首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Isolation of a candidate human hematopoietic stem-cell population.   总被引:35,自引:8,他引:35       下载免费PDF全文
We have identified a rare (0.05-0.1%) subset of human fetal bone marrow cells that contains multipotent hematopoietic precursors. The population of human precursor cells that express Thy-1 and CD34 but no known lineage markers is enriched for clonogenic activity that establishes long-term, multilineage (myelomonocytic and B lymphoid) cultures on mouse marrow stromal lines. Further, the Thy-1+CD34+ subset that takes up little of the fluorescent mitochondrial dye rhodamine 123 contains virtually all the cells that establish long-term cultures. In human fetal thymus transplanted into SCID (severe combined immunodeficiency) mice, Thy-1+CD34+ fetal bone marrow cells differentiate into T lymphocytes. In two of nine cases, allogeneic Thy-1+CD34+ cells could engraft intact human fetal bone marrow grown in SCID mice, resulting in donor-derived myeloid and B cells. By extrapolation, the rare human Thy-1+Lin-CD34+ cell population contains pluripotent hematopoietic progenitors; we propose that it is highly enriched for candidate hematopoietic stem cells.  相似文献   

2.
Myelodysplastic syndromes (MDS) form a heterogeneous group of clonal hematopoietic disorders with unfavourable prognosis. Allogeneic bone marrow transplantation is the only potentially curative treatment, but remains limited to a small subgroup of younger patients with HLA- compatible donors. As autologous stem cell transplantation is currently being explored as an alternative treatment strategy for MDS, more information needs to be acquired regarding the clonal nature of the progenitor cells in these autografts. Therefore, we have analyzed the clonal patterns of highly purified hematopoietic progenitors and their mature daughter cells in mobilized peripheral blood collections produced from five female patients with high-risk MDS in complete hematologic remission. X-chromosome activation patterns of flow-sorted immature (CD34 + 38low, CD34 + 33low) and committed (CD34 + 38high, CD34 + 33high) progenitors were studied with the polymerase chain reaction-based HUMARA assay. In four patients, a polyclonal remission was shown in all stem cell subpopulations and their mature daughter cells whereas one patient was found to remain skewed in all fractions, except T lymphocytes. This study provides strong evidence that polyclonal immature hematopoietic progenitors can be mobilized and harvested in patients high-risk MDS after treatment with high-dose chemotherapy.  相似文献   

3.
The transmembrane glycoprotein CD34 is expressed on human hematopoietic stem cells and committed progenitors in the bone marrow, and CD34-positive selection currently is used to isolate bone marrow repopulating cells in clinical transplantation protocols. Recently, CD34- hematopoietic stem cells were described in both humans and mice, and it was suggested that CD34+ murine bone marrow cells may lack long-term reconstituting ability. In this study, the long-term repopulating ability of CD34+Lin- vs CD34-Lin- cells was compared directly using syngeneic murine bone marrow transplantation. Highly purified populations of CD34+Lin- and CD34-Lin- cells each are able to reconstitute bone marrow, confirming that both populations contain hematopoietic stem cells; however, the number of hematopoietic stem cells in the CD34+Lin- fraction is approximately 100-fold greater than the number in the CD34-Lin- fraction. In competitive repopulation experiments, CD34+ stem cells are better able to engraft the bone marrow than are CD34- cells. CD34+Lin- cells provide both short- and long-term engraftment, but the CD34-Lin- cells are capable of only long-term engraftment. Ex vivo, the CD34+Lin- stem cells expand over 3 days in culture and maintain the ability to durably engraft animals in a serial transplant model. In contrast, when CD34-Lin- cells are cultured using the same conditions ex vivo, the cell number decreases, and the cells do not retain the ability to repopulate the bone marrow. Thus, the CD34+Lin- and CD34-Lin- cells constitute two functionally distinct populations that are capable of long-term bone marrow reconstitution.  相似文献   

