首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract: Previous experiments have shown that rejection of xenogeneic skin grafts by mice is particularly dependent on CD4+ T cells. There are two possible explantations for this finding: either 1) "help" provided by CD4+ T cells is essential for CD8+ T cell-, B cell-, or NK cell-mediated effector mechanisms of rejection, or 2) CD4+ cells are themselves responsible for rejection, perhaps by some nonspecific effector mechanism. To examine these two hypotheses, we transplanted pig skin onto SCID mice and then reconstituted the mice with selected subpopulations of lymphocytes. Mice that did not received CD4+ T cells were unable to reject their xenografts, whereas those receiving CD4+ cells could do so in the absence of CD8+ cells or B cells and even when additionally depleted of NK cells by treatment with anti-Asialo GM1 antibody. Additional experiments were performed both in vivo and vitro to confirm the absence in test mice of CD4+ or CD8+ and B lymphocytes, respectively. These results suggest that CD4+ T cells are not only necessary for rejection of xenogeneic skin grafts by mice, but that they can do so without CD8+ cells or B cells, and probably without NK cells. Since CD4+ cells in mice have been shown to recognize xenogeneic antigens indirectly, this suggests that a nonspecific effector mechanism may be involved in the rejection of xenografts. In these experiments allogeneic skin grafts behave quite differently as they could not be rejected by this mechanism.  相似文献   

2.
Despite success of early islet allograft engraftment and survival in humans, late islet allograft loss has emerged as an important clinical problem. CD8+ T cells that are independent of CD4+ T cell help can damage allograft tissues and are resistant to conventional immunosuppressive therapies. Previous work demonstrates that islet allografts do not primarily initiate rejection by the (CD4-independent) CD8-dependent pathway. This study was performed to determine if activation of alloreactive CD4-independent, CD8+ T cells, by exogenous stimuli, can precipitate late loss of islet allografts. Recipients were induced to accept intrahepatic islet allografts (islet 'acceptors') by short-term immunotherapy with donor-specific transfusion (DST) and anti-CD154 mAb. Following the establishment of stable long-term islet allograft function for 60–90 days, recipients were challenged with donor-matched hepatocellular allografts, which are known to activate (CD4-independent) CD8+ T cells. Allogeneic islets engrafted long-term were vulnerable to damage when challenged locally with donor-matched hepatocytes. Islet allograft loss was due to allo specific immune damage, which was CD8- but not CD4-dependent. Selection of specific immunotherapy to suppress both CD4- and CD8-dependent immune pathways at the time of transplant protects islet allografts from both early and late immune damage.  相似文献   

3.
Alemtuzumab (CAMPATH-1H) is a depleting agent introduced recently in transplantation and often used with reduced maintenance immunosuppression. In the current study we investigated the immune response of 13 kidney allograft recipients treated with alemtuzumab followed by weaned immunosuppression with reduced dose of mycophenolate mofetil (MMF) and tacrolimus. Tacrolimus was switched to sirolimus at 6 months and MMF withdrawn at 12 months after transplantation.
We found that after alemtuzumab induction the recovery of CD8+ T cells was much faster than that of CD4+ T cells. It was complete 6 months posttransplant while CD4+ T cells did not fully recover even 15 months posttransplant. Repopulating CD8+ T cells were mainly of immunosenescent CD28CD8+ phenotype. In a series of in vitro experiments we showed that CD28CD8+ T cells might suppress proliferation of CD4+ T cells. There were three successfully treated acute rejections during the study (first at +70 day, two others +12 months) that occurred in patients with the lowest level of CD28CD8+ T cells.
We hypothesize that expanded CD28CD8+ T cells might compete for 'immune space' with CD4+ T cells suppressing their proliferation and therefore delaying CD4+ T-cells recovery. This delay might be associated with the clinical outcome as CD4+ T cells, notably CD4+ T effector memory cells, were shown to be associated with rejection.  相似文献   

4.
Campath-1H (Alemtuzumab) is an effective immunodepletion agent used in renal transplantation. To evaluate its influence on T lymphocytes during repletion, we analyzed peripheral blood from Campath-1H-treated renal allograft recipients for the presence of FOXP3+ regulatory T (Treg) cells. Flow cytometry demonstrated that CD4+CD25+FOXP3+ lymphocytes increased significantly within the CD4+ T-cell population, skewing Treg/Teff (T effector) ratios for up to several years. In contrast, Treg levels in patients treated with anti-CD25 (Basiliximab) and maintained on CsA demonstrated a sustained decrease. The increase in Tregs in Campath-1H treated patients developed independent of maintenance immunosuppression. Importantly, the increase in Tregs was not fully explained by their homeostatic proliferation, increased thymic output, or Treg sparing, suggesting de novo generation/expansion. Consistent with this, in vitro stimulation of PBMCs with Campath-1H, with or without anti-CD3, activation led to an increase in CD4+CD25+FOXP3+ cells that had suppressive capabilities. Together, these data suggest that Campath-1H promotes an increase in peripheral Tregs and may act as an intrinsic generator of Tregs in vivo .  相似文献   

