首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Conventional and ion-selective double-barrelled microelectrodes were used in an in vitro bovine retinal pigment epithelium (RPE)-choroid preparation to measure the changes in membrane voltage, resistance and intracellular K+ and Cl- activities produced by small, physiological changes in extracellular potassium ([K+]o). 2. In the intact eye, light-induced changes in [K+]o occur in the extracellular (or subretinal) space that separates the neural retina and the RPE apical membrane. These [K+]o changes can be approximated in vitro by decreasing apical bath [K+]o from 5 to 2 mM. 3. This in vitro change in [K+]o simultaneously decreased intracellular Cl- and K+ activities (aCli and aKi) by 25 +/- 6 mM (n = 8) and 19 +/- 7 mM (n = 4) (mean +/- S.D.), respectively. In control Ringer solution (5 mM [K+]o) aCli and aKi were 65 +/- 10 mM (n = 28) and 65 +/- 8 mM (n = 6), respectively. 4. The [K+]o-induced decreases in aCli and aKi were both significantly inhibited, either by blocking the apical membrane K+ conductance with Ba2+ or the basolateral membrane Cl- conductance with DIDS (4,4'-diisothiocyano-stilbene-2,2'-disulphonic acid). 5. Transepithelial current pulses were used to determine the relative basolateral membrane Cl- conductance, TClBAS, was approximately 0.6 (n = 3), and the relative apical membrane K+ conductance, TKAP, was approximately 0.7 (n = 2). Step changes in basal bath [K+]o were used to estimate the relative basolateral membrane K+ conductance, TKBAS, was approximately 0.34 (n = 3). 6. These data show that the apical membrane K+ conductance and the basolateral membrane Cl- conductance are electrically coupled. In vivo, this coupling could have significant functional importance by modulating the relative hydration of the subretinal space, regulating RPE cell volume, and buffering the chemical composition of the subretinal space.  相似文献   

2.
1. The intracellular K+, Na+, and Ca2+ of mechanosensory neurons in the central nervous system of the leech Hirudo medicinalis was measured using double-barreled ion-sensitive microelectrodes. 2. After inhibition of the Na(+)-K+ pump with 5 x 10(-4) M ouabain, the intracellular K+ activity (aKi) decreased, while the intracellular Na+ activity (aNai) increased. The input resistance decreased in the presence of ouabain. The intracellular Ca2+ increased more than one order of magnitude after ouabain addition. All changes in intracellular ion activities and membrane resistance were fully reversible. 3. When extracellular Na+ concentration ([Na+]o) was removed [replaced by tris(hydroxymethyl)aminomethane (Tris)], aNai decreased. In the absence of [Na+]o, aKi and aNai remained unchanged after inhibition of the Na(+)-K+ pump by reducing the extracellular K+ concentration ([K+]o) to 0.2 mM. The membrane resistance increased under these conditions. 4. The intracellular Ca2+ decreased or remained constant after removal of [Na+]o. Addition of ouabain in the absence of [Na+]o did not change intracellular Ca2+, which only increased after readdition of [Na+]o. 5. The relative K+ permeability (PK) measured as membrane potential change during a brief increase of the [K+]o from 4 to 10 mM, increased manyfold after addition of ouabain but only little if [Na+]o had been removed before adding ouabain. 6. The results suggest that the intracellular Na+ increase after inhibition of the Na(+)-K+ pump affects the intracellular Ca2+ level by stimulating a Nai(+)-Ca2+ exchange mechanism. The subsequent intracellular Ca2+ activity (aCai) rise may result in an increase of the membrane permeability to K+ ions.  相似文献   

