首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
In matter, any spontaneous symmetry breaking induces a phase transition characterized by an order parameter, such as the magnetization vector in ferromagnets, or a macroscopic many-electron wave function in superconductors. Phase transitions with unknown order parameter are rare but extremely appealing, as they may lead to novel physics. An emblematic and still unsolved example is the transition of the heavy fermion compound URu2Si2 (URS) into the so-called hidden-order (HO) phase when the temperature drops below T0=17.5 K. Here, we show that the interaction between the heavy fermion and the conduction band states near the Fermi level has a key role in the emergence of the HO phase. Using angle-resolved photoemission spectroscopy, we find that while the Fermi surfaces of the HO and of a neighboring antiferromagnetic (AFM) phase of well-defined order parameter have the same topography, they differ in the size of some, but not all, of their electron pockets. Such a nonrigid change of the electronic structure indicates that a change in the interaction strength between states near the Fermi level is a crucial ingredient for the HO to AFM phase transition.

The transition of URu2Si2 from a high-temperature paramagnetic (PM) phase to the hidden-order (HO) phase below T0 is accompanied by anomalies in specific heat (13), electrical resistivity (1, 3), thermal expansion (4), and magnetic susceptibility (2, 3) that are all typical of magnetic ordering. However, the small associated antiferromagnetic (AFM) moment (5) is insufficient to explain the large entropy loss and was shown to be of extrinsic origin (6). Inelastic neutron scattering (INS) experiments revealed gapped magnetic excitations below T0 at commensurate and incommensurate wave vectors (79), while an instability and partial gapping of the Fermi surface was observed by angle-resolved photoemission spectroscopy (ARPES) (1016) and scanning tunneling microscopy/spectroscopy (17, 18). More recently, high-resolution, low-temperature ARPES experiments imaged the Fermi surface reconstruction across the HO transition, unveiling the nesting vectors between Fermi sheets associated with the gapped magnetic excitations seen in INS experiments (14, 19) and quantitatively explaining, from the changes in Fermi surface size and quasiparticle mass, the large entropy loss in the HO phase (19). Nonetheless, the nature of the HO parameter is still hotly debated (2023).The HO phase is furthermore unstable above a temperature-dependent critical pressure of about 0.7 GPa at T=0, at which it undergoes a first-order transition into a large moment AFM phase where the value of the magnetic moment per U atom exhibits a sharp increase, by a factor of 10 to 50 (6, 2430). When the system crosses the HO AFM phase boundary, the characteristic magnetic excitations of the HO phase are either suppressed or modified (8, 31), while resistivity and specific heat measurements suggest that the partial gapping of the Fermi surface is enhanced (24, 27).As the AFM phase has a well-defined order parameter, studying the evolution of the electronic structure across the HO/AFM transition would help develop an understanding of the HO state. So far, the experimental determination of the Fermi surface by Shubnikov de Haas (SdH) oscillations only showed minor changes across the HO AFM phase boundary (32). Here, we take advantage of the HO/AFM transition induced by chemical pressure in URu2Si2, through the partial substitution of Ru with Fe (3337), to directly probe its electronic structure in the AFM phase using ARPES. As we shall see, our results reveal that changes in the Ru 4d–U 5f hybridization across the HO/AFM phase boundary seem essential for a better understanding of the HO state.  相似文献   

2.
Socioeconomic viability of fluvial-deltaic systems is limited by natural processes of these dynamic landforms. An especially impactful occurrence is avulsion, whereby channels unpredictably shift course. We construct a numerical model to simulate artificial diversions, which are engineered to prevent channel avulsion, and direct sediment-laden water to the coastline, thus mitigating land loss. We provide a framework that identifies the optimal balance between river diversion cost and civil disruption by flooding. Diversions near the river outlet are not sustainable, because they neither reduce avulsion frequency nor effectively deliver sediment to the coast; alternatively, diversions located halfway to the delta apex maximize landscape stability while minimizing costs. We determine that delta urbanization generates a positive feedback: infrastructure development justifies sustainability and enhanced landform preservation vis-à-vis diversions.

Deltaic environments are critical for societal wellbeing because these landscapes provide an abundance of natural resources that promote human welfare (1, 2). However, the sustainability of deltas is uncertain due to sea-level rise (3, 4), sediment supply reduction (46), and land subsidence (7, 8). Additionally, river avulsion, the process of sudden channel relocation (9, 10), presents a dichotomy to delta sustainability: the unanticipated civil disruption associated with flooding brought by channel displacement is at odds with society’s desire for landscape stability, yet channel relocation is needed to deliver nutrients and sediment to various locations along the deltaic coastline (11, 12). Indeed, for many of the world’s megadeltas, channel engineering practices have sought to restrict channel mobility and limit floodplain connectivity (13, 14), which in turn prevents sediment dispersal that is necessary to sustain deltas; as a consequence, land loss has ensued (15). Despite providing near-term stability (1315), engineering of deltaic channels is a long-term detrimental practice (11, 1517).To maximize societal benefit, measures that promote delta sustainability must balance engineering infrastructure cost and impact on delta morphology with benefits afforded by maintaining and developing deltaic landscapes (1, 2, 11, 12, 16–19). For example, channel diversions, costing millions to billions of dollars (2022), are now planned worldwide to both prevent unintended avulsions and ensure coastal sustainability through enhanced sediment delivery (e.g., Fig. 1A) (20, 21, 2326).Open in a separate windowFig. 1.(A) Satellite image of Yellow River delta (Landsat, 1978) showing coastline response to a diversion in 1976 at the open circle, which changed the channel course from the north (Diaokou lobe) to the east (Qingshuigou lobe) and produced flooding over the stripe-hatched area (30). (B and C) Planform view (B) and along-channel cross-section view (C) of conceptual model for numerical simulations and societal benefit formulation. In the diagrams, a diversion at LD0.8Lb floods an area (af) defined by Lf and θ, diverting sediment away from the deltaic lobe (with length Ll). Aggradation of the former channel bed (dashed line) is variable; hence, diversion length influences the propensity for subsequent avulsion setup.In this article, we consider the benefits and costs of such engineered river diversions and determine how these practices most effectively sustain deltaic landscapes, by assessing optimal placement and timing for river diversions. Addressing these points requires combining two modeling frameworks: a morphodynamic approach—evolving the landscape over time and space by evaluating the interactions of river fluid flow and sediment transport—and a decision-making framework (21, 22, 27, 28). The former simulates deltaic channel diversions by assessing the nonlinear relationships between channel diversion length (LD) and the frequency (timing) of avulsions (TA), while the latter incorporates a societal benefit model that approximates urbanization by considering the cost of flooding a landscape that would otherwise generate revenue. The aim is to optimize timing and placement of channel diversions, by giving consideration to morphodynamic operations and societal wellbeing. Interestingly, optimal societal benefit indicates that urbanization justifies enhanced sustainability measures, which contradicts existing paradigms that label development and sustainability mutually exclusive (3, 7, 12). Ultimately, the societal benefit model should be an integrated component in decision-making frameworks. This will help locate diversions and promote sustainable and equitable decisions considering historical, ethical, and environmental contexts for river management decisions (29).  相似文献   

3.
Our study of cholesteric lyotropic chromonic liquid crystals in cylindrical confinement reveals the topological aspects of cholesteric liquid crystals. The double-twist configurations we observe exhibit discontinuous layering transitions, domain formation, metastability, and chiral point defects as the concentration of chiral dopant is varied. We demonstrate that these distinct layer states can be distinguished by chiral topological invariants. We show that changes in the layer structure give rise to a chiral soliton similar to a toron, comprising a metastable pair of chiral point defects. Through the applicability of the invariants we describe to general systems, our work has broad relevance to the study of chiral materials.

Chiral liquid crystals (LCs) are ubiquitous, useful, and rich systems (14). From the first discovery of the liquid crystalline phase to the variety of chiral structures formed by biomolecules (59), the twisted structure, breaking both mirror and continuous spatial symmetries, is omnipresent. The unique structure also makes the chiral nematic (cholesteric) LC, an essential material for applications utilizing the tunable, responsive, and periodic modulation of anisotropic properties.The cholesteric is also a popular model system to study the geometry and topology of partially ordered matter. The twisted ground state of the cholesteric is often incompatible with confinement and external fields, exhibiting a large variety of frustrated and metastable director configurations accompanying topological defects. Besides the classic example of cholesterics in a Grandjean−Cano wedge (10, 11), examples include cholesteric droplets (1216), colloids (1719), shells (2022), tori (23, 24), cylinders (2529), microfabricated structures (30, 31), and films between parallel plates with external fields (3240). These structures are typically understood using a combination of nematic (achiral) topology (41, 42) and energetic arguments, for example, the highly successful Landau−de Gennes approach (43). However, traditional extensions of the nematic topological approach to cholesterics are known to be conceptually incomplete and difficult to apply in regimes where the system size is comparable to the cholesteric pitch (41, 44).An alternative perspective, chiral topology, can give a deeper understanding of these structures (4547). In this approach, the key role is played by the twist density, given in terms of the director field n by n×n. This choice is not arbitrary; the Frank free energy prefers n×nq0=2π/p0 with a helical pitch p0, and, from a geometric perspective, n×n0 defines a contact structure (48). This allows a number of new integer-valued invariants of chiral textures to be defined (45). A configuration with a single sign of twist is chiral, and two configurations which cannot be connected by a path of chiral configurations are chirally distinct, and hence separated by a chiral energy barrier. Within each chiral class of configuration, additional topological invariants may be defined using methods of contact topology (4548), such as layer numbers. Changing these chiral topological invariants requires passing through a nonchiral configuration. Cholesterics serve as model systems for the exploration of chirality in ordered media, and the phenomena we describe here—metastability in chiral systems controlled by chiral topological invariants—has applicability to chiral order generally. This, in particular, includes chiral ferromagnets, where, for example, our results on chiral topological invariants apply to highly twisted nontopological Skyrmions (49, 50) (“Skyrmionium”).Our experimental model to explore the chiral topological invariants is the cholesteric phase of lyotropic chromonic LCs (LCLCs). The majority of experimental systems hitherto studied are based on thermotropic LCs with typical elastic and surface-anchoring properties. The aqueous LCLCs exhibiting unusual elastic properties, that is, very small twist modulus K2 and large saddle-splay modulus K24 (5156), often leading to chiral symmetry breaking of confined achiral LCLCs (53, 54, 5661), may enable us to access uncharted configurations and defects of topological interests. For instance, in the layer configuration by cholesteric LCLCs doped with chiral molecules, their small K2 provides energetic flexibility to the thickness of the cholesteric layer, that is, the repeating structure where the director n twists by π. The large K24 affords curvature-induced surface interactions in combination with a weak anchoring strength of the lyotropic LCs (6264).We present a systematic investigation of the director configuration of cholesteric LCLCs confined in cylinders with degenerate planar anchoring, depending on the chiral dopant concentration. We show that the structure of cholesteric configurations is controlled by higher-order chiral topological invariants. We focus on two intriguing phenomena observed in cylindrically confined cholesterics. First, the cylindrical symmetry renders multiple local minima to the energy landscape and induces discontinuous increase of twist angles, that is, a layering transition, upon the dopant concentration increase. Additionally, the director configurations of local minima coexist as metastable domains with point-like defects between them. We demonstrate that a chiral layer number invariant distinguishes these configurations, protects the distinct layer configurations (45), and explains the existence of the topological defect where the invariant changes.  相似文献   

