首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Objective

We reported previously that the orphan nuclear receptor, estrogen receptor–related receptor α (ERRα), is expressed in articular chondrocytes and is dysregulated in a mouse model of inflammatory arthritis. The aim of this study, therefore, was to determine whether ERRα is also dysregulated in patients with osteoarthritis (OA).

Methods

ERRα messenger RNA (mRNA) and protein were quantified in normal and OA cartilage samples and in OA chondrocytes in vitro, with and without short‐term treatment with a variety of OA‐associated factors and signaling pathway agonists and inhibitors.

Results

ERRα expression was lower in OA than in normal articular cartilage. Interleukin‐1β (IL‐1β) markedly up‐regulated ERRα expression in OA chondrocytes in vitro, and agonist or inhibitor treatment indicated that the up‐regulation was dependent on cyclooxygenase 2 (COX‐2; NS398), prostaglandin E2, cAMP (8‐bromo‐cAMP), and protein kinase A (PKA; KT5720). Treatment with the ERRα inverse agonist XCT790 decreased the expression of SOX9 and the up‐regulation of ERRα by IL‐1β, suggesting autoregulation of ERRα in the IL‐1β pathway. Matrix metalloproteinase 13 (MMP‐13) expression was also decreased by treatment with XCT790 plus IL‐1β versus IL‐1β alone, and the down‐regulation of MMP‐13 mRNA and protein observed with XCT790 alone suggests that the up‐regulation of MMP‐13 by IL‐1β is ERRα‐dependent.

Conclusion

We report the first evidence that ERRα expression is regulated by IL‐1β in COX‐2–, cAMP‐, and PKA‐dependent pathways in OA chondrocytes. We confirmed that SOX9 is an ERRα target gene in human, as in rodent, chondrocytes and identified MMP‐13 as a potential new target gene, which suggests that ERRα may both respond to the healing signal and contribute to extracellular degradation in OA cartilage.
  相似文献   

3.

Objective

Interleukin‐1β (IL‐1β) and tumor necrosis factor α (TNFα) stimulate chondrocyte matrix catabolic responses, thereby compromising cartilage homeostasis in osteoarthritis (OA). AMP‐activated protein kinase (AMPK), which regulates energy homeostasis and cellular metabolism, also exerts antiinflammatory effects in multiple tissues. This study was undertaken to test the hypothesis that AMPK activity limits chondrocyte matrix catabolic responses to IL‐1β and TNFα.

Methods

Expression of AMPK subunits was examined, and AMPKα activity was ascertained by the phosphorylation status of AMPKα Thr172 in human knee articular chondrocytes and cartilage by Western blotting and immunohistochemistry, respectively. Procatabolic responses to IL‐1β and TNFα, such as release of glycosaminoglycan, nitric oxide, and matrix metalloproteinases 3 and 13 were determined by dimethylmethylene blue assay, Griess reaction, and Western blotting, respectively, in cartilage explants and chondrocytes with and without knockdown of AMPKα by small interfering RNA.

Results

Normal human knee articular chondrocytes expressed AMPKα1, α2, β1, β2, and γ1 subunits. AMPK activity was constitutively present in normal articular chondrocytes and cartilage, but decreased in OA articular chondrocytes and cartilage and in normal chondrocytes treated with IL‐1β and TNFα. Knockdown of AMPKα resulted in enhanced catabolic responses to IL‐1β and TNFα in chondrocytes. Moreover, AMPK activators suppressed cartilage/chondrocyte procatabolic responses to IL‐1β and TNFα and the capacity of TNFα and CXCL8 (IL‐8) to induce type X collagen expression.

Conclusion

Our findings indicate that AMPK activity is reduced in OA cartilage and in chondrocytes following treatment with IL‐1β or TNFα. AMPK activators attenuate dephosphorylation of AMPKα and procatabolic responses in chondrocytes induced by these cytokines. These observations suggest that maintenance of AMPK activity supports cartilage homeostasis by protecting cartilage matrix from inflammation‐induced degradation.
  相似文献   

4.