3.
1. Single-electrode voltage-clamp recordings were made from CA3 pyramidal cells in organotypic hippocampal slice cultures for measurement of membrane currents underlying both the gamma-aminobutyric acid (GABA)-mediated, Cl- -dependent inhibitory postsynaptic potential (IPSC), evoked in response to stimulation of the mossy fiber pathway, and responses to iontophoretically applied GABA. Their reversal potentials are presumed to equal the equilibrium potential for Cl- (37). Mechanisms underlying activity-dependent increases in the intracellular concentration of Cl- ([Cl-]i) were investigated by describing active and passive pathways for Cl- influx and efflux. 2. During 99-s applications of GABA, driving force declined by 51% due to increases in [Cl-]i; thus passive Cl- influx through GABA-activated pathways can significantly affect [Cl-]i. 3. Decreasing the extracellular K+ concentration ([K+]o) from 5.8 to 1 mM caused a rapid hyperpolarizing shift in the mean IPSC reversal potential (EIPSC) from -67.6 to -81.9 mV, even when membrane potential (Vm) was maintained constant and depolarized with respect to EIPSC. 4. Decreasing [K+]o from 5.8 to 1 mM caused a rapid hyperpolarizing shift in the mean GABA reversal potential (EGABA) from -64.7 to -81.1 mV, even when Vm was maintained constant and depolarized with respect to EGABA. Reducing the extracellular Cl- concentration from 153 to 89 mM, while maintaining [K+]o constant at 1 mM, shifted the mean EGABA from -81.1 to -66.2 mV, an amount close to that predicted by the Nernst equation for Cl-. We conclude that reducing [K+]o caused a hyperpolarizing shift in EGABA and EIPSC by decreasing [Cl-]i. 5. The shift of EIPSC and EGABA upon alteration of [K+]o did not result from contamination of the responses by additional K+-mediated components because it was unaffected by block of K+ channels with intracellular Cs+. 6. Reducing the extracellular Na+ concentration from 141 to 70 mM had no effect on EGABA. 7. Furosemide, bath-applied at 5 X 10(-4) M while holding Vm depolarized with respect to EIPSC, caused a rapid, reversible decrease in IPSC driving force averaging 69%, consistent with the presence of a furosemide-sensitive outward Cl- -transport system. 8. Reducing [K+]o from 5.8 to 1 mM in the presence of 5 X 10(-4) M furosemide produced a smaller shift of EIPSC from -61.0 to -71.2 mV, however, after washout of furosemide from [K+]o = 1 mM saline, EIPSC shifted further to -89.8 mV.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Microelectrodes were used to measure the potential difference (psi m) across the mucosal membrane of epithelial cells lining the villi of isolated Aplysia californica intestine. In substrate-free NaCl seawater medium psi m was -55.1 +/- 1.2 mV. The cell interior was negative relative to the mucosal bathing solution. Intracellular K+ activity, determined in the absorptive cells with single-barreled liquid ion-exchanger microelectrodes, was 383 +/- 15 mM. Since the calculated K+ equilibrium potential exceeds the membrane potential, K+ is accumulated by the intestinal absorptive cell. Intracellular Na+ activity (aiNa) was also determined in the intestinal cells of Aplysia with single-barreled liquid ion-exchanger microelectrodes and was 17.2 +/- 2.5 mM. aiNa was much less than that predicted by the electrochemical equilibrium value for Na+ across the mucosal membrane. From these data the steady-state transapical Na+ and K+ electrochemical potential differences were calculated. Serosal ouabain abolished net sodium absorption as determined by flux measurements. These results are consistent with the operation of a basolateral Na+ - K+ pump.  相似文献   