4.
Fault friction is central to understanding earthquakes, yet laboratory rock mechanics experiments are restricted to, at most, meter scale. Questions thus remain as to the applicability of measured frictional properties to faulting in situ. In particular, the slip-weakening distance dc strongly influences precursory slip during earthquake nucleation, but scales with fault roughness and is challenging to extrapolate to nature. The 2018 eruption of Kīlauea volcano, Hawaii, caused 62 repeatable collapse events in which the summit caldera dropped several meters, accompanied by MW 4.7 to 5.4 very long period (VLP) earthquakes. Collapses were exceptionally well recorded by global positioning system (GPS) and tilt instruments and represent unique natural kilometer-scale friction experiments. We model a piston collapsing into a magma reservoir. Pressure at the piston base and shear stress on its margin, governed by rate and state friction, balance its weight. Downward motion of the piston compresses the underlying magma, driving flow to the eruption. Monte Carlo estimation of unknowns validates laboratory friction parameters at the kilometer scale, including the magnitude of steady-state velocity weakening. The absence of accelerating precollapse deformation constrains dc to be 10 mm, potentially much less. These results support the use of laboratory friction laws and parameters for modeling earthquakes. We identify initial conditions and material and magma-system parameters that lead to episodic caldera collapse, revealing that small differences in eruptive vent elevation can lead to major differences in eruption volume and duration. Most historical basaltic caldera collapses were, at least partly, episodic, implying that the conditions for stick–slip derived here are commonly met in nature.

Our knowledge of rock friction comes from laboratory experiments on samples from centimeters to at most meter scale (1, 2). These experiments have led to rate- and state-dependent friction laws (3, 4), which together with continuum fault models explain many features of natural earthquakes (5, 6). Extrapolation of laboratory-derived constitutive parameters to faults in situ, however, has been challenging, particularly for the characteristic slip weakening distance, dc, the displacement scale over which friction degrades from nominally static to dynamic values. In the laboratory dc ranges from several to tens of micrometers, but scales with fault roughness (7). Some seismological estimates are up to five orders of magnitude larger (8), but are sensitive to the decrease in shear strength at earthquake rupture fronts, leading to weakening lengths that scale with dc, but can be much larger (9, 10). Understanding the magnitude of dc in situ is crucial because the amount of potentially observable precursory slip scales with dc (11). Significant insights have been gained from in situ fluid injection experiments into faults that induce aseismic slip and seismicity (1214), yet constraints on the parts of faults that actually generate earthquakes are rare.Collapse at basaltic shield volcanoes typically occurs in repeated discrete events, generating characteristic deformation transients and very long period (VLP) earthquakes (1517). Rapid outflow of magma causes the pressure in subcaldera magma reservoirs to decrease, leading to an increase in stress in the overlying crust. Collapse initiates if this stress reaches the crustal strength, forming ring faults bounding down-dropped block(s) (18). Once initiated, collapse transfers the weight of the overlying crust onto the magma reservoir, maintaining pressure necessary for the eruption to continue (19). Thus, caldera collapse is not simply a response to the rapid withdrawal of magma, but is also an essential process in sustaining these eruptions.The 2018 Kīlauea collapses were quasi-periodic and exceptionally well monitored by nearby global positioning system (GPS) and tilt stations, including GPS stations on the down-dropped block(s). These data can be used to infer stress changes on the caldera-bounding ring faults, making them effectively kilometer-scale stick–slip experiments. The highly repeatable nature of the collapses, as well as constraints on the changes in magma pressure prior to the onset of collapse (20), minimizes uncertainty due to otherwise difficult to constrain initial conditions.  相似文献   

5.
6.
Grain boundary formation during coarsening of nanoporous gold (NPG) is investigated wherein a nanocrystalline structure can form by particles detaching and reattaching to the structure. MicroLaue and electron backscatter diffraction measurements demonstrate that an in-grain orientation spread develops as NPG is coarsened. The volume fraction of the NPG sample is near the limit of bicontinuity, at which simulations predict that a bicontinuous structure begins to fragment into independent particles during coarsening. Phase-field simulations of coarsening using a computationally generated structure with a volume fraction near the limit of bicontinuity are used to model particle detachment rates. This model is tested by using the measured NPG structure as an initial condition in the phase-field simulations. We predict that up to 5% of the NPG structure detaches as a dealloyed Ag75Au25 sample is annealed at 300 °C for 420 min. The quantity of volume detached is found to be highly dependent on the volume fraction and volume fraction homogeneity of the nanostructure. As the void phase in the experiments cannot support independent particles, they must fall and reattach to the structure, a process that results in the formation of new grain boundaries. This particle reattachment process, along with other classic processes, leads to the formation of grain boundaries during coarsening in nanoporous metals. The formation of grain boundaries can impact a variety of applications, including mechanical strengthening; thus, the consideration and understanding of particle detachment phenomena are essential when studying nanoporous metals.

Nanoporous metals are prototypical bicontinuous structures with a network of pores and ligaments. They are created by a number of metallic dealloying processes (16) allowing nearly any bulk metal to be transformed into a bicontinuous two-phase mixture of metal and void phase (7). These metals have a large interfacial area per volume enabling exciting applications in oxygen reduction (8), electromechanical devices (9), battery electrodes (10), actuators (11), and catalysts (12). Given the large surface area per volume, nanoporous structures frequently undergo coarsening when annealed at elevated temperatures. Nanoporous metals coarsen by surface diffusion (1315), a process where the characteristic length, L, increases in time, t, according to the power law Lt1/4 (16). Coarsening decreases the total interfacial energy of the structure, which greatly affects its material properties. For instance, coarsening is used to select the length scale in the structure, which alters the sizes of pores and ligaments (7, 1720), ultimately impacting optical, chemical, and mechanical properties (21, 22), such as the elastic modulus (23). Nanoporous gold (NPG) often serves as a prototype for studying nanoporous metals (7). This paper investigates grain boundary formation as NPG coarsens and shows that the formation of a significant number of these boundaries is from particle detachment and subsequent reattachment.Metallic samples prior to dealloying have grain sizes on the order of 10 to 100 μm (24). Dealloying and annealing of bulk nanoporous metals are typically believed to preserve the grain orientation of the original metallic sample. This was demonstrated through electron backscatter diffraction (EBSD) measurements (1) and scanning electron microscopy (SEM) images (25) for NPG. However, these techniques provide information only about the external surfaces, not the bulk structure. The formation of an in-grain orientation spread would demonstrate that nanoporous metals can develop nanocrystallinity. Some recent work has observed a developed nanocrystalline structure in nanoporous metallic samples after dealloying and annealing. Sun et al. (26) observed grain boundary formation during annealing of NPG but assumed that the varying orientations formed due to the small grain size in the original alloy. High-resolution transmission electron microscopy (HRTEM) (27) and X-ray diffraction (28) were used to identify a nanocrystalline structure in NPG postdealloying. Nanocrystalline structures have also been identified in nanoporous platinum (29) and copper (30) postdealloying. Theories of how these grain boundaries form during dealloying and annealing have not been fully investigated. Dealloyed NPG samples have been shown to contain lattice dislocations (24). It is possible that there are driving forces for dislocations to form low-angle grain boundaries in the structure when coarsening at elevated temperatures.Coarsening of nanoporous metals is often compared to simulations that coarsen computationally generated (CG) bicontinuous structures, e.g., those formed in simulations of spinodal decomposition (31). Evolution of these structures has been studied with phase-field (3135) and kinetic Monte Carlo (KMC) (3638) methods. In certain volume fraction ranges, particle detachment is observed during simulations of coarsening, altering the topology of the structure. This breaking of ligaments in the structure is due to a Rayleigh–Plateau instability (38), the same mechanism causing ligament pinch-off (a ligament breaking in one place) during coarsening of nanoporous metals (13, 39, 40). The topology of an object in three dimensions (3D) is quantified by the Betti numbers: β0, the number of independent objects; β1, the number of handles (genus); and β2, the number of enclosed voids in the structure. Assuming no enclosed voids, the Euler characteristic of a 3D structure is given by χ=β0β1 (41). When a particle detaches from the microstructure, β0 increases by 1. As particles detach from the end of ligaments, β1 remains the same. If a ligament breaks in one place (a process that is referred to as a ligament pinch-off), β1 decreases by 1 and β0 remains the same. Here we define particle detachment as the process of creating small (in size when compared to the main bicontinuous structure) isolated bodies.Simulations have demonstrated that the topology of a structure has a strong dependence on the minority phase volume fraction, ϕ, and can vary drastically within a small range of ϕ (34, 38). Using KMC, Li et al. (38) investigated coarsening via surface diffusion of structures initialized as leveled Gaussian random fields with ϕ of 22, 25, and 27% and increments of 5% from 30 to 50%. By investigating the topology, they found that structures with a ϕ lower than 30% are evolving toward a particle-dominated system, while structures with a ϕ higher than 40% are evolving as a fully connected system (β0=1). As the topological changes are related to how particles detach, we establish two regimes of topological evolution. In the particle-dominated regime (low ϕ), the structure evolves toward a state where the number of handles (β1) is either zero or low compared to the number of particles (β0). In the ligament-dominated regime (high ϕ), the structure evolves toward a state where there is a low number of particles (β0) compared to the number of handles (β1). In between these regimes (intermediate ϕ), the structure evolves to a state with an intermediate number of particles and handles, and any transition to the particle-dominated regime or the ligament-dominated regime occurs too slowly to be feasibly observed. We define this approximate boundary between regimes as the limit of bicontinuity, as the structure begins to break up while still maintaining a high degree of connectivity. Due to the approximate nature of this definition, a range of ϕ (e.g., 30 to 35%) may be considered to be “at” the limit of bicontinuity. We are most likely to observe particle detachment in structures with a ϕ at the limit of bicontinuity, where β0 might be stable or increasing throughout coarsening (signifying particle detachment) while a majority of the solid volume is contained in the main bicontinuous structure. Simulations with a ϕ in the range 30 to 35% have not yet been extensively studied despite the many coarsening experiments of nanoporous metals that are within this range.Experiments commonly study NPG samples with a ϕ between 25 and 36% postdealloying and report fully connected bicontinuous structures (17, 19, 20, 4247). In this case, the minority phase volume fraction, ϕ, corresponds to the gold volume fraction. These ϕ values are just below or at the limit of bicontinuity predicted by simulation. However, the stability of the structures during coarsening is not always investigated, especially at lower ϕ. Detachment of particles from the bicontinuous structure can be kinetically inhibited due to short coarsening times or slow coarsening rates. However, experiments that coarsen NPG for sufficiently long times such that the mean ligament diameter increased by a factor of 16 have still reported fully connected bicontinuous structures (19, 20). The bicontinuity does not necessarily indicate that disconnections do not occur during the evolution; since the vapor phase cannot support independent particles, any particles that detach would presumably fall under their own weight and reattach elsewhere, leading to a fully connected bicontinuous structure and the formation of grain boundaries.As the ϕ of many NPG samples is at the limit of bicontinuity, we show that particles detach as NPG coarsens, and we hypothesize that the reattachment of particles leads to the formation of many of the grain boundaries that are observed in the microstructure. The results of microLaue and EBSD measurements of coarsened NPG samples with a ϕ at the limit of bicontinuity identify large in-grain orientation spreads that develop during coarsening. Phase-field simulations of coarsening of a CG bicontinuous structure with a ϕ at the limit of bicontinuity are conducted to investigate how particle detachment occurs in this regime. Subsequently, the morphology of the CG and NPG structures is characterized to search for evidence of particle reattachment phenomena. A coarsened NPG structure is then used as an initial condition in a phase-field simulation to observe how particle detachment would occur if the sample had continued to coarsen. These calculations that begin with the experimentally measured structure have identified the critical role of volume fraction homogeneity in particle detachment phenomena.  相似文献   