Objective

To evaluate the in vivo therapeutic effect of pioglitazone, a peroxisome proliferator–activated receptor γ (PPARγ) agonist, on the development of lesions in a guinea pig model of osteoarthritis (OA), and to determine the influence of pioglitazone on the synthesis of matrix metalloproteinase 13 (MMP‐13) and interleukin‐1β (IL‐1β) in articular cartilage.

Methods

The OA model was created by partial medial meniscectomy of the right knee joint. The guinea pigs were divided into 4 treatment groups: unoperated animals that received no treatment (normal), operated animals (OA guinea pigs) that received placebo, OA guinea pigs that received oral pioglitazone at 2 mg/kg/day, and OA guinea pigs that received oral pioglitazone at 20 mg/kg/day. The animals began receiving medication 1 day after surgery and were killed 4 weeks later. Macroscopic and histologic analyses were performed on the cartilage. The levels of MMP‐13 and IL‐1β in OA cartilage chondrocytes were evaluated by immunohistochemistry.

Results

OA guinea pigs treated with the highest dosages of pioglitazone showed a significant decrease, compared with the OA placebo group, in the surface area (size) and grade (depth) of cartilage macroscopic lesions on the tibial plateaus. The histologic severity of cartilage lesions was also reduced. A significantly higher percentage of chondrocytes in the middle and deep layers stained positive for MMP‐13 and IL‐1β in cartilage from placebo‐treated OA guinea pigs compared with normal controls. Guinea pigs treated with the highest dosage of pioglitazone demonstrated a significant reduction in the levels of both MMP‐13 and IL‐1β in OA cartilage.

Conclusion

This is the first in vivo study demonstrating that a PPARγ agonist, pioglitazone, could reduce the severity of experimental OA. This effect was associated with a reduction in the levels of MMP‐13 and IL‐1β, which are known to play an important role in the pathophysiology of OA lesions.
  相似文献   

5.
6.

Objective

The main feature of osteoarthritis (OA) is degradation and loss of articular cartilage. Interleukin‐1β (IL‐1β) is thought to have a prominent role in shifting the metabolic balance toward degradation. IL‐1β is first synthesized as an inactive precursor that is cleaved to the secreted active form mainly in the “inflammasome,” a complex of initiators (including NLRP3), adaptor molecule ASC, and caspase 1. The aim of this study was to clarify the roles of IL‐1β and the inflammasome in cartilage breakdown.

Methods

We assessed IL‐1β release by cartilage explants from 18 patients with OA. We also evaluated the lipopolysaccharide (LPS)–, IL‐1α–, and tumor necrosis factor α (TNFα)–induced activity of matrix metalloproteinase 3 (MMP‐3), MMP‐9, and MMP‐13 in NLRP3‐knockout mice and wild‐type mice and the inhibition of caspase 1 with Z‐YVAD‐FMK and the blockade of IL‐1β with IL‐1 receptor antagonist (IL‐1Ra). Cartilage explants from NLRP3‐knockout mice and IL‐1R type I (IL‐1RI)–knockout mice were subjected to excessive dynamic compression (0.5 Hz, 1 MPa) to trigger degradation, followed by assessment of load‐induced glycosaminoglycan (GAG) release and MMP enzymatic activity.

Results

Despite the expression of NLRP3, ASC, and caspase 1, OA cartilage was not able to produce active IL‐1β. LPS, IL‐1α, and TNFα dose‐dependently increased MMP‐3, MMP‐9, and MMP‐13 activity in cultured chondrocytes and in NLRP3−/− chondrocytes, and this effect was not changed by inhibiting caspase 1 or IL‐1β. The load‐induced increase in GAG release and MMP activity was not affected by knockout of NLRP3 or IL‐1RI in cartilage explants.

Conclusion

OA cartilage may be degraded independently of any inflammasome activity, which may explain, at least in part, the lack of effect of IL‐1β inhibitors observed in previous trials.
  相似文献   

7.

Objective

To examine cyclooxygenase‐2 (COX‐2) enzyme expression, its regulation by interleukin‐1β (IL‐1β), and the role of prostaglandin E2 (PGE2) in proteoglycan degradation in human osteoarthritic (OA) cartilage.