5.
The ionic basis for the low (-40 mV) resting membrane potential of glial cells surrounding the giant axons of the crayfish and their hyperpolarization by cholinergic agents (to -55 mV) was studied using standard electrophysiological techniques, ionic substitutions and pharmacological agents. The resting membrane potential of the glial cell was depolarized by increasing [K+]o, but the response was not Nernstian. Na+ depletion caused a small depolarization of the glial resting membrane potential, whereas Cl- depletion resulted in a hyperpolarization comparable to that seen with carbachol at various [K+]o. Both furosemide (1 mM) and bumetanide (0.1 mM) produced an 8-10 mV hyperpolarization as compared to 15-17 mV seen with Cl- depletion or carbachol. Carbachol has no further effect on the potential following furosemide treatment or Cl- depletion. After carbachol administration or Cl- depletion the resting membrane potential of the glial cell responded to [K+]o in a more Nernstian manner. The data indicate that the low resting membrane potential of glial cells is due to a combination of a low [K+]i and an outwardly-directed (depolarizing) Cl- electrochemical gradient. Carbachol acts to decrease Cl- conductance, resulting in the hyperpolarization of the glial cell membrane and a decrease in the outwardly-directed K+ electrochemical gradient by approximately two-thirds. We hypothesize that this mechanism for modulation of the glial cell membrane potential and the K+ electrochemical gradient serves to enhance the uptake of K+ by the glial cell transport system.  相似文献   

6.
The characteristics of adenosine 5'-triphosphate (ATP)-sensitive K+ channels in acutely isolated striatal neurons from adult rats were examined. Neurons had a resting membrane potential of -53.9+/-1.2 mV (n=66), with evoked or spontaneous action potentials firing at 10+/-0.7 Hz, and large inwards and outwards whole-cell currents. In cell-attached patches with a high [K+] in the pipette, a voltage-independent, ATP-insensitive 16.5+/-1.5 pS channel was observed in 375 out of 452 cells. Bath application of Na+-azide (0.5-2 mM) to 108 neurons revealed another 145.7+/-3.5 pS (LKATP) channel in 65 neurons; this channel was blocked by tolbutamide. The LKATP channel exhibited a high open probability (Po, 0.8+/-0.05) at 0 mV pipette potential. Varying the pipette [K+] shifted the reversal potential of LKATP, showing the channel's K+ selectivity. Cytoplasmic ATP (ATPi) reversibly inhibited LKATP, with an inhibitory constant (Ki) of 0.12 mM. LKATP was sensitive to intracellular Ca2+ but insensitive to iberiotoxin. In 25% of cell-attached patches, the presence of quinpirole in the pipette opened a third type of channel (90.6+/-1.7 pS, termed D2KATP). Sulpiride, a dopamine D2-receptor antagonist, inhibited D2KATP. ATPi reversibly inhibited D2KATP, with a Ki of 0.212 mM. The Na+-azide- or quinpirole-induced current caused a tolbutamide-sensitive membrane hyperpolarization and a marked reduction in action potential frequency. We propose that ATP-sensitive K+ channels play a metabolism-dependent role in striatal neurons.  相似文献   

7.
Membrane currents were recorded from enzymatically isolated cells from basal layers of rabbit corneal epithelium by the whole-cell clamp technique. Pipettes contained 140.4 mM KCl and extracellular K+ concentration was varied. The membrane currents on step voltage changes were rectangular currents with some fluctuations. The fluctuations disappeared near the zero-current potential. The reversal potential in normal Tyrode's solution with 5.4 mM K+ was -57.8 +/- 6.2 mV (mean +/- S.D., n = 10). Increasing [K+]o from 5.4 to 140.4 mM shifted the reversal potentials in the positive direction with a slope of 41.0 mV/decade. Concomitant depolarization of the resting potential was observed on increasing [K+]o. The whole-cell currents were blocked by Cs+ or Ba2+. These suggest that the major current component in the corneal epithelial cells in K+.  相似文献   

