contribution of gap junctions has also been suggested in several systems. In some structures, such as the retina and spinal cord, it has been shown that the dominant transmitter mediating the correlated wave switches from acetylcholine to glutamate during development, although the functional significance of this phenomenon has not been clarified. An important question is whether such a transmitter switch occurs in other systems, especially in the brain. In the present study, we demonstrate that the major transmitter mediating correlated wave activity in the embryonic chick hindbrain changes from acetylcholine/γ-aminobutyric acid (GABA)/glycine to glutamate/GABA as development proceeds. The results show for the first time that the dominant transmitter switches from acetylcholine to glutamate in a region other than the retina and spinal cord. This finding sheds more light on the role of nicotinic acetylcholine receptors in the generation of correlated wave activity, which is considered to regulate the development of the nervous system.  相似文献   

13.
The prenatal developmental expression changes and distribution of the gamma-aminobutyric acid (GABA)(B1) and GABA(B2) receptor subunit were investigated using in situ hybridization and RNase protection assay (RPA). We defined a different expression pattern of GABA(B1) subunit mRNA to that of GABA(B2) subunit. GABA(B1) subunit mRNA signals were moderately expressed in the cerebral cortex neuroepithelium of discrete brain regions on gestational day (GD) 11.5 and 12.5 and were highly expressed in the brain and spinal cord on GD 13.5 and 15.5. However, GABA(B2) subunit mRNAs were not detected on GD 11.5 and 12.5 and were first weakly detected on GD 13.5. On GD 15.5, 17.5, and 19.5, these subunit mRNAs were found in the retina, hippocampus, cerebral cortex, spinal cord, and cerebellum area. On GD 19.5 and 21.5, these subunits mRNA signals increased in the cerebral cortex, hippocampus, thalamus, and cerebellum, but decreased in the spinal cord, spinal ganglion, and midbrain, reaching similar levels to that of the adult brain. On GD 21.5, these subunit mRNAs were similarly expressed in almost all brain areas with a higher expression level of GABA(B1) subunit mRNA than GABA(B2) subunit mRNA. Our results found that GABA(B1) and GABA(B2) subunit mRNAs showed different expression patterns, with the GABA(B1) subunit expressed earlier and higher. We suggest that GABA(B1) and GABA(B2) subunits might have a role in the fetal brain during the gestational period for pre- and post-synaptogenesis, proliferation, differentiation, and neuronal maturation, and GABA(B1) subunit may be more important than GABA(B2) subunit during rat prenatal development.  相似文献   

14.
Gamma-aminobutyric acid (GABA) and glycine are the major inhibitory neurotransmitters in the retina, glycine being produced in approximately half of all amacrine cells. Whereas retinal cell types expressing the glycine receptor (GlyR) alpha1 and alpha3 subunits have been mapped, the role of the alpha2 subunit in retinal circuitry remains unclear. By using immunocytochemistry, we localized the alpha2 subunit in the inner plexiform layer (IPL) in brightly fluorescent puncta, which represent postsynaptically clustered GlyRs. This was shown by doubly labeling sections for GlyR alpha2 and bassoon (a presynaptic marker) or gephyrin (a postsynaptic marker). Synapses containing GlyR alpha2 were rarely found on ganglion cell dendrites but were observed on bipolar cell axon terminals and on amacrine cell processes. Recently, an amacrine cell type has been described that is immunopositive for glycine and for the vesicular glutamate transporter vGluT3. The processes of this cell type were presynaptic to GlyR alpha2 puncta, suggesting that vGluT3 amacrine cells release glycine. Double labeling of sections for GlyR alpha1 and GlyR alpha2 subunits showed that they are clustered at different synapses. In sections doubly labeled for GlyR alpha2 and GlyR alpha3, approximately one-third of the puncta were colocalized. The most abundant GlyR subtype in retina contains alpha3 subunits, followed by those containing GlyR alpha2 and GlyR alpha1 subunits.  相似文献   

15.
In the hypoglossal nucleus, GABA and glycine mediate inhibition at separate or mixed synapses containing glycine receptors (GlyRs) and/or GABA(A) receptors (GABA(A)Rs). The functional development of mixed inhibitory synapses depends on the brain area studied, but their relative proportion to total synapses generally decreases with time. We have determined the sequential process of inhibitory synapse maturation in the hypoglossal nucleus in vivo. Immunocytochemistry and confocal microscopy were used for codetection of VIAAT, the common presynaptic vesicular transporter of glycine and GABA, GlyRs, GABA(A)R alpha1 and gamma2 subunits, and gephyrin, the scaffold protein implicated in the synaptic localization of inhibitory receptors. In E17 embryos, GlyRs were already clustered while GABA(A)R alpha1 and gamma2 subunit immunoreactivity (IR) displayed both diffuse and clustered patterns. Quantitative analysis at this stage revealed that the majority of GlyR clusters were apposed to VIAAT-IR accumulation and that 30% of them colocalized with gamma2GABA(A)R clusters. This proportion increased with age to 50% at P30. GlyR clusters that did not colocalize with gamma2GABA(A)R clusters were associated with GABA(A)R gamma2 diffuse IR. Interestingly, the percentage of GlyR clusters surrounded by GABA(A)R gamma2 diffuse IR decreased with age, while GlyR clusters colocalized with gamma2GABA(A)R clusters increased. The developmental coclustered pattern of gephyrin and GABA(A)R alpha1 and gamma2 subunits paralleled the coclustered pattern of GlyRs and GABA(A)R alpha1 and gamma2 subunits. Our results indicate that the proportion of GlyR-GABA(A)R coclusters increases until adulthood. A developmental sequence of the postsynaptic events is proposed in which diffuse extrasynaptic GABA(A)Rs accumulate at inhibitory synapses to form postsynaptic clusters, most of them being colocalized with GlyR clusters in the adult.  相似文献   