Methods

Samples of human OA articular cartilage, meniscus, synovial membrane, and osteophytic fibrocartilage were obtained at knee arthroplasty and cultured ex vivo with or without IL‐1β and COX inhibitors. COX expression was evaluated by immunohistochemistry and Western blot analysis. The enzymatic activity of COX was measured by conversion of arachidonic acid to PGE2. Cartilage degradation was evaluated by measuring the accumulation of sulfated glycosaminoglycans in the medium.

Results

IL‐1β induced robust expression of COX‐2 and PGE2 in OA meniscus, synovial membrane, and osteophytic fibrocartilage explants, whereas low levels were produced in OA articular cartilage. IL‐1β also induced cartilage proteoglycan degradation in OA synovial membrane‐cartilage cocultures. Increased proteoglycan degradation corresponded to the induction of COX‐2 protein expression in, and PGE2 production from, the synovial membrane. Dexamethasone, neutralizing IL‐1β antibody, or the selective COX‐2 inhibitor, SC‐236, attenuated both the IL‐1β‐induced PGE2 production and cartilage proteoglycan degradation in these cocultures. The addition of PGE2 reversed the inhibition of proteoglycan degradation caused by SC‐236.

Conclusion

IL‐1β‐induced production of COX‐2 protein and PGE2 was low in OA articular cartilage compared with that in the other OA tissues examined. IL‐1β‐mediated degradation of cartilage proteoglycans in OA synovial membrane‐cartilage cocultures was blocked by the selective COX‐2 inhibitor, SC‐236, and the effect of SC‐236 was reversed by the addition of exogenous PGE2. Our data suggest that induction of synovial COX‐2‐produced PGE2 is one mechanism by which IL‐1β modulates cartilage proteoglycan degradation in OA.
  相似文献   

8.

Objective

Bone morphogenetic protein (BMP) and transforming growth factor β (TGFβ) are potent anabolic factors in adult articular chondrocytes. In this study, we investigated whether intracellular inhibitors of BMP and TGFβ signaling, inhibitory Smad6 (I‐Smad6) and I‐Smad7, are expressed in articular chondrocytes in normal and osteoarthritic (OA) cartilage, and whether their expression shows a correlation with the anabolic activity of OA chondrocytes in vivo and after interleukin‐1β (IL‐1β) stimulation in vitro.

Methods

RNA isolated directly from normal and OA human knee cartilage as well as from cultured articular chondrocytes was analyzed by (quantitative) polymerase chain reaction technology. Immunolocalization of the I‐Smads was performed on tissue sections and compared with the anabolic cellular activity as documented by in situ hybridization experiments for aggrecan and type II collagen.

Results

Both Smad6 and Smad7 were expressed in all samples of normal and OA cartilage. Immunostaining (including confocal microscopy) confirmed the presence of Smad6 and Smad7 in the majority of normal and degenerated articular chondrocytes; localization was mostly cytoplasmic. No correlation between expression of the main anabolic genes and expression of the I‐Smads was found. In cultured articular chondrocytes, stimulation with IL‐1β showed up‐regulation of Smad7, whereas Smad6 was down‐regulated.

Conclusion

Both Smad6 and Smad7 are expressed in adult human articular chondrocytes. The primarily cytoplasmic localization suggests permanent activation of the I‐Smads in articular cartilage in vivo. No evidence was found that up‐regulation or down‐regulation of I‐Smads in OA cartilage correlates directly with the anabolic (or catabolic) activity of articular chondrocytes. The regulation in chondrocytes of Smad6 and Smad7 expression by IL‐1β suggests a potentially important role of IL‐1β signaling in chondrocytes, via indirect influencing of the BMP/TGFβ signaling cascade.
  相似文献   

9.

Objective

To investigate the mechanism of induction of matrix metalloproteinases (MMPs) by a 40‐kd COOH‐terminal heparin‐binding fibronectin fragment (HBFN‐f) containing III12–14 and IIICS domains in human articular cartilage in culture.