7.
The unequal spatial distribution of ambient nitrogen dioxide (NO2), an air pollutant related to traffic, leads to higher exposure for minority and low socioeconomic status communities. We exploit the unprecedented drop in urban activity during the COVID-19 pandemic and use high-resolution, remotely sensed NO2 observations to investigate disparities in NO2 levels across different demographic subgroups in the United States. We show that, prior to the pandemic, satellite-observed NO2 levels in the least White census tracts of the United States were nearly triple the NO2 levels in the most White tracts. During the pandemic, the largest lockdown-related NO2 reductions occurred in urban neighborhoods that have 2.0 times more non-White residents and 2.1 times more Hispanic residents than neighborhoods with the smallest reductions. NO2 reductions were likely driven by the greater density of highways and interstates in these racially and ethnically diverse areas. Although the largest reductions occurred in marginalized areas, the effect of lockdowns on racial, ethnic, and socioeconomic NO2 disparities was mixed and, for many cities, nonsignificant. For example, the least White tracts still experienced 1.5 times higher NO2 levels during the lockdowns than the most White tracts experienced prior to the pandemic. Future policies aimed at eliminating pollution disparities will need to look beyond reducing emissions from only passenger traffic and also consider other collocated sources of emissions such as heavy-duty vehicles.

Adverse air quality is an environmental justice issue, as it disproportionately affects marginalized and disenfranchised populations around the world (14). Growing evidence suggests that these populations experience more air pollution than is caused by their consumption (57). Within the United States, disparities in exposure are persistent, despite successful regulatory measures that have reduced pollution (8, 9). Nitrogen dioxide (NO2) is a short-lived trace gas formed shortly after fossil fuel combustion and regulated by the National Ambient Air Quality Standards under the Clean Air Act. Exposure to NO2 is associated with a range of respiratory diseases and premature mortality (1012). NO2 is also a precursor to other pollutants such as ozone and particulate matter (13). Major sources of anthropogenic NO2, such as roadways and industrial facilities, are often located within or nearby marginalized and disenfranchised communities (14, 15), and disparities in NO2 exposure across demographic subgroups have been the focus of several recent studies (4, 8, 1618).In early 2020, governments around the world imposed lockdowns and shelter-in-place orders in response to the spread of COVID-19. The earliest government-mandated lockdowns in the United States began in California on 19 March 2020, and many states followed suit in the following days. Changes in mobility patterns indicate that self-imposed social distancing practices were underway days to weeks before the formal announcement of lockdowns (19). Lockdowns led to sharp reductions in surface-level NO2 (2023) and tropospheric column NO2 measured from satellite instruments (21, 2427) over the United States, China, and Europe. According to government-reported inventories, roughly 60% of anthropogenic emissions of nitrogen oxides (NOx NO + NO2) in the United States in 2010 were emitted by on-road vehicles (28), and up to 80% of ambient NO2 in urban areas can be linked to traffic emissions (29, 30). As such, NO2 is often used as a marker for road traffic in urban areas. Multiple lines of evidence such as seismic quieting and reduced mobility via location-based services point to changes in traffic-related emissions as the main driver of reductions in NO2 pollution during lockdowns, due to the large proportion of the population working from home (21, 23, 31, 32).Here we exploit the unprecedented changes in human activity unique to the COVID-19 lockdowns and remotely sensed NO2 columns with extraordinary spatial resolution and coverage to understand inequalities in the distribution of NO2 pollution for different racial, ethnic, and socioeconomic subgroups in the United States. Specifically, we address the following: Which demographic subgroups received the largest NO2 reductions? Did the lockdowns grow or shrink the perennial disparities in NO2 pollution across different demographic subgroups? Although the lockdowns are economically unsustainable, how can they advance environmental justice and equity by informing long-term policies to reduce NO2 disparities and the associated public health damages?  相似文献   

8.
Anaerobic microbial respiration in suboxic and anoxic environments often involves particulate ferric iron (oxyhydr-)oxides as terminal electron acceptors. To ensure efficient respiration, a widespread strategy among iron-reducing microorganisms is the use of extracellular electron shuttles (EES) that transfer two electrons from the microbial cell to the iron oxide surface. Yet, a fundamental understanding of how EES–oxide redox thermodynamics affect rates of iron oxide reduction remains elusive. Attempts to rationalize these rates for different EES, solution pH, and iron oxides on the basis of the underlying reaction free energy of the two-electron transfer were unsuccessful. Here, we demonstrate that broadly varying reduction rates determined in this work for different iron oxides and EES at varying solution chemistry as well as previously published data can be reconciled when these rates are instead related to the free energy of the less exergonic (or even endergonic) first of the two electron transfers from the fully, two-electron reduced EES to ferric iron oxide. We show how free energy relationships aid in identifying controls on microbial iron oxide reduction by EES, thereby advancing a more fundamental understanding of anaerobic respiration using iron oxides.

The use of iron oxides as terminal electron acceptors in anaerobic microbial respiration is central to biogeochemical element cycling and pollutant transformations in many suboxic and anoxic environments (16). To ensure efficient electron transfer to solid-phase ferric iron, Fe(III), at circumneutral pH, metal-reducing microorganisms from diverse phylae use dissolved extracellular electron shuttle (EES), including quinones (79), flavins (1016), and phenazines (1719), to transfer two electrons per EES molecule from the respiratory chain proteins in the outer membrane of the microbial cell to the iron oxide (17, 20, 21). The oxidized EES can diffuse back to the cell surface for rereduction, thereby completing the catalytic redox cycle involving the EES.The electron transfer from the reduced EES to Fe(III) is considered a key step in overall microbial Fe(III) respiration. Several lines of evidence suggest that the free energy of the electron transfer reaction, ΔrG, controls Fe(III) reduction rates (15, 17, 22, 23). For instance, microbial Fe(III) oxide reduction by dissolved model quinones as EES was accelerated only for quinones with standard two-electron reduction potentials, EH,1,20, that fell into a relatively narrow range of 180±80 mV at pH 7 (24). Furthermore, in abiotic experiments, Fe(III) reduction rates by EES decreased with increasing ΔrG that resulted from increasing either EH,1,20 of the EES (25, 26), the concentration of Fe(II) in the system (27), or solution pH (25, 26, 28). However, substantial efforts to relate Fe(III) reduction rates for different EES species, iron oxides, and pH to the EH,1,20 averaged over both electrons transferred from the EES to the iron oxides were only partially successful (25, 28). Reaction free energies of complex redox processes involving the transfer of multiple electrons can readily be calculated using differences in the reduction potentials averaged over all electrons transferred, and this approach is well established in biogeochemistry and microbial ecology. For kinetic considerations, however, the use of averaged reduction potentials is inappropriate.Herein, we posit that rates of Fe(III) reduction by EES instead relate to the ΔrG of the less exergonic first one-electron transfer from the two-electron reduced EES species to the iron oxide, following the general notion that reaction rates scale with reaction free energies (29). Our hypothesis is based on the fact that, at circumneutral to acidic pH and for many EES, the reduction potential of the first electron transferred to the fully oxidized EES to form the one-electron reduced intermediate semiquinone species, EH,1, is lower than the reduction potential of the second electron transferred to the semiquinone to form the fully two-electron reduced EES species, EH,2 [i.e., EH,1<EH,2 (3033)]. This difference in one-electron reduction potentials implies that the two-electron reduced EES (i.e., the hydroquinone) is the weaker one-electron reductant for Fe(III) as compared to the semiquinone species. We therefore expect that rates of iron oxide reduction relate to the ΔrG of the first electron transferred from the hydroquinone to Fe(III). The ΔrG of this first electron transfer may even be endergonic provided that the two-electron transfer is exergonic.We verified our hypothesis in abiotic model systems by demonstrating that reduction rates of two geochemically important crystalline iron oxides, goethite and hematite, by two-electron reduced quinone- and flavin-based EES over a wide pH range, and therefore thermodynamic driving force for Fe(III) reduction, correlate with the ΔrG of the first electron transferred from the fully reduced EES to Fe(III). We further show that rates of goethite and hematite reduction by EES reported in the literature are in excellent agreement with our rate data when comparing rates on the basis of the thermodynamics of the less exergonic first of the two electron transfers.  相似文献   

9.
Molecular, polymeric, colloidal, and other classes of liquids can exhibit very large, spatially heterogeneous alterations of their dynamics and glass transition temperature when confined to nanoscale domains. Considerable progress has been made in understanding the related problem of near-interface relaxation and diffusion in thick films. However, the origin of “nanoconfinement effects” on the glassy dynamics of thin films, where gradients from different interfaces interact and genuine collective finite size effects may emerge, remains a longstanding open question. Here, we combine molecular dynamics simulations, probing 5 decades of relaxation, and the Elastically Cooperative Nonlinear Langevin Equation (ECNLE) theory, addressing 14 decades in timescale, to establish a microscopic and mechanistic understanding of the key features of altered dynamics in freestanding films spanning the full range from ultrathin to thick films. Simulations and theory are in qualitative and near-quantitative agreement without use of any adjustable parameters. For films of intermediate thickness, the dynamical behavior is well predicted to leading order using a simple linear superposition of thick-film exponential barrier gradients, including a remarkable suppression and flattening of various dynamical gradients in thin films. However, in sufficiently thin films the superposition approximation breaks down due to the emergence of genuine finite size confinement effects. ECNLE theory extended to treat thin films captures the phenomenology found in simulation, without invocation of any critical-like phenomena, on the basis of interface-nucleated gradients of local caging constraints, combined with interfacial and finite size-induced alterations of the collective elastic component of the structural relaxation process.