4.
Waller  EK; Huang  S; Terstappen  L 《Blood》1995,86(2):710-718
We have previously described the isolation of separate populations of CD34+, CD38- stromal and hematopoietic progenitors cells within fetal bone marrow. The CD34+, CD38-, CD50+, HLA-DR+ population contained the majority of primitive hematopoietic progenitor cells, whereas stromal progenitors were contained within the CD34+, CD38-, CD50-, HLA-DR- population. In this study, we compared the frequencies and total numbers of clonogenic CD34+, CD38- stromal and hematopoietic cells as a function of fetal gestational age using single-cell fluorescent- activated cell sorting (FACS). At 14 weeks of gestation, 1/500 fetal bone marrow mononuclear cells were primitive hematopoietic CD34+, CD38- , HLA-DR+ progenitor cells, whereas 1/1,000 were stromal progenitors with the CD34+, CD38-, HLA-DR- phenotype. During fetal ontogeny there was a continuous, age-dependent decrease in the frequency of stromal progenitors, such that, at 24 weeks of gestation, only 1/100,000 of bone marrow cells had the CD34+, CD38-, HLA-DR- phenotype and were clonogenic stromal cells when isolated by FACS. In contrast, 1/250 bone marrow cells in a 24-week fetus had the CD34+, CD38-, HLA-DR+ phenotype and were clonogenic hematopoietic progenitors. The decrease in the frequency of stromal progenitors was a function of both a decreased frequency of cells with the CD34+, CD38-, HLA-DR- phenotype and a decrease in the growth potential of individual with this phenotype. The total numbers of mononuclear cells and the total numbers of hematopoietic progenitors in two fetal femurs increased in parallel, 100-fold, between 14 and 24 weeks of gestation. In contrast, the total numbers of clonogenic CD34+, CD38-, HLA-DR- stromal progenitor cells remained constant during this period. Although adult bone marrow samples contained stromal progenitor cells at a frequency of approximately 1/7,000 mononuclear cells, clonogenic stromal cells with the CD34+, CD38-, HLA-DR- phenotype could not be isolated by single- cell FACS from these samples. Thus, there are significant differences between the frequencies and biologic characteristics of stromal and hematopoietic stem cells during fetal and postnatal ontogeny.  相似文献   

5.
Four-color flow cytometry was used with a cocktail of antibodies to identify and isolate CD34+ hematopoietic progenitors from normal human peripheral blood (PB) and bone marrow (BM). Mature cells that did not contain colony forming cells were resolved from immature cells using antibodies for T lymphocytes (CD3), B lymphocytes (CD20), monocytes (CD14), and granulocytes (CD11b). Immature cells were subdivided based on the expression of antigens found on hematopoietic progenitors (CD34, HLA-DR, CD33, CD19, CD45, CD71, CD10, and CD7). CD34+ cells were present in the circulation in about one-tenth the concentration of BM (0.2% v 1.8%) and had a different spectrum of antigen expression. A higher proportion of PB-CD34+ cells expressed the CD33 myeloid antigen (84% v 43%) and expressed higher levels of the pan leukocyte antigen CD45 than BM-CD34+ cells. Only a small fraction of PB-CD34+ cells expressed CD71 (transferrin receptors) (17%) while 94% of BM-CD34+ expressed CD71+. The proportion of PB-CD34+ cells expressing the B-cell antigens CD19 (10%) and CD10 (3%) was not significantly different from BM-CD34+ cells (14% and 17%, respectively). Few CD34+ cells in BM (2.7%) or PB (7%) expressed the T-cell antigen CD7. CD34+ cells were found to be predominantly HLA-DR+, with a wide range of intensity. These studies show that CD34+ cells and their subsets can be identified in normal PB and that the relative frequency of these cells and their subpopulations differs in PB versus BM.  相似文献   