5.
Type I interferons (IFN-I) link innate to adaptive immunity in microbial infection, autoimmune disease and tumor immunity. It is not known whether IFN-I have an equally central role in alloimmunity. Here we tested this possibility by studying skin allograft survival and donor-specific CD8+ T-cell responses in mice that lack the IFN-I receptor (IFN-IR−/−). We found that IFN-IR−/− mice reject fully allogeneic wild-type skin grafts at the same rate as wild-type recipients. Similarly, allograft rejection was not delayed if IFN-IR−/− male skin was transplanted to syngeneic IFN-IR−/− female mice. Quantitation of the male (H-Y)-specific CD8+ T-cell response in these mice revealed normal generation of donor-specific CD8+ effector T cells but fourfold reduction in CD8+ memory T cells. Memory CD8+ T cells generated in the absence of IFN-IR had normal phenotype and recall function, assessed by ex vivo cytokine production and the ability of IFN-IR−/− mice to mount second set rejection. Finally, these memory T cells were maintained at a constant number despite their inability to respond to IFN-1. Our findings indicate that IFN-I cytokines are not critical for acute allograft rejection or for the expansion and differentiation of donor-specific CD8+ T cells into long-lived, functional memory T cells.  相似文献   

6.
Abstract: Mouse CD4+ T cells efficiently develop in fetal pig thymus (FPTHY) grafts and repopulate the periphery of T cell and NK cell-depleted, thymectomized (ATX) mice. However, efficient peripheral repopulation of mouse CD8+ T cells does not occur in these mice. We have therefore evaluated the maturation and function of mouse CD8 single positive (SP) thymocytes in fetal pig thymus and liver fragment (FP THY LIV) grafts. Phenotypic maturity, as measured by upregulated expression of TCR, class I MHC, and Qa-2, and downregulated expression of heat stable antigen (HSA) on CD8 SP cells in FP THY grafts, was similar to that in host thymi of euthymic control mice. Cytolytic T lymphocyte (CTL) activity of thymocytes from FP THY grafts was similar to that of thymocytes from host thymi of euthymic mice, indicating that functional maturation of CD8 SP cells had taken place in the grafts. Furthermore, similarly efficient deletion of Vβ5.1/5.2+ and Vβ11+ CD8 SP cells was observed in FP THY grafts as in host thymi of euthymic control mice. Similar percentages of Vβ6, Vβ7, and Vβ8.1/8.2 expressing cells were also detected among CD8 SP cells in FP THY grafts and host thymi of euthyrnic controls. Together, our results suggest that normal positive and negative selection occurs, and that mouse CD8+ cells can undergo normal functional and phenotypic maturation in FPTHY grafts. Thus, other explanations must be sought for the failure of CD8'cells to repopulate the peripheral lymphoid tissues of ATX, T cell-depleted, pig THYLIV-grafted mice.  相似文献   

7.
Liver allografts in mice are accepted across MHC barriers without requirement for immunosuppressive therapy. The mechanisms underlying this phenomenon remain largely undefined. In this study, we investigated the role of Foxp3-expressing CD25+CD4+ regulatory T cells (Treg) in the induction of murine liver transplant tolerance. Foxp3+CD25+CD4+ T cells were increased in liver grafts and recipient spleens from day 5 to day 100 posttransplantation, associated with enhanced CTLA4 and TGF-β expression and IL-4 production. Depletion of recipient CD25+CD4+ T cells using anti-CD25 mAb (250 μg/day) induced acute liver allograft rejection. This was associated with a decreased ratio of Foxp3+ Treg: T effector cells, decreased IL-4 and elevated IL-10 and IL-2 production by graft-infiltrating T cells, and reduced apoptotic activity of graft-infiltrating CD4+ and CD8+ T cells in anti-CD25-mAb-treated recipients. Thus, the data suggest that Foxp3+CD25+CD4+Treg are involved in spontaneous acceptance of liver allografts in mice. The ratio of Treg to T effector cells appears to determine liver transplant outcome. CTLA4, IL-4, TGF-β and apoptosis of graft-infiltrating T cells are also associated with liver transplant tolerance and may contribute, at least in part, to the mechanisms of Treg-mediated immune regulation in this model.  相似文献   