Spatially heterogeneous dynamics in glass-forming liquids confined to nanoscale domains (17) play a major role in determining the properties of molecular, polymeric, colloidal, and other glass-forming materials (8), including thin films of polymers (9, 10) and small molecules (1115), small-molecule liquids in porous media (2, 4, 16, 17), semicrystalline polymers (18, 19), polymer nanocomposites (2022), ionomers (2325), self-assembled block and layered (2633) copolymers, and vapor-deposited ultrastable molecular glasses (3436). Intense interest in this problem over the last 30 y has also been motivated by the expectation that its understanding could reveal key insights concerning the mechanism of the bulk glass transition.Considerable progress has been made for near-interface altered dynamics in thick films, as recently critically reviewed (1). Large amplitude gradients of the structural relaxation time, τ(z,T), converge to the bulk value, τbulk(T), in an intriguing double-exponential manner with distance, z, from a solid or vapor interface (13, 3742). This implies that the corresponding effective activation barrier, Ftotal(z,T,H) (where H is film thickness), varies exponentially with z, as does the glass transition temperature, Tg (37). Thus the fractional reduction in activation barrier, ε(z,H), obeys the equation ε(z,H)1Ftotal(z,T,H)/Ftotal,bulk(T)=ε0exp(z/ξF), where Ftotal,bulk(T) is the bulk temperature-dependent barrier and ξF a length scale of modest magnitude. Although the gradient of reduction in absolute activation barriers becomes stronger with cooling, the amplitude of the fractional reduction of the barrier gradient, quantified by ε0, and the range ξF of this gradient, exhibit a weak or absent temperature dependence at the lowest temperatures accessed by simulations (typically with the strength of temperature dependence of ξF decreasing rather than increasing on cooling), which extend to relaxation timescales of order 105 ps. This finding raises questions regarding the relevance of critical-phenomena–like ideas for nanoconfinement effects (1). Partially due to this temperature invariance, coarse-grained and all-atom simulations (1, 37, 42, 43) have found a striking empirical fractional power law decoupling relation between τ(z,T) and τbulk(T):τ(T,z)τbulk(T)(τbulk(T))ε(z).[1]Recent theoretical analysis suggests (44) that this behavior is consistent with a number of experimental data sets as well (45, 46). Eq. 1 also corresponds to a remarkable factorization of the temperature and spatial location dependences of the barrier:Ftotal(z,T)=[1ε(z)]Ftotal,bulk(T).[2]This finding indicates that the activation barrier for near-interface relaxation can be factored into two contributions: a z-dependent, but T-independent, “decoupling exponent,” ε(z), and a temperature-dependent, but position-insensitive, bulk activation barrier, Ftotal,bulk(T). Eq. 2 further emphasizes that ε(z) is equivalent to an effective fractional barrier reduction factor (for a vapor interface), 1Ftotal(z,T,H)/Ftotal,bulk(T), that can be extracted from relaxation data.In contrast, the origin of “nanoconfinement effects” in thin films, and how much of the rich thick-film physics survives when dynamic gradients from two interfaces overlap, is not well understood. The distinct theoretical efforts for aspects of the thick-film phenomenology (44, 4750) mostly assume an additive summation of one-interface effects in thin films, thereby ignoring possibly crucial cooperative and whole film finite size confinement effects. If the latter involve phase-transition–like physics as per recent speculations (14, 51), one can ask the following: do new length scales emerge that might be truncated by finite film size? Alternatively, does ultrathin film phenomenology arise from a combination of two-interface superposition of the thick-film gradient physics and noncritical cooperative effects, perhaps in a property-, temperature-, and/or thickness-dependent manner?Here, we answer these questions and establish a mechanistic understanding of thin-film dynamics for the simplest and most universal case: a symmetric freestanding film with two vapor interfaces. We focus on small molecules (modeled theoretically as spheres) and low to medium molecular weight unentangled polymers, which empirically exhibit quite similar alterations in dynamics under “nanoconfinement.” We do not address anomalous phenomena [e.g., much longer gradient ranges (29), sporadic observation of two distinct glass transition temperatures (52, 53)] that are sometimes reported in experiments with very high molecular weight polymers and which may be associated with poorly understood chain connectivity effects that are distinct from general glass formation physics (5456).We employ a combination of molecular dynamics simulations with a zero-parameter extension to thin films of the Elastically Cooperative Nonlinear Langevin Equation (ECNLE) theory (57, 58). This theory has previously been shown to predict well both bulk activated relaxation over up to 14 decades (4446) and the full single-gradient phenomenology in thick films (1). Here, we extend this theory to treat films of finite thickness, accounting for coupled interface and geometric confinement effects. We compare predictions of ECNLE theory to our previously reported (37, 43) and new simulations, which focus on translational dynamics of films comprised of a standard Kremer–Grest-like bead-spring polymer model (see SI Appendix). These simulations cover a wide range of film thicknesses (H, from 4 to over 90 segment diameters σ) and extend to low temperatures where the bulk alpha time is ∼0.1 μs (105 Lennard Jones time units τLJ).The generalized ECNLE theory is found to be in agreement with simulation for all levels of nanoconfinement. We emphasize that this theory does not a priori assume any of the empirically established behaviors discovered using simulation (e.g., fractional power law decoupling, double-exponential barrier gradient, gradient flattening) but rather predicts these phenomena based upon interfacial modifications of the two coupled contributions to the underlying activation barrier– local caging constraints and a long-ranged collective elastic field. It is notable that this strong agreement is found despite the fact the dynamical ideas are approximate, and a simple hard sphere fluid model is employed in contrast to the bead-spring polymers employed in simulation. The basic unit of length in simulation (bead size σ) and theory (hard sphere diameter d) are expected to be proportional to within a prefactor of order unity, which we neglect in making comparisons.As an empirical matter, we find from simulation that many features of thin-film behavior can be described to leading order by a linear superposition of the thick-film gradients in activation barrier, that is:ε(z,H)=1Ftotal(z,T,H)/Ftotal,bulk(T)ε0[exp(z/ξF)+exp((Hz)/ξF)],[3]where the intrinsic decay length ξF is unaltered from its thick-film value and where ε0 is a constant that, in the hypothesis of literal gradient additivity, is invariant to temperature and film thickness. We employ this functional form [originally suggested by Binder and coworkers (59)], which is based on a simple superposition of the two single-interface gradients, as a null hypothesis throughout this study: this form is what one expects if no new finite-size physics enters the thin-film problem relative to the thick film.However, we find that the superposition approximation progressively breaks down, and eventually entirely fails, in ultrathin films as a consequence of the emergence of a finite size confinement effect. The ECNLE theory predicts that this failure is not tied to a phase-transition–like mechanism but rather is a consequence of two key coupled physical effects: 1) transfer of surface-induced reduction of local caging constraints into the film, and 2) interfacial truncation and nonadditive modifications of the collective elastic contribution to the activation barrier.  相似文献   

10.
The normal state in the hole underdoped copper oxide superconductors has proven to be a source of mystery for decades. The measurement of a small Fermi surface by quantum oscillations on suppression of superconductivity by high applied magnetic fields, together with complementary spectroscopic measurements in the hole underdoped copper oxide superconductors, point to a nodal electron pocket from charge order in YBa2Cu3O6+δ. Here, we report quantum oscillation measurements in the closely related stoichiometric material YBa2Cu4O8, which reveals similar Fermi surface properties to YBa2Cu3O6+δ, despite the nonobservation of charge order signatures in the same spectroscopic techniques, such as X-ray diffraction, that revealed signatures of charge order in YBa2Cu3O6+δ. Fermi surface reconstruction in YBa2Cu4O8 is suggested to occur from magnetic field enhancement of charge order that is rendered fragile in zero magnetic fields because of its potential unconventional nature and/or its occurrence as a subsidiary to more robust underlying electronic correlations.The normal state of the underdoped copper oxide superconductors has proven to be even more perplexing than the d-wave superconducting state in these materials. At high temperatures in zero magnetic fields, the normal state of the underdoped cuprates comprises an unconventional Fermi surface of truncated “Fermi arcs” in momentum space, which is referred to as the pseudogap state (1). At low temperatures in high magnetic fields, quantum oscillations reveal the nonsuperconducting ground state in various families of underdoped hole-doped copper oxide superconductors to comprise small Fermi surface pockets (215). These small Fermi pockets in YBa2Cu3O6+δ have been identified as nodal electron pockets (2, 3, 11, 16, 17) originating from Fermi surface reconstruction associated with charge order measured by X-ray diffraction (1820), ultrasound (21), nuclear magnetic resonance (22), and optical reflectometry (23). However, various aspects of the underlying charge order and the associated Fermi surface reconstruction remain obscure. A central question pertains to the origin of this charge order, curious features of which include a short correlation length in zero magnetic field that grows with increasing magnetic field and decreasing temperature (20). It is crucial to understand the nature of this ground-state order that is related to the high-temperature pseudogap state and delicately balanced with the superconducting ground state. Here, we shed light on the nature of this state by performing extended magnetic field, temperature, and tilt angle-resolved quantum oscillation experiments in the stoichiometric copper oxide superconductor YBa2Cu4O8 (24). This material with double CuO chains has fixed oxygen stoichiometry, making it a model system to study. YBa2Cu4O8 avoids disorder associated with the fractional oxygen stoichiometry in the YBa2Cu3O6+δ chains, which has been shown by microwave conductivity to be the dominant source of weak-limit (Born) scattering (25).Intriguingly, we find magnetic field- and angle-dependent signatures of quantum oscillations in YBa2Cu4O8 (13, 14) that are very similar to those in YBa2Cu3O6+δ, indicating a similar nodal Fermi surface that arises from Fermi surface reconstruction by charge order with orthogonal wave vectors (16). However, the same X-ray diffraction measurements that show a Bragg peak characteristic of charge order in YBa2Cu3O6+δ for a range of hole dopings from 0.084p0.164 (19, 20, 26) have, thus far, not revealed a Bragg peak in the case of YBa2Cu4O8 (19). We suggest that charge order enhanced by applied magnetic fields reconstructs the Fermi surface in YBa2Cu4O8, whereas charge order is revealed even in zero magnetic fields in YBa2Cu3O6+δ because of pinning by increased disorder from oxygen vacancies.  相似文献   

11.
When aged below the glass transition temperature, Tg, the density of a glass cannot exceed that of the metastable supercooled liquid (SCL) state, unless crystals are nucleated. The only exception is when another polyamorphic SCL state exists, with a density higher than that of the ordinary SCL. Experimentally, such polyamorphic states and their corresponding liquid–liquid phase transitions have only been observed in network-forming systems or those with polymorphic crystalline states. In otherwise simple liquids, such phase transitions have not been observed, either in aged or vapor-deposited stable glasses, even near the Kauzmann temperature. Here, we report that the density of thin vapor-deposited films of N,N′-bis(3-methylphenyl)-N,N′-diphenylbenzidine (TPD) can exceed their corresponding SCL density by as much as 3.5% and can even exceed the crystal density under certain deposition conditions. We identify a previously unidentified high-density supercooled liquid (HD-SCL) phase with a liquid–liquid phase transition temperature (TLL) 35 K below the nominal glass transition temperature of the ordinary SCL. The HD-SCL state is observed in glasses deposited in the thickness range of 25 to 55 nm, where thin films of the ordinary SCL have exceptionally enhanced surface mobility with large mobility gradients. The enhanced mobility enables vapor-deposited thin films to overcome kinetic barriers for relaxation and access the HD-SCL state. The HD-SCL state is only thermodynamically favored in thin films and transforms rapidly to the ordinary SCL when the vapor deposition is continued to form films with thicknesses more than 60 nm.