6.
Galy  AH; Cen  D; Travis  M; Chen  S; Chen  BP 《Blood》1995,85(10):2770-2778
T-cell production is largely dependent on the presence of a thymus gland where CD34+ precursors mature into T lymphocytes. Prethymic stages of T-cell development are less defined. Therefore, this study aims to delineate T-progenitor cell potential within the CD34+ Lineage-- (Lin-) cell compartment of adult bone marrow (ABM). Fractionation of CD34+ Lin- ABM cells with CD45RA, Thy-1, CD38, and HLA-DR failed to absolutely segregate T-cell reconstituting ability, indicating broad distribution of T-progenitor cell potential. Titration experiments showed that low numbers of CD34+ Lin- CD45RA+ (RA+) cells had greater thymus repopulating ability than CD34+ Lin- CD45RA- cells (RA-). The great majority (> 95%) of RA+ cells expressed CD38, HLA-DR and 70% to 90% of RA+ cells lacked Thy-1 surface expression. RA+ cells contained colony-forming unit granulocyte-macrophage (CFU-GM) progenitor cells but were depleted of erythroid potential, did not provide hematopoietic reconstitution of human bone fragments implanted into SCID mice, and did not efficiently maintain CD34+ cells with secondary clonogenic potential in bone marrow cultures. Thus, RA+ cells are oligopotent (nonprimitive) CD34+ progenitors with T-cell reconstituting ability. In contrast, these same assays indicated that CD34+ Lin- CD45RA- cells (RA- cells) comprised hematopoietic stem cells (HSC) with primitive multilineage (T, B, myeloid, and erythroid) hematopoietic potential. It was confirmed that HSC-containing populations, such as CD34+ Lin- CD45RA- Thy-1+ cells had thymus repopulating ability. Culture of RA- cells on murine bone marrow stromal cells in the presence of interleukin (IL)-3, IL-6, and leukemia inhibitory factor (LIF) generated CD34+ CD45RA+ progeny engrafting in a secondary severe combined immunodeficiency (SCID)-hu thymus assay. Altogether, our results underscore the fact that T-cell reconstituting potential can be dissociated from HSC activity. Furthermore, we speculate that HSC might develop into the T lineage indirectly, via differentiation into an intermediate oligopotent CD34+ CD45RA+ stage. Finally, T-progenitor cells can be cultured in vitro.  相似文献   

7.
8.
Miller  JS; Alley  KA; McGlave  P 《Blood》1994,83(9):2594-2601
We have recently described a marrow stroma-dependent long-term culture system that supports differentiation of CD34+ human marrow primitive progenitors into natural killer (NK) cells. We postulate that CD7 expression may be an early event in commitment of hematopoietic progenitors to the NK lineage. Here we compare the characteristics of CD34+7- and CD34+7+ marrow cells cultivated in the stroma-based NK culture system. These CD34+ populations were further compared with a marrow derived, more committed, CD34-7+ progenitor to emphasize the continuum of NK development and to highlight differences between progenitors in our assays. No progenitor proliferated when plated in media without stroma, underscoring the importance of stroma in NK differentiation. Plating progenitor populations in interleukin-2 containing media directly on preestablished, allogeneic, irradiated marrow stroma for 5 weeks resulted in CD56+CD3- NK cells; however, characteristics of the cultured populations differed. Fold expansion and cloning efficiency of the CD34+7+ population, determined by a functional limiting dilution assay was significantly higher than of the CD34+7- or CD34+7+ populations. This suggests that the CD34+7+ population is highly enriched for an NK progenitor and a possible intermediate in NK lineage differentiation. Further dividing the CD34+7+ population by the relative fluorescence of CD7 into CD34+7+dim and CD34+7+bright populations showed that the CD34+7+bright population exhibited a significantly higher cloning frequency than parallel experiments with CD34+7+dim cells (11.8% +/- 2.4% v 2.4% +/- 0.7%, n = 6; P = .005). Plating of the more primitive CD34+7- population in a transwell system (which separates progenitors from stroma by a microporous membrane) prevents differentiation into NK cells. In contrast, plating of CD34+7+ progenitors in transwells resulted in generation of NK cells. These data suggest that primitive, but not more mature NK progenitors may require direct contact with stroma for the initial differentiation steps. Finally, differentiation of the NK progenitors in this stroma-dependent model results in expression of CD2 not present on any of the starting populations. This observation suggests that marrow stroma can stimulate CD2 expression on NK progenitors in a previously undescribed fashion that may be analogous to the thymic effect on CD2 expression in immature T lymphocytes. These observations identify early steps in the commitment of primitive marrow CD34+ hematopoietic progenitors to a lymphoid lineage and underscore the importance of coexpression of CD7 with CD34 as an early lymphoid commitment characteristic and direct progenitor-stroma interactions in this process.  相似文献   