Methods

Human articular cartilage was removed from macroscopically normal femoral heads and cultured with HBFN‐f. MMP secretion into conditioned media was analyzed by immunoblotting (MMPs 1 and 13) and by gelatin zymography (MMPs 2 and 9). Type II collagen cleavage by collagenase was monitored in culture by immunoassay. Involvement of specific peptide‐binding domains in HBFN‐f and the involvement of CD44 were assessed with synthetic peptides and an anti‐CD44 antibody. Immunofluorescence histochemistry was performed using fluorescein isothiocyanate–conjugated anti‐CD44 antibody.

Results

HBFN‐f stimulated production of MMPs 1, 2, 9, and 13 in association with type II collagen cleavage by collagenase in human articular cartilage. Peptide V (WQPPRARI) of HBFN‐f, which can bind cell surface heparan sulfate proteoglycan (HSPG), blocked MMP induction by HBFN‐f, while the scrambled peptide V (RPQIPWAR) had no effect. Peptide CS‐1 of 25 amino acids in IIICS of HBFN‐f caused no significant effect. Treatment of cartilage with anti‐CD44 antibody or HSPG resulted in significant inhibition of HBFN‐f–stimulated MMP production. Preincubation with peptide V blocked binding of the anti‐CD44 antibody to chondrocytes in cartilage.

Conclusion

Interaction of the peptide V sequence in HBFN‐f with glycosaminoglycans, such as those in CD44, plays an important role in HBFN‐f–stimulated MMP production in articular cartilage. Because CD44 is up‐regulated in osteoarthritic and rheumatoid arthritic cartilage, the role of the interaction between CD44 and HBFN‐f in these pathologies should be of relevance and should be studied further.
  相似文献   

10.

Objective

To determine whether oxidative damage to cartilage proteins can be detected in aging and osteoarthritic (OA) cartilage, and to correlate the results with the local production of interleukin‐1β (IL‐1β) and the responsiveness of isolated chondrocytes to stimulation with insulin‐like growth factor 1 (IGF‐1).

Methods

The presence of nitrotyrosine was used as a measure of oxidative damage. Histologic sections of knee articular cartilage, obtained from young adult and old adult cynomolgus monkeys, which develop age‐related, naturally occurring OA, were evaluated. Each cartilage section was graded histologically on a scale of 0–7 for the presence of OA‐like changes, and serial sections were immunostained using antibodies to nitrotyrosine and IL‐1β. Chondrocytes isolated and cultured from cartilage adjacent to the sections used for immunostaining were tested for their response to IGF‐1 stimulation by measuring sulfate incorporation in alginate cultures. For comparison with the monkey tissues, cartilage sections from human tissue donors and from tissue removed at the time of OA‐related joint replacement surgery were also immunostained for nitrotyrosine and IL‐1β.

Results

The presence of nitrotyrosine was associated with aging and with the development of OA in cartilage samples from both monkeys and humans. All sections that were highly positive for IL‐1β also showed staining for nitrotyrosine. However, in a few sections from older adult monkeys and humans, nitrotyrosine was present but IL‐1β was absent, suggesting that some age‐related oxidative damage is independent of IL‐1β. In chondrocytes that were isolated from monkey cartilage positive for nitrotyrosine or IL‐1β, the response to stimulation with IGF‐1 was significantly reduced. In some samples from older adult monkeys, IGF‐1 resistance was seen in cells isolated from tissue that did not stain for nitrotyrosine or IL‐1β.

Conclusion

Oxidative damage due to the concomitant overproduction of nitric oxide and other reactive oxygen species is present in both aging and OA cartilage. This damage can contribute to the resistance of chondrocytes to IGF‐1 stimulation, but it is unlikely to be the sole cause of IGF‐1 resistance in these chondrocytes.
  相似文献   

11.

Objective

S100A4 has been shown to be increased in osteoarthritic (OA) cartilage and to stimulate chondrocytes to produce matrix metalloproteinase 13 (MMP‐13) through activation of the receptor for advanced glycation end products (RAGE). The aim of this study was to examine the mechanism of S100A4 secretion by chondrocytes.