Glasses are formed when the structural relaxations in supercooled liquids (SCLs) become too slow, causing the system to fall out of equilibrium at the glass transition temperature (Tg). The resulting out-of-equilibrium glass state has a thermodynamic driving force to evolve toward the SCL state through physical aging (1). At temperatures just below Tg, the extent of equilibration is limited by the corresponding SCL state, while at much lower temperatures, equilibration is limited by the kinetic barriers for relaxation. As such, the degree of thermodynamic stability achieved through physical aging is limited (2).Physical vapor deposition (PVD) is an effective technique to overcome kinetic barriers for relaxation to produce thermodynamically stable glasses (310). The accelerated equilibration in these systems is due to their enhanced surface mobility (1114). During PVD, when the substrate temperature is held below Tg, molecules or atoms can undergo rearrangements and adopt more stable configurations at the free surface and proximate layers underneath (13). After the molecules are buried deeper into the film, their relaxation dynamics significantly slow down, which prevents further equilibration. Through this surface-mediated equilibration process, stable glasses can achieve low-energy states on the potential energy landscape that would otherwise require thousands or millions of years of physical aging (2, 3, 15, 16).As such, the degree of enhanced surface mobility and mobility gradients are critical factors in the formation of stable glasses (3, 11, 17, 18). While the effect of film thickness on the surface mobility and gradients of liquid-quenched (LQ) glasses has been studied in the past (19, 20), there are limited data on the role of film thickness in the stability of vapor-deposited glasses. In vapor-deposited toluene, it has been shown that decreasing the film thickness from 70 to 5 nm can increase the thermodynamic stability but decrease the apparent kinetic stability (5, 6). In contrast, thin films covered with a top layer of another material do not show a significant evidence of reduced kinetic stability (21), indicating the nontrivial role of mobility gradients in thermal and kinetic stability.Stable glasses of most organic molecules, with short-range intramolecular interactions, have properties that are indicative of the same corresponding metastable SCL state as LQ and aged glasses, without any evidence of the existence of generic liquid–liquid phase transitions that can potentially provide a resolution for the Kauzmann entropy crisis (22). The Kauzmann crisis occurs at the Kauzmann temperature (TK), where the extrapolated SCL has the same structural entropy as the crystal, producing thermodynamically impossible states just below this temperature. Recently, Beasley et al. (16) showed that near-equilibrium states of ethylbenzene can be produced using PVD down to 2 K above TK and hypothesized that any phase transition to an “ideal glass” state to avoid the Kauzmann crisis must occur at TK.In some glasses of elemental substances (23, 24) and hydrogen-bonding compounds (25, 26), liquid–liquid phase transitions can occur between polyamorphic states with distinct local packing structures that correspond to polymorphic crystalline phases. For example, at high pressures, high- and low-density supercooled water phases are interconvertible through a first-order phase transition (27, 28). Recent studies have demonstrated that such polyamorphic states can also be accessed through PVD in hydrogen-bonding systems with polymorphic crystal states at depositions above the nominal Tg (29, 30). However, these structure-specific transitions do not provide a general resolution for the Kauzmann crisis.Here, we report the observation of a liquid–liquid phase transition in vapor-deposited thin films of N,N′-bis(3-methylphenyl)-N,N′-diphenylbenzidine (TPD). TPD is a molecular glass former with only short-range intermolecular interactions. When thin films of TPD are vapor deposited onto substrates held at deposition temperatures (Tdep) below the nominal glass transition temperature of bulk TPD, Tg (bulk), films in the thickness range of 25nm<h<55nm achieve a high-density supercooled liquid (HD-SCL) state, which has not been previously observed. The liquid–liquid phase transition temperature (TLL) between the ordinary SCL and HD-SCL states is measured to be TLLTg(bulk)35K. The density of thin films deposited below TLL tangentially follows the HD-SCL line, which has a stronger temperature dependence than the ordinary SCL. When vapor deposition is continued to produce thicker films (h>60nm), the HD-SCL state transforms into the ordinary SCL state, indicating that the HD-SCL is only thermodynamically favored in the thin-film geometry. This transition is qualitatively different from the previously reported liquid–liquid phase transitions, as it is not related to a specific structural motif in TPD crystals, and it can only be observed in thin films, indicating that the energy landscape of thin films is favoring this high-density state.We observe an apparent correlation between enhanced mobility gradients in LQ thin films of TPD and the thickness range where HD-SCL states are produced during PVD. We hypothesize that enhanced mobility gradients are essential in providing access to regions of the energy landscape corresponding to the HD-SCL state, which are otherwise kinetically inaccessible. This hypothesis should be further investigated to better understand the origin of this phenomenon.  相似文献   

12.
Quantum coherence, an essential feature of quantum mechanics allowing quantum superposition of states, is a resource for quantum information processing. Coherence emerges in a fundamentally different way for nonidentical and identical particles. For the latter, a unique contribution exists linked to indistinguishability that cannot occur for nonidentical particles. Here we experimentally demonstrate this additional contribution to quantum coherence with an optical setup, showing that its amount directly depends on the degree of indistinguishability and exploiting it in a quantum phase discrimination protocol. Furthermore, the designed setup allows for simulating fermionic particles with photons, thus assessing the role of exchange statistics in coherence generation and utilization. Our experiment proves that independent indistinguishable particles can offer a controllable resource of coherence and entanglement for quantum-enhanced metrology.

A quantum system can reside in coherent superpositions of states, which have a role in the interpretation of quantum mechanics (14), lead to nonclassicality (5, 6), and imply the intrinsically probabilistic nature of predictions in the quantum realm (7, 8). Besides this fundamental role, quantum coherence is also at the basis of quantum algorithms (914) and, from a modern information-theoretic perspective, constitutes a paradigmatic basis-dependent quantum resource (1517), providing a quantifiable advantage in certain quantum information protocols.For a single quantum particle, coherence manifests itself when the particle is found in a superposition of a reference basis, for instance, the computational basis of the Hilbert space. Formally, any quantum state whose density matrix contains nonzero diagonal elements when expressed in the reference basis is said to display quantum coherence (16). This is the definition of quantum coherence employed in our work. For multiparticle compound systems, the physics underlying the emergence of quantum coherence is richer and strictly connected to the nature of the particles, with fundamental differences for nonidentical and identical particles. A particularly intriguing observation is that the states of identical particle systems can manifest coherence even when no particle resides in superposition states, provided that the wave functions of the particles overlap (1820). In general, a special contribution to quantum coherence arises thanks to the spatial indistinguishability of identical particles, which cannot exist for nonidentical (or distinguishable) particles (18). Recently, it has been found that the spatial indistinguishability of identical particles can be exploited for entanglement generation (21), applicable even for spacelike-separated quanta (22) and against preparation and dynamical noises (2326). The presence of entanglement is a signature that the bipartite system as a whole carries coherence even when the individual particles do not, the amount of this coherence being dependent on the degree of indistinguishability. We name this specific contribution to quantumness of compound systems “indistinguishability-based coherence,” in contrast to the more familiar “single-particle superposition-based coherence.” Indistinguishability-based coherence qualifies in principle as an exploitable resource for quantum metrology (18). However, it requires sophisticated control techniques to be harnessed, especially in view of its nonlocal nature. Moreover, a crucial property of identical particles is the exchange statistics, while its experimental study requiring operating both bosons and fermions in the same setup is generally challenging.In the present work, we investigate the operational contribution of quantum coherence stemming from the spatial indistinguishability of identical particles. The main aim of our experiment is to prove that elementary states of two independent spatially indistinguishable particles can give rise to exploitable quantum coherence, with a measurable effect due to particle statistics. By utilizing our recently developed photonic architecture capable of tuning the indistinguishability of two uncorrelated photons (27), we observe the direct connection between the degree of indistinguishability and the amount of generated coherence and show that indistinguishability-based coherence can be concurrent with single-particle superposition-based coherence. In particular, we demonstrate its operational implications, namely, providing a quantifiable advantage in a phase discrimination task (28, 29), as depicted in Fig. 1. Furthermore, we design a setup capable of testing the impact of particle statistics in coherence production and phase discrimination for both bosons and fermions; this is accomplished by compensating for the exchange phase during state preparation, simulating fermionic states with photons, which leads to statistics-dependent efficiency of the quantum task.Open in a separate windowFig. 1.Illustration of the indistinguishability-activated phase discrimination task. A resource state ρin that contains coherence in a computational basis is generated from spatial indistinguishability. The state then enters a black box which implements a phase unitary U^k=eiG^ϕk,k{1,,n} on ρin. The goal is to determine the ϕk actually applied through the output state ρout: indistinguishability-based coherence provides an operational advantage in this task.  相似文献   

13.
A continuum of water populations can exist in nanoscale layered materials, which impacts transport phenomena relevant for separation, adsorption, and charge storage processes. Quantification and direct interrogation of water structure and organization are important in order to design materials with molecular-level control for emerging energy and water applications. Through combining molecular simulations with ambient-pressure X-ray photoelectron spectroscopy, X-ray diffraction, and diffuse reflectance infrared Fourier transform spectroscopy, we directly probe hydration mechanisms at confined and nonconfined regions in nanolayered transition-metal carbide materials. Hydrophobic (K+) cations decrease water mobility within the confined interlayer and accelerate water removal at nonconfined surfaces. Hydrophilic cations (Li+) increase water mobility within the confined interlayer and decrease water-removal rates at nonconfined surfaces. Solutes, rather than the surface terminating groups, are shown to be more impactful on the kinetics of water adsorption and desorption. Calculations from grand canonical molecular dynamics demonstrate that hydrophilic cations (Li+) actively aid in water adsorption at MXene interfaces. In contrast, hydrophobic cations (K+) weakly interact with water, leading to higher degrees of water ordering (orientation) and faster removal at elevated temperatures.