9.
Leukopenia and anaemia are observed in about a fifth of all patients with systemic lupus erythematosus (SLE) and may be due either to the destruction of blood cells or their decreased production. The former may be humoral or cell-mediated or result from apoptosis of peripheral blood cells. Several observations suggest the occurrence of the latter reduced in vitro proliferation of pluripotent bone marrow progenitors from the bone marrow aspirates of SLE patients,reduced counts of CD34+ cells in bone marrow aspirates in SLE patients, apoptosis of lymphopoietic progenitors and apoptosis of bone marrow cells. The aim of our study was to investigate whether humoral factors may induce suppression of haematopoiesis by increased apoptosis of CD34+ cells. For this purpose, we incubated allogeneic CD34+-enriched cells with sera of 18 leukopenic SLE patients. Apoptosis was induced by four of 18 sera. This effect was independent of complement-inhibition and FAS-blockade. Although reduced proliferation of autologous pluripotent bone marrow progenitors has been attributed to an IgG serum inhibitor, removal of IgG from these four proapoptotic sera had no effect on apoptosis of allogeneic CD34+ cells. The proapoptotic effect was associated with high titres of anti-dsDNA antibodies and low haemoglobin concentrations, but not with high titres of antinuclear antibodies, TNF-alpha and IFN-alpha of the sera tested.  相似文献   

10.
In contrast to myeloid and B-lymphoid differentiation, which take place in the marrow environment, development of T cells requires the presence of thymic stromal cells. We demonstrate in this study that human CD34+, CD34+ CD38+ and CD34+ CD38(low) cells from both cord blood and adult bone marrow reproducibly develop into CD4+ CD8+ T cells when introduced into NOD-SCID embryonic thymuses and further cultured in organotypic cultures. Such human/mouse FTOC fetal thymic organ culture) thus represents a reproducible and sensitive system to assess the T-cell potential of human primitive progenitor cells. The frequency of T-cell progenitors among cord-blood-derived CD34+ cells was estimated to be 1/500. Furthermore, the differentiation steps classically observed in human thymus were reproduced in NOD-SCID FTOC initiated with cord blood and human marrow CD34+ cells: immature human CD41(low) CD8- sCD3- TCR alphabeta- CD5+ CD1a+ T cells were mixed with CD4+ CD8+ cells and more mature CD4+ CD8- TCR alphabeta+ cells. However, in FTOC initiated with bone marrow T progenitors, <10% double-positive cells were observed, whereas this proportion increased to 50% when cord blood CD34+ cells were used, and most CD4+ cells were immature T cells. These differences may be explained by a lower frequency of T-cell progenitors in adult samples, but may also suggest differences in the thymic signals required by bone marrow versus cord blood T progenitors. Finally, since cytokine-stimulated CD34+ CD38(low) cells retained their ability to generate T cells, these FTOC assays will be of value to monitor, when combined with other biological assays, the influence of different expansion protocols on the potential of human stem cells.  相似文献   

11.
C Verfaillie  P McGlave 《Blood》1991,77(2):263-270
We investigated the in vitro hematopoietic stimulatory activity of leukemia inhibitory factor/human interleukin for DA cells (LIF/HILDA) on bone marrow progenitor populations in 17 normal individuals. In serum-free cultures LIF/HILDA did not induce colony growth. In serum containing media, LIF/HILDA stimulated the growth of colony forming unit (CFU)-MIX and CFU-EO in a dose-dependent fashion and resulted in an increased CFU-MIX and burst forming unit-erythrocytes (BFU-E) colony size. Similar stimulatory effects were seen on a highly purified hematopoietic progenitor population obtained after immunomagnetic depletion of mature myeloid precursors and lymphoid cells. Addition of LIF/HILDA to cultures containing maximally stimulatory concentrations of recombinant human interleukin-3 (rhuIL3), rhuIL3 + rhuIL6, or rhu granulocyte-macrophage colony-stimulating factor (rhu GM-CSF) in serum containing media significantly increased the number of CFU-MIX and eosinophil colonies and increased size and cluster number of CFU-MIX and BFU-E. Depletion of accessory T lymphocytes or monocytes from bone marrow progenitors did not alter the response of hematopoietic precursors to LIF/HILDA. A similar increased colony growth was seen when LIF/HILDA was added to cultures of positively selected CD34/HLA-DR+ or CD34+/HLA-DR- bone marrow hematopoietic progenitor cells stimulated with maximally stimulatory concentrations of rhuIL3 + rhuIL6. LIF/HILDA is a novel cytokine capable of stimulating growth and proliferation of multi-lineage, erythroid, and eosinophil colonies in the presence of serum. LIF/HILDA exerts its activity by direct interaction with highly purified immature bone marrow progenitor cells, has an additive effect when used with other cytokines known to stimulate primitive hematopoietic precursors, and does not require accessory cells.  相似文献   