Methods

Human articular chondrocytes isolated from ankle cartilage were stimulated with 10 ng/ml of interleukin‐1β (IL‐1β), IL‐6, IL‐7, or IL‐8. Cells were pretreated with either a JAK‐3 inhibitor, brefeldin A, or cycloheximide. Immunoblotting with phospho‐specific antibodies was used to determine the activation of signaling proteins. Secretion of S100A4 was measured in conditioned media by immunoblotting, and MMP‐13 was measured by enzyme‐linked immunosorbent assay.

Results

Chondrocyte secretion of S100A4 was observed after treatment with IL‐6 or IL‐8 but was much greater in cultures treated with equal amounts of IL‐7 and was not observed after treatment with IL‐1β. IL‐7 activated the JAK/STAT pathway, with increased phosphorylation of JAK‐3 and STAT‐3, leading to increased production of S100A4 and MMP‐13. Overexpression of a dominant‐negative RAGE construct inhibited the IL‐7–mediated production of MMP‐13. Pretreatment of chondrocytes with a JAK‐3 inhibitor or with cycloheximide blocked the IL‐7–mediated secretion of S100A4, but pretreatment with brefeldin A did not.

Conclusion

IL‐7 stimulates chondrocyte secretion of S100A4 via activation of JAK/STAT signaling, and then S100A4 acts in an autocrine manner to stimulate MMP‐13 production via RAGE. Since both IL‐7 and S100A4 are up‐regulated in OA cartilage and can stimulate MMP‐13 production by chondrocytes, this signaling pathway could contribute to cartilage destruction during the development of OA.
  相似文献   

12.

Objective

To investigate the in vitro effect of therapeutic hyaluronan (HA) of 500–730 kd on anti‐Fas–induced apoptosis of chondrocytes from osteoarthritis (OA) patients, and to assess its mechanism of action by analyzing the role of the 2 HA receptors, CD44 and CD54 (intercellular adhesion molecule 1 [ICAM‐1]).

Methods

Chondrocytes isolated from human OA knee cartilage were cultured and the effect of HA on both spontaneous and anti‐Fas–induced apoptosis was evaluated. Apoptosis was analyzed by JAM test (for quantitative analysis of fragmented DNA), cell death detection immunoassay (for quantitative analysis of oligonucleosome), TUNEL assay, and electron microscopy. Blocking experiments with anti‐CD44 and anti‐CD54 alone or in combination were performed to investigate the HA mechanism of action.

Results

Both quantitative tests demonstrated that anti‐Fas significantly induced apoptosis of isolated OA chondrocytes. HA at 1,000 μg/ml significantly reduced the anti‐Fas–induced apoptosis of chondrocytes but did not affect spontaneous chondrocyte apoptosis. These data were also confirmed by TUNEL staining and by electron microscopy morphologic evaluation. The antiapoptotic effects of HA on anti‐FAS–induced chondrocyte apoptosis were significantly decreased by both anti‐CD44 (mean ± SD 57 ± 12% inhibition) and anti–ICAM‐1 (31 ± 22% inhibition). The mixture of the 2 antibodies had an additive effect, since the rate of inhibition increased to 87 ± 13%.

Conclusion

These data demonstrate that 500–730‐kd HA exerts an antiapoptotic effect on anti‐FAS–induced chondrocyte apoptosis by binding its specific receptors (CD44 and ICAM‐1). Furthermore, this HA fraction may be able to slow down chondrocyte apoptosis in OA by regulating the processes of cartilage matrix degradation.
  相似文献   

13.
14.
15.
16.

Objective

Cell–matrix interactions regulate chondrocyte differentiation and survival. The α1β1 integrin is a major collagen receptor that is expressed on chondrocytes. Mice with targeted inactivation of the integrin α1 gene (α1‐KO mice) provide a model that can be used to address the role of cell–matrix interactions in cartilage homeostasis and osteoarthritis (OA) pathogenesis.

Methods

Knee joints from α1‐KO and wild‐type (WT) BALB/c mice were harvested at ages 4–15 months. Knee joint sections were examined for inflammation, cartilage degradation, and loss of glycosaminoglycans (by Safranin O staining). Immunohistochemistry was performed to detect the distribution of α1 integrin, matrix metalloproteinases (MMPs), and chondrocyte apoptosis.