Geologic clays are minerals with variable amounts of water trapped within the bulk structure (1) and are routinely used as hydraulic barriers where water and contaminant transport must be controlled (2, 3). These layered materials can exhibit large degrees of swelling when intercalated with a hydrated cation (4). Fundamentally, water adsorption at exposed interfaces and transport in confined channels is dictated by geometry, morphology, and chemistry (e.g., surface chemistry, local solutes, etc.) (5). Understanding water adsorption and swelling in natural clay materials has significant implications for understanding water interactions in nanoscale layered materials. At the nanoscale, the ability to control the interlayer swelling and water adsorption can lead to more precise control over mass and reactant transport, resulting in enhancement in properties necessary for next-generation energy storage (power and capacity) (68), membranes (selectivity, salt rejection, and water permeability), catalysis (913), and adsorption (14).Two-dimensional (2D) and multilayered transition-metal carbides and nitrides (MXenes) are a recent addition to the few-atom-thick materials and have been widely studied in their applications to energy storage (6, 9, 15, 16), membranes (13), and adsorption (17). MXenes (Mn+1XnTx) are produced via selective etching of A elements from ceramic MAX (Mn+1 AXn) phase materials (11, 18). The removal of A element results in thin Mn+1 Xn nanosheets with negative termination groups (Tx). MXene’s hydrophilic and negatively charged surface properties promote spontaneous intercalation of a wide array of ions and compounds. Cation intercalation properties in MXenes have been vigorously explored due to their demonstrated high volumetric capacitance, which may enable high-rate energy storage (6, 19). In addition, their unique and rich surface chemistry may enable selective ion adsorption, making them promising candidates for water purification and catalytic applications (2022).Water and ion transport within multilayered MXenes is governed by the presence of a continuum of water populations. The configuration of water in confined (interlayer) and nonconfined state (surface) influences the material system’s physical properties (13, 2327). However, our current understanding of water–surface interactions and water structure at the molecular scale is incomplete due to limited characterization approaches (28). Most modern observations are limited to macroscopic measurements (e.g., transport measurement, contact angle, etc.), which do not capture the impact of local heterogeneity due to surface roughness, surface chemistry, solutes, etc. (29). Herein, we address this gap via combining theory with an ensemble of direct and indirect interrogation techniques. Water structure and sorption properties at MXene interfaces are directly probed by using ambient-pressure X-ray photoelectron spectroscopy (APXPS), X-ray diffraction (XRD), and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). APXPS enables detection of local chemically specific signatures and quantitative analysis at near-ambient pressures (30). This technique provides the ability to spatially resolve the impact of surface chemistry and solutes on water sorption/desorption at water–solid interfaces. Model hydrophobic (e.g., K+) and hydrophilic (e.g., Li+) cations were intercalated into the layers via ion exchange to systematically probe the impacts of charged solutes on water orientation and sorption. Prior reports suggest that water within the confined interlayer transforms from bulk-like to crystalline when intercalated with bulky cations (31, 32). Furthermore, it has been demonstrated that water ordering is correlated with ion size (33, 34). Here, we expand upon this early work and examine the role that solute hydrophobicity and hydrophilicity impacts water adsorption on solid interfaces. Water mobility within the interlayer is impacted by the hydration energy of that cation. Results shed light on the intertwined role that surface counterions and terminating groups play on the dynamics of hydration and dehydration.  相似文献   

14.
Optical cavities confine light on a small region in space, which can result in a strong coupling of light with materials inside the cavity. This gives rise to new states where quantum fluctuations of light and matter can alter the properties of the material altogether. Here we demonstrate, based on first-principles calculations, that such light–matter coupling induces a change of the collective phase from quantum paraelectric to ferroelectric in the SrTiO3 ground state, which has thus far only been achieved in out-of-equilibrium strongly excited conditions [X. Li et al., Science 364, 1079–1082 (2019) and T. F. Nova, A. S. Disa, M. Fechner, A. Cavalleri, Science 364, 1075–1079 (2019)]. This is a light–matter hybrid ground state which can only exist because of the coupling to the vacuum fluctuations of light, a photo ground state. The phase transition is accompanied by changes in the crystal structure, showing that fundamental ground state properties of materials can be controlled via strong light–matter coupling. Such a control of quantum states enables the tailoring of materials properties or even the design of novel materials purely by exposing them to confined light.

Engineering an out-of-equilibrium state of a material by means of strong light fields can drastically change its properties and even induce new phases altogether. This is considered a new paradigm of material design, especially when the collective behavior of particles in quantum materials can be controlled to provide novel functionalities (1, 2). Alternatively to the intense lasers necessary to reach such out-of-equilibrium states, one can achieve strong light–matter coupling by placing the material inside an optical cavity (311). A main advantage of this approach is that strong interaction can be achieved at equilibrium, opening up new possibilities for materials manipulation. Among the proposed effects are novel exciton insulator states (12), control of excitonic energy ordering (13), enhanced electron–phonon coupling (14), photon-mediated electron pairing (1518), enhanced ferroelectricity (19), and multi-quasi-particles hybridization (20). One enticing possibility is, however, to change the ground state of a material and to create a new phase not through excited quasi-particles but truly as the equilibrium state.Here we show that this can be achieved in the paraelectric SrTiO3 as a photo-correlated ferroelectric ground state. This ground state, which we refer to as photo ground state, is the result of the strong coupling between matter and quantum vacuum fluctuations of light. While similar materials of the perovskite family undergo a para- to ferroelectric phase transition at low temperatures, SrTiO3 remains paraelectric (21), because the nuclear quantum fluctuations prevent the emergence of a collective polarization that is characteristic of the ferroelectric phase (22, 23). Alterations to the material that overcome a relatively small activation energy, however, can induce ferroelectricity: for instance, through isotope substitution (24), strain (25, 26), and, most notably, nonlinear excitation of the lattice by strong and resonant terahertz laser pumping (27, 28). In the latter type of experiments, a transient broken symmetry of the structure as well as macroscopic polarization indicative of a transient ferroelectric phase have been observed.By using atomistic calculations, we show that the off-resonant dressing of the lattice of SrTiO3 with the vacuum fluctuations of the photons in a cavity can suppress the nuclear quantum fluctuations in a process that is analogous to the one of dynamical localization (29): As explained in Results and Discussion, the interaction with cavity photons effectively results in an enhancement of the effective mass of the ions, thus slowing them down and reducing the importance of their quantum fluctuations. We further demonstrate that the effect of cavity-induced localization extends to finite temperatures, even when thermal lattice fluctuations overcome the quantum ones. We thus introduce a revisited paraelectric to ferroelectric phase diagram, with the cavity coupling strength as a new dimension.  相似文献   

15.
16.
Lyotropic chromonic liquid crystals are water-based materials composed of self-assembled cylindrical aggregates. Their behavior under flow is poorly understood, and quantitatively resolving the optical retardance of the flowing liquid crystal has so far been limited by the imaging speed of current polarization-resolved imaging techniques. Here, we employ a single-shot quantitative polarization imaging method, termed polarized shearing interference microscopy, to quantify the spatial distribution and the dynamics of the structures emerging in nematic disodium cromoglycate solutions in a microfluidic channel. We show that pure-twist disclination loops nucleate in the bulk flow over a range of shear rates. These loops are elongated in the flow direction and exhibit a constant aspect ratio that is governed by the nonnegligible splay-bend anisotropy at the loop boundary. The size of the loops is set by the balance between nucleation forces and annihilation forces acting on the disclination. The fluctuations of the pure-twist disclination loops reflect the tumbling character of nematic disodium cromoglycate. Our study, including experiment, simulation, and scaling analysis, provides a comprehensive understanding of the structure and dynamics of pressure-driven lyotropic chromonic liquid crystals and might open new routes for using these materials to control assembly and flow of biological systems or particles in microfluidic devices.

Lyotropic chromonic liquid crystals (LCLCs) are aqueous dispersions of organic disk-like molecules that self-assemble into cylindrical aggregates, which form nematic or columnar liquid crystal phases under appropriate conditions of concentration and temperature (16). These materials have gained increasing attention in both fundamental and applied research over the past decade, due to their distinct structural properties and biocompatibility (4, 714). Used as a replacement for isotropic fluids in microfluidic devices, nematic LCLCs have been employed to control the behavior of bacteria and colloids (13, 1520).Nematic liquid crystals form topological defects under flow, which gives rise to complex dynamical structures that have been extensively studied in thermotropic liquid crystals (TLCs) and liquid crystal polymers (LCPs) (2129). In contrast to lyotropic liquid crystals that are dispersed in a solvent and whose phase can be tuned by either concentration or temperature, TLCs do not need a solvent to possess a liquid-crystalline state and their phase depends only on temperature (30). Most TLCs are shear-aligned nematics, in which the director evolves toward an equilibrium out-of-plane polar angle. Defects nucleate beyond a critical Ericksen number due to the irreconcilable alignment of the directors from surface anchoring and shear alignment in the bulk flow (24, 3133). With an increase in shear rate, the defect type can transition from π-walls (domain walls that separate regions whose director orientation differs by an angle of π) to ordered disclinations and to a disordered chaotic regime (34). Recent efforts have aimed to tune and control the defect structures by understanding the relation between the selection of topological defect types and the flow field in flowing TLCs. Strategies to do so include tuning the geometry of microfluidic channels, inducing defect nucleation through the introduction of isotropic phases or designing inhomogeneities in the surface anchoring (3539). LCPs are typically tumbling nematics for which α2α3 < 0, where α2 and α3 are the Leslie viscosities. This leads to a nonzero viscous torque for any orientation of the director, which allows the director to rotate in the shear plane (22, 29, 30, 40). The tumbling character of LCPs facilitates the nucleation of singular topological defects (22, 40). Moreover, the molecular rotational relaxation times of LCPs are longer than those of TLCs, and they can exceed the timescales imposed by the shear rate. As a result, the rheological behavior of LCPs is governed not only by spatial gradients of the director field from the Frank elasticity, but also by changes in the molecular order parameter (25, 4143). With increasing shear rate, topological defects in LCPs have been shown to transition from disclinations to rolling cells and to worm-like patterns (25, 26, 43).Topological defects occurring in the flow of nematic LCLCs have so far received much more limited attention (44, 45). At rest, LCLCs exhibit unique properties distinct from those of TLCs and LCPs (1, 2, 46, 44). In particular, LCLCs have significant elastic anisotropy compared to TLCs; the twist Frank elastic constant, K2, is much smaller than the splay and bend Frank elastic constants, K1 and K3. The resulting relative ease with which twist deformations can occur can lead to a spontaneous symmetry breaking and the emergence of chiral structures in static LCLCs under spatial confinement, despite the achiral nature of the molecules (4, 4651). When driven out of equilibrium by an imposed flow, the average director field of LCLCs has been reported to align predominantly along the shear direction under strong shear but to reorient to an alignment perpendicular to the shear direction below a critical shear rate (5254). A recent study has revealed a variety of complex textures that emerge in simple shear flow in the nematic LCLC disodium cromoglycate (DSCG) (44). The tumbling nature of this liquid crystal leads to enhanced sensitivity to shear rate. At shear rates γ˙<1s1, the director realigns perpendicular to the flow direction adapting a so-called log-rolling state characteristic of tumbling nematics. For 1s1<γ˙<10s1, polydomain textures form due to the nucleation of pure-twist disclination loops, for which the rotation vector is parallel to the loop normal, and mixed wedge-twist disclination loops, for which the rotation vector is perpendicular to the loop normal (44, 55). Above γ˙>10s1, the disclination loops gradually transform into periodic stripes in which the director aligns predominantly along the flow direction (44).Here, we report on the structure and dynamics of topological defects occurring in the pressure-driven flow of nematic DSCG. A quantitative evaluation of such dynamics has so far remained challenging, in particular for fast flow velocities, due to the slow image acquisition rate of current quantitative polarization-resolved imaging techniques. Quantitative polarization imaging traditionally relies on three commonly used techniques: fluorescence confocal polarization microscopy, polarizing optical microscopy, and LC-Polscope imaging. Fluorescence confocal polarization microscopy can provide accurate maps of birefringence and orientation angle, but the fluorescent labeling may perturb the flow properties (56). Polarizing optical microscopy requires a mechanical rotation of the polarizers and multiple measurements, which severely limits the imaging speed. LC-Polscope, an extension of conventional polarization optical microscopy, utilizes liquid crystal universal compensators to replace the compensator used in conventional polarization microscopes (57). This leads to an enhanced imaging speed and better compensation for polarization artifacts of the optical system. The need for multiple measurements to quantify retardance, however, still limits the acquisition rate of LC-Polscopes.We overcome these challenges by using a single-shot quantitative polarization microscopy technique, termed polarized shearing interference microscopy (PSIM). PSIM combines circular polarization light excitation with off-axis shearing interferometry detection. Using a custom polarization retrieval algorithm, we achieve single-shot mapping of the retardance, which allows us to reach imaging speeds that are limited only by the camera frame rate while preserving a large field-of-view and micrometer spatial resolution. We provide a brief discussion of the optical design of PSIM in Materials and Methods; further details of the measurement accuracy and imaging performance of PSIM are reported in ref. 58.Using a combination of experiments, numerical simulations and scaling analysis, we show that in the pressure-driven flow of nematic DSCG solutions in a microfluidic channel, pure-twist disclination loops emerge for a certain range of shear rates. These loops are elongated in the flow with a fixed aspect ratio. We demonstrate that the disclination loops nucleate at the boundary between regions where the director aligns predominantly along the flow direction close to the channel walls and regions where the director aligns predominantly perpendicular to the flow direction in the center of the channel. The large elastic stresses of the director gradient at the boundary are then released by the formation of disclination loops. We show that both the characteristic size and the fluctuations of the pure-twist disclination loops can be tuned by controlling the flow rate.  相似文献   