8.
Altering [K+]o might have different effects on action potential duration (APD) in myocytes from different regions. Therefore, the effects of [K+]o on regional differences in action potential characteristics were investigated in sub-endocardial, mid-myocardial and sub-epicardial myocytes isolated from the base of guinea-pig left ventricular free wall using three different [K+]o (2.7, 5.4 and 8.1 mM KCl). Action potentials were recorded using the switch-clamp technique at 0.5 Hz. Increasing [K+]o from 2.7 to 8.1 mM shortened the action potential duration to 90 % repolarization (APD90; mean APD90 values in sub-endocardial, mid-myocardial and sub-epicardial myocytes were, respectively, 295 +/- 9, 286 +/- 9 and 266 +/- 8 ms in 2.7 mM [K+]o, 270 +/- 7, 255 +/- 7 and 215 +/- 7 ms in 5.4 mM [K+]o, 234 + 7, 212 +/- 10 and 155 +/- 8 ms in 8.1 mM [K+]o), depolarized the resting potential, and reduced the amplitude of the action potential. The effect of increasing [K+]o on action potential characteristics was more pronounced in sub-epicardial myocytes than in sub-endocardial and mid-myocardial myocytes. The regional differences in APD90 in 5.4 mM [K+]o were increased in 8.1 mM [K+]o and abolished in 2.7 mM [K+]o. In conclusion, changing [K+]o produces more pronounced effects on action potentials in sub-epicardial myocytes than in sub-endocardial myocytes, modifying the normal heterogeneity of action potentials. The differences in the response of sub-epicardium and sub-endocardium to [K+]o may contribute to the flattening or inversion of the T wave commonly seen in patients presenting with hypokalaemia and the upright and tall T waves observed in electrocardiograms recorded during hyperkalaemia, although the underlying ionic currents remain to be determined.  相似文献   

9.
10.
C Zona  M Avoli 《Neuroscience letters》1989,102(2-3):223-228
Rat neocortical neurons in cell culture were studied with the patch-clamp technique in order to determine the properties of a large-conductance K+ channel in excised inside-out patches. In the presence of a physiological ionic gradient for K+ across the patch membrane ([K+]i = 120 mM; [K+]o = 3 mM), outward channel activity was detected when the patches were brought to membrane potential values less negative than -30 mV. Depolarization of the membrane increased the magnitude of the current. The I-V relationship displayed rectification at negative membrane potentials. When the I-V curve was differentiated the slope conductance calculated at 0 mV membrane potential was 120 pS. The single-channel permeability was 5.2 x 10(-13) cm/s and the current flow through the open K+ channel could be modeled using the constant-field electrodiffusion theory. K+ channel opening was not observed following removal of Ca2+ from the intracellular surface of the membrane. Our experiments indicate that, as in other cell types, rat neocortical neurons in culture exhibit a large-conductance K+ channel which is activated by Ca2+ acting on the cytoplasmic surface.  相似文献   