12.
13.
The identification of the CD34 molecule, expressed almost exclusively on human hematopoietic stem cells and committed progenitors, and the development of CD34-specific monoclonal antibodies have made procurement of relatively pure populations of CD34+ marrow cells for autologous transplantation feasible. Characterization of the immunogenicity of CD34+ marrow cells may facilitate the design of successful strategies to use these cells for allogeneic transplantation. CD34+ marrow cells from normal volunteers were enriched to greater than 98% purity by immunoaffinity chromatography on column followed by fluorescence-activated cell sorting. Purified CD34+ cells were tested for expression of HLA-DR and other accessory molecules, and function in hematopoietic colony growth and mixed leukocyte culture (MLC) assays. Greater than 95% CD34+ cells were positive for HLA-DR and 74% +/- 10% were highly positive for CD18, the common beta-chain of a leukointegrin family. CD34+/CD18- cells were small, agranular lymphocytes which contained the majority of precursors for colony-forming cells detected in long-term cultures. They produced almost no stimulation of purified T cells from HLA-DR-incompatible individuals in bulk MLC or in limiting dilution assay. In contrast, CD34+/CD18+ cells were large, were enriched for cells forming mixed colonies in short- but not long-term assays, and were capable of stimulating allogeneic T cells. CD86, a natural ligand for the T-cell activation molecule CD28, was coexpressed with CD18 in 6% +/- 3% of CD34+ cells. CD34+/CD86+ cells, but not CD34+/CD86- cells, exhibited strong alloantigen presenting function. Thus, pluripotent hematopoietic activity and alloantigen presenting function are attributes of distinct subsets of CD34+ marrow cells. CD34+/CD18- or CD34+/CD86- cells may be more effective than either the whole CD34+ population or unseparated marrow in engrafting allogeneic recipients and may also facilitate induction of tolerance.  相似文献   

14.
This study reports the development of an assay, the Pre-colony-forming unit (CFU) assay, which detects human hematopoietic precursors. The Pre-CFU assay is based on the observation that precursors to CFU-granulocyte-macrophage (CFU-GM) that are undetectable in clonogenic assays differentiate into CFU-GM preferentially following treatment in suspension culture with recombinant human interleukin-1 alpha (rhIL-1 alpha) combined with rhIL-3. Using the Pre-CFU assay, hematopoietic precursors were detected in human bone marrow depleted of CFU-GM progenitors and differentiated hematopoietic elements via 4-hydroperoxycyclophosphamide treatment coupled with selection for CD34+ cells (4-HCresistant/CD34+ marrow). Additionally, the Pre-CFU assay detected recovery of hematopoiesis substantially earlier than the CFU-GM assay in primates following myeloablation with 5-fluorouracil. The Pre-CFU assay was used to asses purification of a phenotypically defined hematopoietic precursor population, the lin-CD34+ population. The lin-CD34+ population lacks detectable surface markers for T-cell, B-cell, natural killer cell, and myeloid lineage, possesses the CD34 antigen, is devoid of CFU-GM progenitors, and yields Pre-CFU assay values comparable with 4-HCresistant/CD34+ marrow. Using a combination of phenotypic analysis and Pre-CFU assay analysis, the action of rhIL-1 alpha plus rhIL-3 treatment on lin-CD34+ cells was further characterized. The data indicate that rhIL-1 alpha plus rhIL-3 treatment induces proliferation and differentiation of early hematopoietic precursors into progenitors and terminally differentiated cells, without inducing a significant expansion of the precursor population itself.  相似文献   