Results

In WT mice, the α1 integrin subunit was detected in hypertrophic chondrocytes in the growth plate and in a subpopulation of cells in the deep zone of articular cartilage. There was a marked increase in α1‐positive chondrocytes in the superficial and upper mid‐zones in OA‐affected areas in joints from old WT mice. The α1‐KO mice showed more severe cartilage degradation, glycosaminoglycan depletion, and synovial hyperplasia as compared with the WT mice. MMP‐2 and MMP‐3 expression was increased in the OA‐affected areas. In cartilage from α1‐KO mice, the cellularity was reduced and the frequency of apoptotic cells was increased. These results suggest that the α1 integrin subunit is involved in the early remodeling process in OA cartilage.

Conclusion

Deficiency in the α1 integrin subunit is associated with an earlier deregulation of cartilage homeostasis and an accelerated, aging‐dependent development of OA.
  相似文献   

17.

Objective

MicroRNA (miRNA) are a class of noncoding small RNAs that act as negative regulators of gene expression. MiRNA exhibit tissue‐specific expression patterns, and changes in their expression may contribute to pathogenesis. The objectives of this study were to identify miRNA expressed in articular chondrocytes, to determine changes in osteoarthritic (OA) cartilage, and to address the function of miRNA‐140 (miR‐140).

Methods

To identify miRNA specifically expressed in chondrocytes, we performed gene expression profiling using miRNA microarrays and quantitative polymerase chain reaction with human articular chondrocytes compared with human mesenchymal stem cells (MSCs). The expression pattern of miR‐140 was monitored during chondrogenic differentiation of human MSCs in pellet cultures and in human articular cartilage from normal and OA knee joints. We tested the effects of interleukin‐1β (IL‐1β) on miR‐140 expression. Double‐stranded miR‐140 (ds–miR‐140) was transfected into chondrocytes to analyze changes in the expression of genes associated with OA.

Results

Microarray analysis showed that miR‐140 had the largest difference in expression between chondrocytes and MSCs. During chondrogenesis, miR‐140 expression in MSC cultures increased in parallel with the expression of SOX9 and COL2A1. Normal human articular cartilage expressed miR‐140, and this expression was significantly reduced in OA tissue. In vitro treatment of chondrocytes with IL‐1β suppressed miR‐140 expression. Transfection of chondrocytes with ds–miR‐140 down‐regulated IL‐1β–induced ADAMTS5 expression and rescued the IL‐1β–dependent repression of AGGRECAN gene expression.

Conclusion

This study shows that miR‐140 has a chondrocyte differentiation–related expression pattern. The reduction in miR‐140 expression in OA cartilage and in response to IL‐1β may contribute to the abnormal gene expression pattern characteristic of OA.
  相似文献   

18.

Objective

To investigate whether the abnormal expression of matrix metalloproteinases (MMPs) 3, 9, and 13 and ADAMTS‐4 by human osteoarthritic (OA) chondrocytes is associated with epigenetic “unsilencing.”

Methods

Cartilage was obtained from the femoral heads of 16 patients with OA and 10 control patients with femoral neck fracture. Chondrocytes with abnormal enzyme expression were immunolocalized. DNA was extracted, and the methylation status of the promoter regions of MMPs 3, 9, and 13 and ADAMTS‐4 was analyzed with methylation‐sensitive restriction enzymes, followed by polymerase chain reaction amplification.

Results

Very few chondrocytes from control cartilage expressed the degrading enzymes, whereas all clonal chondrocytes from late‐stage OA cartilage were immunopositive. The overall percentage of nonmethylated sites was increased in OA patients (48.6%) compared with controls (20.1%): 20% versus 4% for MMP‐13, 81% versus 47% for MMP‐9, 57% versus 30% for MMP‐3, and 48% versus 0% for ADAMTS‐4. Not all CpG sites were equally susceptible to loss of methylation. Some sites were uniformly methylated, whereas in others, methylation was generally absent. For each enzyme, there was 1 specific CpG site where the demethylation in OA patients was significantly higher than that in controls: at −110 for MMP‐13, −36 for MMP‐9, −635 for MMP‐3, and −753 for ADAMTS‐4.