11.
Anomalous rectification in neurons from cat sensorimotor cortex in vitro   总被引:10,自引:0,他引:10  
The ionic mechanisms underlying anomalous rectification in large neurons from layer V of cat sensorimotor cortex were studied in an in vitro brain slice. The anomalous rectification was apparent as an increase of slope conductance during membrane hyperpolarization, and the development of anomalous rectification during a hyperpolarizing current pulse was signaled by a depolarizing sag of membrane potential toward resting potential (RP). Voltage-clamp analysis revealed the time- and voltage-dependent inward current (IAR) that produced anomalous rectification. IAR reversal potential (EAR) was estimated to be approximately -50 mV from extrapolation of linear, instantaneous, current-voltage relations. The conductance underlying IAR (GAR) had a sigmoidal steady-state activation characteristic. GAR increased with hyperpolarization from -55 to -105 mV with half-activation at approximately -82 mV. The time course of both GAR and IAR during a voltage step was described by two exponentials. The faster exponential had a time constant (tau F) of approximately 40 ms; the slow time constant (tau S) was approximately 300 ms. Neither tau F nor tau S changed with voltage in the range -60 mV to -110 mV. The fast component constituted approximately 80% of IAR at each potential. Both IAR and GAR increased in raised extracellular potassium [( K+]o) and EAR shifted positive, but the GAR activation curve did not shift along the voltage axis. Solutions containing an impermeable Na+ substitute caused an initial transient decrease in IAR followed by a slower increase of IAR. Brain slices bathed in Na+-substituted solution developed a gradual increase in [K+]o as measured with K+-sensitive microelectrodes. We conclude that GAR is permeable to both Na+ and K+, but the full contribution of Na+ was masked by the slow increase of [K+]o that occurred in Na+ substituted solutions. Chloride did not appear to contribute significantly to IAR since estimates of EAR were similar in neurons impaled with microelectrodes filled with potassium chloride or methylsulfate, whereas, ECl (estimated from reversal of a GABA-induced ionic current) was approximately 30 mV more positive with the KCl-filled microelectrodes. Extracellular Cs+ caused a reversible dose- and voltage-dependent reduction of GAR, whereas intracellular Cs+ was ineffective. The parameters measured during voltage clamp were used to formulate a quantitative empirical model of IAR.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
The cell bodies of spinal afferents, dorsal root ganglion neurons, are depolarized several millivolts, and their probability of spiking increased when axons of neighboring somata in the same ganglion are electrically stimulated repetitively. This form of neural communication has been designated cross-depolarization (CD) and cross-excitation (CE). The existence of CD and CE between somata of vagal afferents (nodose ganglion neurons, NGNs) of rats and guinea pigs was investigated by electrically stimulating the vagus nerve while recording the electrical activity of NGNs in intact nodose ganglia with sharp intracellular microelectrodes. CD and CE in NGNs were manifested by a membrane depolarization (approximately 4 mV), the presence of spontaneous action potentials, and a decreased spike threshold. CD was dependent on the frequency and intensity of vagal nerve stimulation. Two distinct types of CD were observed: 1) in NGNs with large input resistances (R(in)), CD was dependent on [Ca2+]o, associated with increased membrane conductance, and had an extrapolated reversal potential (E(rev)) value of about -25 mV; and 2) in NGNs with low R(in), CD was independent of [Ca2+]o, not accompanied by a membrane conductance change, or a measurable E(rev) value. These data reveal the existence of a chemical communication pathway between vagal afferent somata and suggest the possibility that communication between different visceral organs may occur at the level of the primary vagal afferent neuron.  相似文献   

13.
1. Intracellular recordings were obtained from histaminergic tuberomammillary (TM) neurons of rat hypothalamus in an in vitro slice preparation. The properties of a time- and voltage-dependent inward current activated on hyperpolarization, Ih, were studied by use of the single-electrode voltage-clamp technique. 2. The activation curve of Ih was well fit by a sigmoidal function, with half-maximal activation occurring at -98 +/- 6 mV. 3. The estimated reversal potential of Ih (Eh) in TM neurons was -35 +/- 9 (SD) mV. 4. The time constant of activation was well fit by a single exponential function and exhibited marked voltage dependence: at -90 mV, Ih activated with a time constant of 823 +/- 35 ms, whereas at -130 mV, Ih activated with a time constant of 280 +/- 65 ms. The time constant of deactivation of Ih at -60 mV was 302 +/- 35 ms. 5. Raising the extracellular potassium concentration ([K+]o) to 10 mM shifted Eh to a more depolarized value, while lowering the extracellular sodium concentration [( Na+]o) shifted Eh in the negative direction. Altering the extracellular chloride concentration ([Cl-]o) had little effect on Eh. 6. Increasing [K+]o to 10 mM increased the amplitude of both Ih and its underlying conductance gh, while reducing [Na+]o caused a small reduction in the amplitude of Ih with no measurable effect on gh. 7. The time constant of activation of Ih became shorter in raised [K+]o and longer in lowered [Na+]o. 8. Extracellularly applied cesium blocked Ih in a voltage-dependent manner. Extracellular barium reduced Ih but was less effective than cesium. 9. We conclude that Ih, carried by sodium and potassium ions, accounts for inward rectification of TM neurons. By increasing the whole-cell conductance during periods of prolonged hyperpolarization, Ih may act as an ionic shunt, decreasing the efficacy of synaptic inputs. This effect would be most apparent during rapid-eye-movement sleep, when TM neurons fall silent.  相似文献   