8.
Antineutrophil cytoplasmic autoantibody (ANCA)-associated systemic vasculitis (AASV) constitutes a group of primary vasculitides associated with antineutrophil cytoplasmic autoantibodies, which are either directed to proteinase-3 or myeloperoxidase. In contrast to other forms of vasculitis, immuohistologic evaluation of affected tissues in patients with AASV, particularly the kidneys, demonstrated an absence or paucity of immunoglobulins, which could suggest involvement of cell-mediated injury in this disorder. Several studies have shed light on T cell-mediated immune responses playing a role in the pathophysiology of AASV. Imbalance of CD4+ T-cell subsets has been demonstrated in the peripheral blood of patients with AASV. The trigger that leads to this imbalance remains to be defined, but clinical evidence shows that nasal carriage of Staphylococcus aureus constitutes a risk factor for disease exacerbation. Recent data show that superantigens and peptidoglycans from these Gram-positive bacteria can induce skewing of T-cell responses towards pathogenic interleukin (IL)-17-producing T-helper cells (Th17). Overproduction of IL-17 in response to this infection might aggravate inflammatory responses and contribute to the production of autoantibodies as well as to granuloma formation and tissue injury in patients with AASV. Next to Th17 cells, memory CD4+ T cells with the effector cytotoxic phenotype (CD4+ TEM) have also been demonstrated to constitute a major effector pathway of tissue injury in patients with pauci-immune glomerulonephritis. Therefore, future perspectives for treatment of AASV could be built on neutralization of IL-17 and depletion of CD4+ TEM cells.  相似文献   

9.
CD4+ CD25bright+ FoxP3+ regulatory T cells (Tregs) may control donor-specific allogeneic responses in kidney transplant recipients. Recent evidence demonstrated that three phenotypical Treg-subsets, naive (CCR7+CD45RO), central-memory (CCR7+CD45RO+) and effector-memory (CCR7CD45RO+), are essential for the development and function of antigen-specific suppression in the lymphoid and peripheral tissues. Also, it has been appreciated that Tregs are affected by immunosuppressive agents. In clinical practice, however, the effect of a single drug remains to be determined. Therefore, we analyzed the effect of several immunosuppressive agents on the number, phenotype and function of peripheral Tregs from 46 stable kidney transplant recipients. These patients were converted to monotherapy with tacrolimus ( n  = 15), rapamycin ( n  = 17) or mycophenolate mofetil ( n  = 14). Blood was obtained at inclusion and 6 months thereafter. The number of Tregs increased significantly in patients on monotherapy with rapamycin ( P  < 0.001), which was caused by increased numbers of Tregs with a central-memory and an effector-memory phenotype (both P  < 0.05). At 6 months after conversion, however, the suppressive function of Tregs did not significantly change in co-cultures stimulated with donor-Ag. Therefore, monotherapy with rapamycin allows the signals that are needed to increase the number of functional Tregs with a memory phenotype, thereby enhancing the potential capacity to regulate donor-specific responses in the lymphoid and the peripheral tissues.  相似文献   

10.
Foxp3+CD4+CD25+ natural regulatory T (nTreg) cells have been shown in immunodeficient mice to suppress allograft rejection after adoptive cotransfer. We hypothesized that immunotherapy using ex vivo -expanded nTreg could suppress allograft rejection in wild-type mice. Donor alloantigen (alloAg) specificity of naive splenic nTreg was enriched in vitro by culturing with anti-CD3/CD28-coated Dynabeads plus bone marrow-derived dendritic cells (BM-DC) in the presence of interleukin (IL)-2 or IL-2 plus transforming growth factor (TGF)-β. On average, 96.2% fresh CD4+CD25+ nTreg were intracellular Foxp3+. By d+20 in culture, 6.4% nTreg were Foxp3+ following expansion with IL-2 alone, and 14.4% or 19.7% nTreg were Foxp3+ when expanded with IL-2 plus 0.5 or 2.5 ng/mL TGF-β, respectively. In vitro , alloAg-enriched, TGF-β/IL-2-conditioned nTreg exerted stronger donor alloAg-specific suppression than cells with IL-2 alone in mixed lymphocyte reaction (MLR) assays. In vivo , alloAg-enriched, TGF-β/IL-2-conditioned nTreg expressed high-level Foxp3 following infusion, effectively overcame acute rejection and induced long-term survival of donor but not third-party heart allografts in peritransplant host T-cell-depleted mice. Long-term surviving allografts were noted to possess Foxp3+ graft-infiltrating cells of exogenous and endogenous origins. In conjunction with transient host T-cell depletion, therapeutic use of ex vivo -expanded nTreg may be a practical means of preventing acute allograft rejection.  相似文献   