15.
Hematologic abnormalities occur in the majority of patients with acquired immunodeficiency syndrome (AIDS). Infection of the hematopoietic progenitor cells has been proposed as a potential explanation. In this study, different bone marrow cell populations, including the CD34+ hematopoietic progenitor cells, were purified by a fluorescence-activated cell sorter (FACS) and analyzed for the presence of human immunodeficiency virus-1 (HIV-1) proviral DNA using the polymerase chain reaction. A group of 14 patients with AIDS or AIDS-related complex (ARC) was studied (11 with peripheral blood cytopenias). The CD4+ helper cells in the bone marrow were found positive for HIV-1 DNA in all patients. In contrast, CD34+ progenitor cells were positive in only one patient. Two monocyte samples and two samples of CD4-/CD34- lymphocytes/blasts (mainly B and CD8 lymphocytes) were positive. Proviral DNA could not be detected in granulocytes. FACS analysis showed that the percentage of CD34+ hematopoietic progenitor cells was not altered in the bone marrow of AIDS patients in comparison with the HIV-1 seronegative controls. In contrast, the number of CD4+ lymphocytes was markedly reduced in the bone marrow of AIDS patients. These results show that the hematologic abnormalities in AIDS patients are neither explained by direct infection of the hematopoietic progenitor cells with HIV-1 nor by a depletion of progenitor cells.  相似文献   

16.
We explored the possibility that interferon gamma (IFN-gamma) has bidirectional functions in the survival and growth of hematopoietic progenitors, especially with regard to interactions with stromal cell-derived factor 1 (SDF-1). IFN-gamma partially rescued normal bone marrow CD34+ cells and colony-forming cells from apoptosis induced by serum and hematopoietic growth factor (HGF) deprivation, and SDF-1 further enhanced cell survival. Short-term IFN-gamma treatment of CD34+ cells in the absence of serum and HGFs enhanced the clonal growth of the cells in synergy with SDF-1. In contrast, IFN-gamma inhibited the clonal growth of hematopoietic progenitor cells in a standard methylcellulose clonogenic assay and inhibited the HGF-mediated survival of normal CD34+ cells. The addition of SDF-1 did not alter these outcomes. IFN-gamma did not enhance SDF-1-induced activation of PI3K/Akt or up-regulate the expression of CXCR4 or its function in bone marrow CD34+ cells. IFN-gamma up-regulated Socs1 messenger RNA expression in normal CD34+ cells, which was further enhanced with the addition of HGFs. These results indicate that IFN-gamma, partly in concert with SDF-1, exerts dual effects on the survival and growth of hematopoietic progenitor cells; the effects of IFN-gamma on hematopoietic progenitor cells can differ, depending on the particular in vitro experimental conditions, especially the presence of HGFs.  相似文献   

17.
BACKGROUND AND OBJECTIVES: The occurrence of chronic lymphocyte leukemia (CLL) and multiple myeloma (MM) in a single individual is rare and there is no consensus about the clonal relationship of the two disorders and no clinical data about the response to therapy. DESIGN AND METHODS: We describe a 49-year old patient who developed a III stage IgD k MM after fludarabine treatment for a previous diagnosis of CLL and then was submitted to an high-dose treatment with autologous CD34+ selected stem cell support. An immunologic and molecular characterisation of peripheral blood and bone marrow was performed at the time of appearance of the two coexisting neoplasms. RESULTS: By immunophenotyping, monoclonal B-lymphocytes stained with l chains, whereas marrow plasma cells were positive for k chains. The Ig heavy chain rearrangement analysis performed on the bone marrow confirmed the presence of two distinct tumour clones, one of which was also present in the peripheral blood. During an 18 months follow-up after autotransplantation, the CLL-related clone became undetectable, whereas MM persisted with a minimal amount of Bence Jones proteinuria and a 15-20% plasma cell marrow infiltration. INTERPRETATION AND CONCLUSIONS: Our results suggest that in this patient CLL and MM originate from separate B-cell progenitors. Both disorders were responsive to a CD34+ selected ASCT.  相似文献   