14.
Using extra- and intracellular recording techniques, we investigated the induction and frequency modulation of spontaneous epileptiform activity produced by changes in the concentration of extracellular potassium ([K+]o). This paper describes a quantitative relationship between [K+]o and the frequency of spontaneously occurring epileptiform events. Recordings were made from the CA3 subfield of the rat in vitro hippocampal slice preparation. Intracellular microelectrodes were filled with 2 M Cs2SO4 and connected to a 3-kHz, time-share, single-electrode current- and voltage-clamp device. The frequency of spontaneous epileptiform (interictal) discharges was determined from extracellular recordings as a function of [K+]o. Current- and voltage-clamp techniques were used to characterize the intracellular correlate of these epileptiform events. The frequency of bicuculline-induced spontaneous epileptiform discharges was dependent on [K+]o. Below 4 mM [K+]o, spontaneous discharges occurred sporadically in the presence of 10 microM bicuculline. Increasing [K+]o from 5 to 10 mM caused a fivefold increase in the rate of spontaneous discharges. Spontaneous epileptiform discharges also occurred in the absence of bicuculline when [K+]o was increased above 6.5 mM. The rate of these discharges was dependent on [K+]o in much the same way as the discharges induced by bicuculline. For any given [K+]o concentration greater than 6.5 mM, however, the resultant discharge rate was faster than that obtained when bicuculline was present in the bathing solution. Simultaneous intra- and extracellular recordings revealed that the spontaneous high-[K+]o-induced interictal discharge was accompanied by a large depolarization of the membrane potential that appeared similar to the paroxysmal depolarizing shift (PDS) seen with other convulsants. The intracellularly recorded event fulfilled the criteria for a synaptically mediated PDS. The waveform of the PDS was complex and dependent on the membrane potential. When the membrane potential was held at 0 mV, spontaneously occurring hyperpolarizing potentials were noted during the inter-PDS interval. These events were blocked by picrotoxin or bicuculline and were probably spontaneous inhibitory postsynaptic potentials. The complexity of the PDS waveform suggested that more than one synaptic conductance was involved in the generation of the PDS. The mean measured reversal potential of the depolarizing phase was -10.7 mV. Voltage-clamp techniques were used to measure the conductance underlying the depolarizing phase of the high-[K+]o-induced PDS. The mean measured conductance was 51.5 nS, with a reversal potential of -7.9 mV.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
To investigate the role of the electrogenic Na-K pump in the resting membrane of "diseased" or "depolarized" human atrial muscles, intracellular K+ activity (aiK) and resting membrane potential (Vm) were simultaneously measured using double-barreled K(+)-selective microelectrodes. Under perfusion with normal Tyrode's solution (37 degrees C) containing 5.4 mM [K]o, Vm averaged -43.9 +/- 1.4 mV, and aiK was 99.7 +/- 1.3 mM (mean +/- S.E., n = 33). The aiK was comparable to that of atrial muscles obtained from other intact mammalian species. In 5.4 mM [K]o, dihydro-ouabain (DHO) at concentrations of 10(-6) and 10(-5) M significantly decreased aiK and depolarized Vm. Similar decreases in aiK were observed when [K]o was decreased from 5.4 to 0.5 mM or when the temperature of the perfusing solution was decreased from 37 to 22 degrees C. Upon returning [K]o from 0.5 to 5.4 mM at 37 degrees C, aiK increased, Vm hyperpolarized markedly for about 3 min, and this was followed by less marked levels of hyperpolarization in the steady state. The high [K]o-induced increases in aiK were inhibited in the presence of DHO, and at low temperature (22 degrees C). Isoproterenol (10(-7) M) increased aiK and hyperpolarized Vm. Acetylcholine (10(-5) M) hyperpolarized Vm with no change in aiK. The rate of reduction of Na(+)-efflux during application of DHO (10(-5) M) was calculated based on the change in aiK and surface-to-volume ratio of the cell measured electronmicroscopically in the same tissue, and estimated to be 2.6 to 3.8 pmol/(cm2.s), close to the value reported for Purkinje fibers excised from intact animals. We conclude that the Na-K pump functions normally even in "diseased" human atrial muscles, thereby keeping aiK within a physiological range.  相似文献   