Conclusion

This study provides the first evidence that altered synthesis of cartilage‐degrading enzymes by late‐stage OA chondrocytes may have resulted from epigenetic changes in the methylation status of CpG sites in the promoter regions of these enzymes. These changes, which are clonally transmitted to daughter cells, may contribute to the development of OA.
  相似文献   

19.

Objective

Wnt signaling pathway proteins are involved in embryonic development of cartilage and bone, and, interestingly, developmental processes appear to be recapitulated in osteoarthritic (OA) cartilage. The present study was undertaken to characterize the expression pattern of Wnt and Fz genes during experimental OA and to determine the function of selected genes in experimental and human OA.

Methods

Longitudinal expression analysis was performed in 2 models of OA. Levels of messenger RNA for genes from the Wnt/β‐catenin pathway were determined in synovium and cartilage, and the results were validated using immunohistochemistry. Effects of selected genes were assessed in vitro using recombinant protein, and in vivo by adenoviral overexpression.

Results

Wnt‐induced signaling protein 1 (WISP‐1) expression was strongly increased in the synovium and cartilage of mice with experimental OA. Wnt‐16 and Wnt‐2B were also markedly up‐regulated during the course of disease. Interestingly, increased WISP‐1 expression was also found in human OA cartilage and synovium. Stimulation of macrophages and chondrocytes with recombinant WISP‐1 resulted in interleukin‐1–independent induction of several matrix metalloproteinases (MMPs) and aggrecanase. Adenoviral overexpression of WISP‐1 in murine knee joints induced MMP and aggrecanase expression and resulted in cartilage damage.

Conclusion

This study included a comprehensive characterization of Wnt and Frizzled gene expression in experimental and human OA articular joint tissue. The data demonstrate, for the first time, that WISP‐1 expression is a feature of experimental and human OA and that WISP‐1 regulates chondrocyte and macrophage MMP and aggrecanase expression and is capable of inducing articular cartilage damage in models of OA.
  相似文献   

20.

Objective

Articular chondrocyte senescence is responsible, at least in part, for the increased incidence of osteoarthritis (OA) with increased age. Recently, it was suggested that caveolin 1, a 21–24‐kd membrane protein, participates in premature cellular senescence. Caveolin 1 is the principal structural component of caveolae, vesicular invaginations of the plasma membrane. This study was undertaken to investigate whether the catabolic factors oxidative stress and interleukin‐1β (IL‐1β) induce features of premature senescence of articular chondrocytes through up‐regulation of caveolin 1 expression.

Methods

Caveolin 1 expression was investigated in human OA cartilage by real‐time polymerase chain reaction and in rat OA cartilage by immunohistologic analysis. We studied whether IL‐1β and H2O2 induce caveolin 1 expression in OA chondrocytes and analyzed the relationship between cellular senescent phenotypes and caveolin 1 expression in human chondrocytes.

Results

In human and rat OA articular cartilage, caveolin 1 positivity was associated with cartilage degeneration. Both IL‐1β and H2O2 up‐regulated caveolin 1 messenger RNA and protein levels, and both treatments induced marked expression of senescent phenotypes: altered cellular morphology, cell growth arrest, telomere erosion, and specific senescence‐associated β‐galactosidase activity. Caveolin 1 overexpression induced p38 MAPK activation and impaired the ability of chondrocytes to produce type II collagen and aggrecan. In contrast, down‐regulation of caveolin 1 with antisense oligonucleotide significantly inhibited the features of chondrocyte senescence induced by catabolic factors. Caveolin 1 induction and stresses with both IL‐1β and H2O2 up‐regulated p53 and p21 and down‐regulated phosphorylated retinoblastoma (Rb), suggesting that the p53/p21/Rb phosphorylation pathway, as well as prolonged p38 MAPK activation, may mediate the features of chondrocyte senescence induced by stress.

Conclusion

Our findings suggest that IL‐1β and oxidative stress induce features of premature senescence in OA chondrocytes, mediated, at least in part, by stress‐induced caveolin 1 expression. This indicates that caveolin 1 plays a role in the pathogenesis of OA via promotion of chondrocyte down‐regulation.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号