17.
Fluids are known to trigger a broad range of slip events, from slow, creeping transients to dynamic earthquake ruptures. Yet, the detailed mechanics underlying these processes and the conditions leading to different rupture behaviors are not well understood. Here, we use a laboratory earthquake setup, capable of injecting pressurized fluids, to compare the rupture behavior for different rates of fluid injection, slow (megapascals per hour) versus fast (megapascals per second). We find that for the fast injection rates, dynamic ruptures are triggered at lower pressure levels and over spatial scales much smaller than the quasistatic theoretical estimates of nucleation sizes, suggesting that such fast injection rates constitute dynamic loading. In contrast, the relatively slow injection rates result in gradual nucleation processes, with the fluid spreading along the interface and causing stress changes consistent with gradually accelerating slow slip. The resulting dynamic ruptures propagating over wetted interfaces exhibit dynamic stress drops almost twice as large as those over the dry interfaces. These results suggest the need to take into account the rate of the pore-pressure increase when considering nucleation processes and motivate further investigation on how friction properties depend on the presence of fluids.

The close connection between fluids and faulting has been revealed by a large number of observations, both in tectonic settings and during human activities, such as wastewater disposal associated with oil and gas extraction, geothermal energy production, and CO2 sequestration (111). On and around tectonic faults, fluids also naturally exist and are added at depths due to rock-dehydration reactions (1215) Fluid-induced slip behavior can range from earthquakes to slow, creeping motion. It has long been thought that creeping and seismogenic fault zones have little to no spatial overlap. Nonetheless, growing evidence suggests that the same fault areas can exhibit both slow and dynamic slip (1619). The existence of large-scale slow slip in potentially seismogenic areas has been revealed by the presence of transient slow-slip events in subduction zones (16, 18) and proposed by studies investigating the physics of foreshocks (2022).Numerical and laboratory modeling has shown that such complex fault behavior can result from the interaction of fluid-related effects with the rate-and-state frictional properties (9, 14, 19, 23, 24); other proposed rheological explanations for complexities in fault stability include combinations of brittle and viscous rheology (25) and friction-to-flow transitions (26). The interaction of frictional sliding and fluids results in a number of coupled and competing mechanisms. The fault shear resistance τres is typically described by a friction model that linearly relates it to the effective normal stress σ^n via a friction coefficient f:τres=fσ^n=f(σnp),[1]where σn is the normal stress acting across the fault and p is the pore pressure. Clearly, increasing pore pressure p would reduce the fault frictional resistance, promoting the insurgence of slip. However, such slip need not be fast enough to radiate seismic waves, as would be characteristic of an earthquake, but can be slow and aseismic. In fact, the critical spatial scale h* for the slipping zone to reach in order to initiate an unstable, dynamic event is inversely proportional to the effective normal stress (27, 28) and hence increases with increasing pore pressure, promoting stable slip. This stabilizing effect of increasing fluid pressure holds for both linear slip-weakening and rate-and-state friction; it occurs because lower effective normal stress results in lower fault weakening during slip for the same friction properties. For example, the general form for two-dimensional (2D) theoretical estimates of this so-called nucleation size, h*, on rate-and-state faults with steady-state, velocity-weakening friction is given by:h*=(μ*DRS)/[F(a,b)(σnp)],[2]where μ*=μ/(1ν) for modes I and II, and μ*=μ for mode III (29); DRS is the characteristic slip distance; and F(a, b) is a function of the rate-and-state friction parameters a and b. The function F(a, b) depends on the specific assumptions made to obtain the estimate: FRR(a,b)=4(ba)/π (ref. 27, equation 40) for a linearized stability analysis of steady sliding, or FRA(a,b)=[π(ba)2]/2b, with a/b>1/2 for quasistatic crack-like expansion of the nucleation zone (ref. 30, equation 42).Hence, an increase in pore pressure induces a reduction in the effective normal stress, which both promotes slip due to lower frictional resistance and increases the critical length scale h*, potentially resulting in slow, stable fault slip instead of fast, dynamic rupture. Indeed, recent field and laboratory observations suggest that fluid injection triggers slow slip first (4, 9, 11, 31). Numerical modeling based on these effects, either by themselves or with an additional stabilizing effect of shear-layer dilatancy and the associated drop in fluid pressure, have been successful in capturing a number of properties of slow-slip events observed on natural faults and in field fluid-injection experiments (14, 24, 3234). However, understanding the dependence of the fault response on the specifics of pore-pressure increase remains elusive. Several studies suggest that the nucleation size can depend on the loading rate (3538), which would imply that the nucleation size should also depend on the rate of friction strength change and hence on the rate of change of the pore fluid pressure. The dependence of the nucleation size on evolving pore fluid pressure has also been theoretically investigated (39). However, the commonly used estimates of the nucleation size (Eq. 2) have been developed for faults under spatially and temporally uniform effective stress, which is clearly not the case for fluid-injection scenarios. In addition, the friction properties themselves may change in the presence of fluids (4042). The interaction between shear and fluid effects can be further affected by fault-gauge dilation/compaction (40, 4345) and thermal pressurization of pore fluids (42, 4648).Recent laboratory investigations have been quite instrumental in uncovering the fundamentals of the fluid-faulting interactions (31, 45, 4957). Several studies have indicated that fluid-pressurization rate, rather than injection volume, controls slip, slip rate, and stress drop (31, 49, 57). Rapid fluid injection may produce pressure heterogeneities, influencing the onset of slip. The degree of heterogeneity depends on the balance between the hydraulic diffusion rate and the fluid-injection rate, with higher injection rates promoting the transition from drained to locally undrained conditions (31). Fluid pressurization can also interact with friction properties and produce dynamic slip along rate-strengthening faults (50, 51).In this study, we investigate the relation between the rate of pressure increase on the fault and spontaneous rupture nucleation due to fluid injection by laboratory experiments in a setup that builds on and significantly develops the previous generations of laboratory earthquake setup of Rosakis and coworkers (58, 59). The previous versions of the setup have been used to study key features of dynamic ruptures, including sub-Rayleigh to supershear transition (60); rupture directionality and limiting speeds due to bimaterial effects (61); pulse-like versus crack-like behavior (62); opening of thrust faults (63); and friction evolution (64). A recent innovation in the diagnostics, featuring ultrahigh-speed photography in conjunction with digital image correlation (DIC) (65), has enabled the quantification of the full-field behavior of dynamic ruptures (6668), as well as the characterization of the local evolution of dynamic friction (64, 69). In these prior studies, earthquake ruptures were triggered by the local pressure release due to an electrical discharge. This nucleation procedure produced only dynamic ruptures, due to the nearly instantaneous normal stress reduction.To study fault slip triggered by fluid injection, we have developed a laboratory setup featuring a hydraulic circuit capable of injecting pressurized fluid onto the fault plane of a specimen and a set of experimental diagnostics that enables us to detect both slow and fast fault slip and stress changes. The range of fluid-pressure time histories produced by this setup results in both quasistatic and dynamic rupture nucleation; the diagnostics allows us to capture the nucleation processes, as well as the resulting dynamic rupture propagation. In particular, here, we explore two injection techniques: procedure 1, a gradual, and procedure 2, a sharp fluid-pressure ramp-up. An array of strain gauges, placed on the specimen’s surface along the fault, can capture the strain (translated into stress) time histories over a wide range of temporal scales, spanning from microseconds to tens of minutes. Once dynamic ruptures nucleate, an ultrahigh-speed camera records images of the propagating ruptures, which are turned into maps of full-field displacements, velocities, and stresses by a tailored DIC) analysis. One advantage of using a specimen made of an analog material, such as poly(methyl meth-acrylate) (PMMA) used in this study, is its transparency, which allows us to look at the interface through the bulk and observe fluid diffusion over the interface. Another important advantage of using PMMA is that its much lower shear modulus results in much smaller nucleation sizes h* than those for rocks, allowing the experiments to produce both slow and fast slip in samples of manageable sizes.We start by describing the laboratory setup and the diagnostics monitoring the pressure evolution and the slip behavior. We then present and discuss the different slip responses measured as a result of slow versus fast fluid injection and interpret our measurements by using the rate-and-state friction framework and a pressure-diffusion model.  相似文献   

18.
During the last decade, translational and rotational symmetry-breaking phases—density wave order and electronic nematicity—have been established as generic and distinct features of many correlated electron systems, including pnictide and cuprate superconductors. However, in cuprates, the relationship between these electronic symmetry-breaking phases and the enigmatic pseudogap phase remains unclear. Here, we employ resonant X-ray scattering in a cuprate high-temperature superconductor La1.6xNd0.4SrxCuO4 (Nd-LSCO) to navigate the cuprate phase diagram, probing the relationship between electronic nematicity of the Cu 3d orbitals, charge order, and the pseudogap phase as a function of doping. We find evidence for a considerable decrease in electronic nematicity beyond the pseudogap phase, either by raising the temperature through the pseudogap onset temperature T* or increasing doping through the pseudogap critical point, p*. These results establish a clear link between electronic nematicity, the pseudogap, and its associated quantum criticality in overdoped cuprates. Our findings anticipate that electronic nematicity may play a larger role in understanding the cuprate phase diagram than previously recognized, possibly having a crucial role in the phenomenology of the pseudogap phase.