16.
Taurine has been suggested to modulate nociceptive information at the spinal cord level. In this study, the pharmacological properties of taurine were investigated in adult rat substantia gelatinosa (SG) neurons using whole-cell patch-clamp method. We found that taurine seemed to have higher efficacy than glycine on glycine receptors in SG neurons. An increase in chloride conductance was responsible for taurine-induced currents. Taurine at 0.3 mM activated glycine receptors, whereas at 3 mM activated both glycine and gamma-aminobutyric acid A receptors. The currents activated by coapplication of taurine and glycine are cross inhibitive. Altogether these results show that taurine might represent another important neurotransmitter or modulator in SG neurons, which may be involved in antinociception.  相似文献   

17.
In the adult mammalian brain, synaptic transmission mediated by gamma-amino butyric acid (GABA) plays a role in inhibition of excitatory synaptic transmission. During brain development, GABA is involved in brain morphogenesis. To clarify how GABA exerts its effect on immature neurons, we examined the expression of the GABAA receptor alpha2 and alpha3 subunits, which are abundantly expressed before alpha1 and alpha6 subunits appear, in the developing mouse cerebellum using in situ hybridization. Proliferating neuronal precursors in the ventricular zone and external granular layer expressed neither alpha2 nor alpha3 subunits. Hybridization signals for the alpha2 and alpha3 subunit mRNAs first appeared in the differentiating zone at embryonic day 13 (E13). The alpha2 subunit was detected in the migrating and differentiating granule cells and cerebellar nucleus neurons until postnatal day 14 (P14). Hybridization signals for the alpha3 subunit mRNA, on the other hand, were localized in the developing Purkinje cells and cerebellar nucleus neurons, and disappeared from Purkinje cells by the end of first postnatal week. Taken together, this indicated that the alpha2 and alpha3 subunits were abundantly expressed in distinct types of cerebellar neurons after completing cell proliferation while forming the neural network. These results suggest that GABA might extrasynaptically activate the GABAA receptors containing alpha2 and/or alpha3 subunits on the differentiating neurons before finishing the formation of synapses and networks, and could be involved in neuronal differentiation and maturation in the cerebellum.  相似文献   

18.
The responding pathway (process from agonist binding to channel opening) of taurine and beta-alanine was investigated in Xenopus oocytes injected with mouse brain poly(A)+ RNA. Responses to gamma-aminobutyric acid (GABA), glycine, taurine and beta-alanine were induced in oocytes injected with poly(A)+ RNA extracted from 3 regions, cerebrum, cerebellum and brainstem of the mouse brain. From comparison, responses to these 4 inhibitory amino acids in each regional poly(A)+ RNA-injected oocytes were categorized into at least 3 groups: (1) GABA, (2) glycine, and (3) taurine and beta-alanine. No cross-desensitization was observed between GABA response and glycine response, but taurine and beta-alanine responses cross-desensitized both the GABA and glycine responses. Taurine and beta-alanine responses were partially inhibited by the GABA antagonist, bicuculline, and also by the glycine antagonist, strychnine. The results suggest that the taurine or the beta-alanine response in the brain is caused through both the GABA receptor and the glycine receptor.  相似文献   

19.
The superfused in vitro frog spinal cord preparation was used to investigate the effects of pentylenetetrazol (PTZ) on the spinal cord. PTZ depressed monosynaptic, but augmented polysynaptic reflexes, and decreased primary afferent deplorization. Concurrently, in Ringer's solution containing sufficient magnesium or cobalt ions to block synaptic transmission, PTZ antagonized the hyperpolarizing effects on motoneurons and the depolarizing effects on primary afferent fibers of the inhibitory amino acids GABA, beta-alanine, taurine, and glycine. PTZ did not affect responses to the excitatory amino acids glutamic acid and aspartic acid. Furthermore, PTZ did not alter high affinity uptake by cord slices, K+ -evoked release of [3H]GABA from them, or the spinal concentration of GABA. These data suggest that PTZ may produce its excitatory effects by postsynaptic blockade of inhibitory processes mediated by GABA (and possibly by other amino acids).  相似文献   

20.
In the neonatal rat spinal cord, four types of glial cells, namely astrocytes, oligodendrocytes and two types of precursor cells, can be distinguished based on their membrane current patterns and distinct morphological features. In the present study, we demonstrate that these cells respond to the inhibitory neurotransmitters glycine and GABA, as revealed with the whole-cell recording configuration of the patch-clamp technique. All astrocytes and glial precursor cells and a subpopulation of oligodendrocytes responded to glycine. The involvement of glycine receptors was inferred from the observation that the response was blocked by strychnine and that the induced current reversed close to the Cl- equilibrium potential. GABA induced large membrane currents in astrocytes and precursor cells while oligodendrocytes showed only small responses. The GABA-activated current was due to the activation of GABAA receptors since muscimol mimicked and bicuculline blocked the response; moreover, the reversal potential was close to the Cl- equilibrium potential. Besides the increase in a Cl- conductance, GABAA receptor activation also induced a block of the resting K+ conductance, as observed previously in Bergmann glial cells. Our experiments show that while glial GABAA receptors are found in many brain regions and the spinal cord, glial glycine receptors have so far been detected only in the spinal cord. The restricted coexpression of glial and neuronal glycine receptors in a defined central nervous system grey matter area implies that such glial receptors may be involved in synaptic transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号