16.
The contribution of the Na+/Ca2+ exchanger to the myogenic vascular tone was examined in rat isolated skeletal muscle small arteries (ASK) with pronounced myogenic tone and mesenteric small arteries (AMS) with little myogenic tone. Myogenic tone was assessed by the vascular inner diameter at transmural pressures of 40 and 100 mmHg. To depress the Na+/Ca2+ exchanger, the extracellular Na+ concentration ([Na+]o) was lowered from 143 to 1.2 mM by substituting choline-Cl for NaCl. The ASK developed significant myogenic tone and constricted further in low [Na+]o. Nifedipine (1 microM) reduced both myogenic tone and low [Na+]o-induced contraction. Because the membrane potential of ASK was not changed by low [Na+]o (-35 +/- 2 mV at 143 mM [Na+]o, -37 +/- 3 mV at 1.2 mM [Na+]o), depolarization-induced Ca2+ influx was not a cause of the low [Na+]o-induced contraction. The AMS did not develop significant myogenic tone. Although low [Na+]o also constricted AMS, the magnitude of constriction was significantly weaker than that in ASK (17 +/- 4 vs. 47 +/- 6%, P < 0.01, at 58 mM Na+). With Bay K 8644, AMS developed myogenic tone, and low [Na+]o-induced constriction was significantly increased. In conclusion, Na+/Ca2+ exchanger may play an important role in regulating myogenic tone, likely via mediating Ca2+-extrusion.  相似文献   

17.
An inwardly rectifying K+ current was analysed in isolated toad retinal pigment epithelial (RPE) cells using the perforated-patch clamp technique. The zero-current potential (Vo) of RPE cells averaged -71 mV when the extracellular K+ concentration ([K+]o) was 2 mM. Increasing [K+]o from 0.5 to 5 mM shifted V0 by +43 mV, indicating a relative K+ conductance (TK) of 0.74. At [K+]o greater than 5 mM, TK decreased to 0.53. Currents were larger in response to hyperpolarizing voltage pulses than depolarizing pulses, indicating an inwardly rectifying conductance. Currents were time independent except in response to voltage pulses to potentials positive to 0 mV, where the outward current decayed with an exponential time course. Both the inwardly rectifying current and the transient outward current were eliminated by the addition of 0.5 mM Ba2+, 5 mM Cs+ or 2 mM Rb+ to the extracellular solution. The current blocked by these ions reversed near the K+ equilibrium potential (EK) over a wide range of [K+]o, indicating a highly selective K+ channel. The current-voltage relationship of the isolated K+ current exhibited mild inward rectification at voltages negative to -20 mV and a negative slope conductance at voltages positive to -20 mV. The Cs(+)- and Ba(2+)-induced blocks of the K+ current were concentration dependent but voltage independent. The apparent dissociation constants were 0.8 mM for Cs+ and 40 microM for Ba2+. The K+ conductance decreased when extracellular Na+ was removed. Increasing [K+]o decreased the K+ chord conductance (gK) at negative membrane potentials. In the physiological voltage range, increasing [K+]o from 2 to 5 mM caused gK to decrease by approximately 25%. We conclude that the inwardly rectifying K+ conductance represents the resting K+ conductance of the toad RPE apical membrane. The unusual properties of this conductance may enhance the ability of the RPE to buffer [K+]o changes that take place in the subretinal space at the transition between dark and light.  相似文献   