18.
19.
Recently we reported that the human thymus contains a minute population of CD34+CD38dim cells that do not express the T-cell lineage markers CD2 and CD5. The phenotype of this population resembled that of CD34+CD38dim cells present in fetal liver, umbilical cord blood, and bone marrow known to be highly enriched for pluripotent hematopoietic stem cells. In this report we tested the hypothesis that the CD34+CD38dim thymocytes constitute the most primitive hematopoietic cells in the thymus using a combination of phenotypic and functional analyses. It was found that in contrast to CD34+CD38dim cells from fetal liver and bone marrow, CD34+CD38dim cells from the thymus express high levels of CD45RA and are negative for Thy-1. These data indicate that the CD34+CD38dim thymocytes are distinct from pluripotent stem cells. CD34+CD38dim thymocytes differentiate into T cells when cocultured with mouse fetal thymic organs. In addition, individual cells in this population can differentiate either to natural killer cells in the presence of stem cell factor (SCF), interleukin-7 (IL-7), and IL-2 or to dendritic cells in the presence of SCF, granulocyte- macrophage colony-stimulating factor, and tumor necrosis factor alpha(TNFalpha), indicating that CD34+CD38dim thymocytes contain multi- potential hematopoietic progenitors. To establish which CD34+ fetal liver subpopulation contains the cells that migrate to the thymus, we investigated the T-cell-developing potential of CD34+CD38dim and CD34+CD38+ fetal liver cells and found that the capacity of CD34+ fetal liver cells to differentiate into T cells is restricted to those cells that are CD38dim. Collectively, these findings indicate that cells from the CD34+CD38dim fetal liver cell population migrate to the thymus before upregulating CD38 and ommitting to the T-cell lineage.  相似文献   

20.
Bone marrow cells (BMC) are involved in the pathogenesis of human cytomegalovirus++ (HCMV) infections, and the hematopoietic cells are probable sites of HCMV latency in healthy donors. In vitro studies have indicated both a direct inhibitory effect of HCMV on proliferation and differentiation of myeloid bone marrow progenitors and an impairment of bone marrow stroma cell function by HCMV. The purpose of the present study was to establish whether the suppressing effect could be limited to subsets of immature CD34+ BMC and to investigate the role of immature cell populations as possible sites of HCMV latency. CD34+ cells from healthy HCMV-seropositive and -seronegative donors were sorted according to the expression of HLA-DR (CD34+ HLA-DR+ and CD34+ HLA-DR- cells). The progenitor growth of hematopoietic progenitor cells from seronegative donors was examined by colony and single-cell assays after in vitro infection with HCMV. To determine the susceptibility of the CD34+ cells to HCMV infection in vitro and in vivo, cells of both subsets from seronegative and seropositive donors were analyzed for the presence of HCMV DNA by polymerase chain reaction. HCMV infection in vitro inhibited the interleukin-1alpha (IL-1alpha)-, IL-3-, granulocyte colony-stimulating factor-, granulocyte-macrophage colony-stimulating factor-, and stem cell factor-induced proliferation in single-cell assays of CD34+ HLA-DR- cells by 34%. In contrast, the colony growth of the CD34+ HLA-DR+ subset was suppressed in cells from only 3 of the 8 donors. However, in vitro HCMV infection of the CD34+ HLA-DR+ progenitor cells inhibited the proliferation of all donors tested when hematopoietic growth factors were used individually to promote progenitor growth. In addition, the formation of burst-forming units- erythroid and colony-forming units-granulocyte, erythrocyte, monocyte, megakaryocyte was reduced 40% to 60% by HCMV in vitro. In contrast, the growth of high proliferative potential colony-forming cells was not inhibited after in vitro HCMV infection. Furthermore, HCMV DNA was detected in both CD34+ HLA-DR- and CD34+ HLA-DR+ progenitors from in vitro-infected HCMV-seronegative donors and cells from HCMV- seropositive donors. Taken together, the early progenitors defined as CD34+ HLA-DR- and CD34+ HLA-DR+ are directly suppressed in their proliferation by HCMV in vitro, and hematopoietic stem cells are also sites of HCMV latency in healthy HCMV-seropositive donors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号