There is a growing realization that the essential physics of the cuprate high-temperature superconductors, and perhaps other strongly correlated materials, involves a rich interplay between different electronic symmetry-breaking phases (13) like superconductivity, spin or charge density wave (SDW or CDW) order (47), antiferromagnetism, electronic nematicity (814), and possibly other orders such as pair density wave order (15) or orbital current order (16).One or more of these orders may also be linked with the existence of a zero-temperature quantum critical point (QCP) in the superconducting state of the cuprates, similar to heavy-fermion, organic, pnictide, and iron-based superconductors (1719). The significance of the QCP in describing the properties of the cuprates, as a generic organizing principle where quantum fluctuations in the vicinity of the QCP impact a wide swath of the cuprate phase diagram, remains an open question. Evidence for such a QCP and its influence include a linear in temperature resistivity extending to low temperature, strong mass enhancement via quantum oscillation studies (20), and an enhancement in the specific heat (21) in the field induced normal state, with some of the more-direct evidence for a QCP in the cuprates coming from measurements in the material La1.6xNd0.4SrxCuO4 (Nd-LSCO). Moreover, the QCP also appears to be the endpoint of the pseudogap phase (21) that is marked, among other features, by transition of the electronic structure from small Fermi surface that is folded or truncated by the antiferromagnetic zone boundary in the pseudogap phase to a large Fermi surface at higher doping (22, 23) that is consistent with band structure calculations (24). However, in the cuprates, neither the QCP nor the change in the electronic structure have been definitively associated with a particular symmetry-breaking phase.In this article, we interrogate the possibility that the cuprates exhibit a connection between electronic nematic order, the pseudogap, and its associated QCP. In the pnictide superconductors, which are similar in many respects to the cuprates, electronic nematic order is more clearly established experimentally, and there have been reports of nematic fluctuations (25), non-Fermi liquid transport (26), and a change in the topology of the Fermi surface associated with a nematic QCP (27). Electronic nematicity refers to a breaking of rotational symmetry of the electronic structure in a manner that is not a straightforward result of crystalline symmetry, such that an additional electronic nematic order parameter beyond the structure would be required to describe the resulting phase. The manifestation of nematic order may therefore depend on the details of the crystal structure of the materials, such as whether the structure is tetragonal or orthorhombic. However, such a state can be difficult to identify in materials that have orthorhombic structures, which would naturally couple to any electronic nematic order and vice versa. Despite these challenges, experimental evidence for electronic nematic order that is distinct from the crystal structure include reports of electronic nematicity from bulk transport (810) and magnetometry measurements (11) in YBa2Cu3Oy (YBCO), scanning tunneling microscopy (STM) (13, 14, 28) in Bi2Sr2CaCu2O8+δ (Bi2212), inelastic neutron scattering (12) in YBCO, and resonant X-ray scattering (29) in (La,Nd,Ba,Sr,Eu)2CuO4. Moreover, STM studies in Bi2212 have reported intraunit cell nematicity disappearing around the pseudogap endpoint (30), which also seems to be a region of enhanced electronic nematic fluctuations (31, 32). In YBCO, there have also been reports of association between nematicity and the pseudogap onset temperature (9, 11).Here, we use resonant X-ray scattering to measure electronic nematic order in the cuprate Nd-LSCO as a function of doping and temperature to explore the relationship of electronic nematicity with the pseudogap phase. While evidence that a quantum critical point governs a wide swath of the phase diagram in hole-doped cuprates and is generic to many material systems remains unclear, investigation of Nd-LSCO provides the opportunity to probe the evolution of electronic nematicity over a wide range of doping in the same material system where some of the most compelling signatures of quantum criticality and electronic structure evolution have been observed. These include a divergence in the heat capacity (21), a change in the electronic structure from angle-dependent magnetoresistance (ADMR) measurements (24) in the vicinity of the QCP at x = 0.23, and the onset of the pseudogap (23). Our main result is that we observe a vanishing of the electronic nematic order in Nd-LSCO as hole doping is either increased above x = 0.23, which has been identified as the QCP doping for this system (21), or when temperature is increased above the pseudogap onset temperature T* (23). These observations indicate that electronic nematicity in Nd-LSCO is intimately linked to the pseudogap phase.  相似文献   

19.
Thermoresponsive microgels are one of the most investigated types of soft colloids, thanks to their ability to undergo a Volume Phase Transition (VPT) close to ambient temperature. However, this fundamental phenomenon still lacks a detailed microscopic understanding, particularly regarding the presence and the role of charges in the deswelling process. This is particularly important for the widely used poly(N-isopropylacrylamide)–based microgels, where the constituent monomers are neutral but charged groups arise due to the initiator molecules used in the synthesis. Here, we address this point combining experiments with state-of-the-art simulations to show that the microgel collapse does not happen in a homogeneous fashion, but through a two-step mechanism, entirely attributable to electrostatic effects. The signature of this phenomenon is the emergence of a minimum in the ratio between gyration and hydrodynamic radii at the VPT. Thanks to simulations of microgels with different cross-linker concentrations, charge contents, and charge distributions, we provide evidence that peripheral charges arising from the synthesis are responsible for this behavior and we further build a universal master curve able to predict the two-step deswelling. Our results have direct relevance on fundamental soft condensed matter science and on applications where microgels are involved, ranging from materials to biomedical technologies.

Responsive particles have recently captured the interest of scientists working under many diverse fields (13). Indeed, their ability to adapt to the environmental conditions has enormous advantages for potential applications from biochemistry to nanomedicine (47), but also as smart sensors for various analytes (8, 9). The versatility of these soft objects lies in the manifold routes in which the chemical components can be synthesized and in the transfer of the single-particle properties to the mesoscopic and macroscopic level.In particular, most of these responsive particles are macromolecular colloids, whose inner structure relies on a polymeric system that controls the behavior at the colloidal scale. The prototypical example, that is most actively studied in the literature nowadays, is that of microgel particles, i.e., colloidal-scale realizations of a cross-linked polymer network (10, 11). In their most elementary version, these microgels are composed of a single monomeric component. Among all possible compounds, poly(N-isopropylacrylamide) (pNIPAM) is thermoresponsive and undergoes a solubility transition from good to bad solvent conditions at a temperature Tc32°C. For responsive microgels, this phenomenon is called volume phase transition (VPT), by which particles are able to reversibly swell and deswell across Tc. Microgels can be routinely synthesized in a wide range of sizes roughly going from 50 nm to 100 μm in diameter, a reason for which they are applicable to a variety of purposes and can be investigated with different experimental techniques, from neutron (12) and X-ray scattering (13) up to optical methods and microfluidics (14). In addition, their complex internal structure and collective behavior, involving particle deformation and interpenetration, can nowadays be resolved with single-particle detail thanks to recent advancements in superresolution microscopy (1518). The possibility to be studied with these fascinating tools makes them also one of the favorite model systems for fundamental science both in bulk suspensions (11, 19) and adsorbed at interfaces (2022).For all the above reasons, it is legitimate to say that the VPT occurring in pNIPAM microgels is one of the most studied phenomena in soft condensed matter. Despite the huge amount of experimental and theoretical work on this topic, which is witnessed by the large number of recent reviews (2328), there are still fundamental aspects of the VPT that remain poorly understood. In particular, pNIPAM microgels are often treated as neutral systems, since electrostatic interactions are usually thought not to play an important role in their behavior, apart from the stabilization against aggregation given to the suspension, especially at high temperatures. However, the typical batch synthesis procedure of pNIPAM microgels usually includes charged compounds, in particular those from the initiators of the polymerization process. While their presence may be effectively neglected or screened out by the addition of salt (13), recent works pointed out a relevant effect of peripheral charges in concentrated suspensions (29). At present, the influence of these charges on the VPT has not been clarified yet.To address these gaps, we recently developed a computational method (30) to assemble disordered networks with desired cross-linker concentration and a core–corona structure that closely reproduces experimental behavior (13, 31). After imposing the correct internal structure, we extended our method to properly include the presence of charged monomers with explicit counterions (32), again validating our results in the presence of explicit solvent and comparing with available experiments (33). For these reasons, we are now in the condition to carefully assess the effect of initiator charges on the deswelling mechanism of pNIPAM microgels across the VPT.By combining simulations with static and dynamic light scattering experiments, here we show that the presence of these charges strongly affects, from a qualitative point of view, the deswelling transition, inducing an inhomogeneous two-step collapse of the microgels with increasing temperature. This is due to the different solvophobicity of pNIPAM and charged groups, respectively, which manifests in the emergence of a minimum in the ratio between the gyration Rg and hydrodynamic RH radii at the VPT. First of all, we show that such a minimum is absent for neutral microgels. Second, we analyze in detail the role of the charge distribution throughout the microgel network to assess whether the initiator groups are preferentially located on the surface of the microgels, as previously hypothesized (29), but never effectively proven so far. In order to be able to predict the onset of the two-step deswelling, we further study different combinations of cross-linking ratio, charge content, and charge distribution, establishing clear trends in the occurrence of the minimum in Rg/RH. Notably, we obtain a master curve for the observed minimum for all simulated microgels when we plot it as a function of the average (effective) charge content per chain on the microgel surface, which turns out to be the simplest indicator of the presence of the two-step collapse.Our work sheds light on the fundamental electrostatic interactions influencing microgel deswelling, which are crucial to correctly describe their assembly and collective behavior at high temperatures. In addition, it opens up the possibility to a priori design microgels with desired characteristics and tunable onset of two-step deswelling, which could be exploited to enhance or adjust the potential applications of microgels as smart micro-objects.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号