18.
The significance of extracellular potassium in central respiratory control was investigated using the isolated brainstem-spinal cord preparation of the neonatal rat. Depth profiles of extracellular potassium activity ([K+])ECF in the medulla were measured with ion-sensitive microelectrodes. Although [K+]ECF increased with depth in medullary tissue during control (4 mM) and low (1 mM) potassium concentration ([K+])CSF superfusion, this gradient disappeared with higher [K+]CSF. With low [K+]CSF (1 mM), respiratory CO2 responsiveness was abolished, and increased with high [K+]CSF (8 mM). Respiratory frequency (fR) was diminished at low [K+]CSF (1 mM), and increased with elevated [K+]CSF (8 and 16 mM); with yet higher [K+]CSF (32 mM) apnea occurred after a transient increase in fR. Perforated patch recording revealed that high [K+]ECF decreased membrane resistance, depolarized membrane potential, and increased firing frequency in most of the recorded medullary neurons. High [K+]ECF also increased excitatory and inhibitory post-synaptic potentials of medullary neurons and augmented the functional connectivity among neurons. It is concluded that [K+]ECF is of importance in the maintenance of respiratory rhythm and central chemosensitivity.  相似文献   

19.
Carbachol and gamma-aminobutyric acid depolarize mammalian sympathetic neurons and increase the free extracellular K+-concentration. We have used double-barrelled ion-sensitive microelectrodes to determine changes of the membrane potential and of the free intracellular Na+-, K+- and Cl- -concentrations ( [Na+]i, [K+]i and [Cl-]i) during neurotransmitter application. Experiments were performed on isolated, desheathed superior cervical ganglia of the rat, maintained in Krebs solution at 30 degrees C. Application of carbachol resulted in a membrane depolarization accompanied by an increase of [Na+]i, a decrease of [K+]i and no change in [Cl-]i. Application of gamma-aminobutyric acid also induced a membrane depolarization which, however, was accompanied by a decrease of [K+]i and [Cl-]i, whereas [Na+]i remained constant. Blockade of the Na+/K+-pump by ouabain completely inhibited both the reuptake of K+ and the extrusion of Na+ after the action of carbachol, and also the post-carbachol undershoot of the free extracellular K+-concentration. On the other hand, in the presence of ouabain, no changes in the kinetics of the reuptake of K+ released during the action of gamma-aminobutyric acid could be observed. Furosemide, a blocker of K+/Cl- -cotransport, inhibited the reuptake of Cl- and K+ after the action of gamma-aminobutyric acid. In summary, the data reveal that rat sympathetic neurons possess, in addition to the Na+/K+-pump, another transport system to regulate free intracellular K+-concentration. This system is possibly a K+/Cl- -cotransport.  相似文献   

20.
Membrane potentials from Schwann cells associated with giant axons of the small squid (Alloteuthis and Loliguncula) and the large squid (Loligo) were monitored with glass microelectrodes following 100 Hz/15 s axonal stimulation, or the application of 10(-7) M glutamate and ion substitutions, in the presence or absence of 10(-7) M d-tubocurarine. Glutamate or stimulation caused the membrane of the Schwann cell to depolarize to approximately -32 mV. This was rapidly replaced by a transient hyperpolarization to approximately -55 mV; the potential returning to the resting level (-40 mV) in approximately 7 min. In the presence of d-tubocurarine only the initial depolarization was evident. Nominally zero [Na+]o or treatment with 10(-7) M tetrodotoxin (in normal [Na+]o) blocked the stimulation- and glutamate-induced depolarization while low Clo- hyperpolarized the Schwann cell without effect on the glutamate- or stimulation-induced depolarization. Nao+ depletion or pretreatment with tetrodotoxin in normal Nao+ did not affect the development of the Schwann cell hyperpolarization. These results do not support the hypothesis that the glutamate-induced depolarization is the trigger leading to the Schwann cell hyperpolarization. Preliminary experiments to test the possibility that inositol phosphate second messenger and an increase in [Ca2+]i are triggered by glutamate receptor activation showed that nominally 0 Cao2+/75 mM Mgo2+ only slightly reduced the hyperpolarizing response to stimulation or glutamate while intracellular Bapta (20-30 microM) blocked the hyperpolarization but not the depolarization. [3H]Myoinositol incorporation into axon-Schwann cell plasma membranes was high.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号