11.
To assess whether regulatory T cells are present in rejecting human cardiac allografts, we performed functional analyses of graft lymphocytes (GLs) expanded from endomyocardial biopsies (EMB; n = 5) with histological signs of acute cellular rejection. The GL cultures were tested for their proliferative capacity and regulatory activity on allogeneic-stimulated peripheral blood mononuclear cells (PBMC) of the patient (ratio PBMC:GLs = 5:1). Three of these GL cultures were hyporesponsive to donor antigens and suppressed the antidonor proliferative T-cell response of PBMC, but not the anti-third-party response. Interestingly, it was the CD8+ GL subset of these cultures that inhibited the antidonor response (65–91% inhibition of the proportion of proliferating cells); the CD4+ GLs of the expanded GL cultures were not suppressive. In conclusion, CD8+ GLs expanded from rejecting human cardiac allografts can exhibit donor-specific immune regulatory activities in vitro . We suggest that during acute cellular rejection, GLs may not only consist of graft-destructing effector T cells, but also of cells of the CD8+ type with the potential to specifically inhibit antidonor immune reactivity.  相似文献   

12.
Abstract Allograft recipients with cytomegalovirus (CMV) infection develop increased proportions of circulating CD8 lymphocytes. A longitudinal study of 11 kidney and 5 liver allograft recipients with primary CMV infection but no other aetiological factor to explain graft dysfunction revealed selective imbalances in peripheral blood CD8' T cell subsets. Initially, CMV viraemia was associated with elevated CD8+bright' T cell numbers and T cell activation. Activation markers fell to normal when viral cultures became negative (before the end of the 1st month). During the 2nd-6th months, most (12/16) patients continued to have high CD8+ T cell counts (1050–2900 CD8+ cells/mm3), comprising an uncommon CD8+ T cell subset, as 45–73% of CD8+ bright lymphocytes were CD3+ and TCRαβ+ but were not stained by anti-CD28, CD11b, CD16, CD56 and CD57 antibody. Unexpectedly, CD 8+ CD 57+ T cells, a hallmark of CMV infection, did not appear until the 2nd-6th months of primary CMV infection, and their numbers increased progressively thereafter. They became the predominant CD8+ T cell subset after about 6 months of infection and their persistence for several (up to 4) years was strongly correlated ( r = 0.87) with expansion of CD8+ cells. Persistence of CD 8 lymphocytosis was, thus, directly related to the rate of expansion of an uncommon CD 8+CD 57- subset and its progressive replacement by CD 8+CD 57 + T cells that were chronically elicited by CMV.  相似文献   

13.
CD8 T cells primed by transplantation recognize allogeneic class I MHC molecules expressed on graft vascular endothelium and contribute to allograft injury. We previously showed that immune cell-derived complement activation fragments are integral to T cell activation/expansion. Herein we tested the impact of local complement production/activation on T cell/endothelial cell (EC) interactions. We found that proinflammatory cytokines upregulated alternative pathway complement production by ECs, yielding C5a. We further found that ECs deficient in the cell surface C3/C5 convertase regulator decay accelerating factor (DAF, CD55) induced greater CD8 T-cell proliferation and more IFNγ+ and perforin+ effector cells than wild-type (WT) ECs. Allogeneic C3−/− EC induced little or no CD8 responses. Abrogation of responses following C5a receptor (C5aR) blockade, or augmentation following addition of recombinant C5a demonstrated that the effects were mediated through T-cell-expressed-C5aR interactions. Analyses of in vivo CD8 cell responses to transplanted heart grafts deficient in EC DAF showed similar augmentation. The findings reveal that EC-derived complement triggers secondary CD8 T-cell differentiation and expansion and argue that targeting complement and/or C5aR could limit T-cell-mediated graft injury.  相似文献   

14.
The goal of this study was to determine the in vivo conditions that promote activation of the (CD4-independent) CD8+ T cell-mediated rejection pathway. We have previously noted that hepatocellular but not islet allografts readily activate this rejection pathway. In the current study, we utilized these two cell transplant models to investigate whether differences in host cell recruitment to the graft site, expression of T-cell activation markers by CD8+ graft infiltrating cells (GICs), and/or development of delayed-type hypersensitivity (DTH) and cytotoxic T lymphocyte cell-mediated effector functions could account for the differential transplant outcomes. The collective results demonstrate that recruitment of CD8+ T cells to the site of transplant, CD103 or CD69 expression on CD8+ GICs, and activation of alloreactive DTH responses are insufficient to initiate CD4-independent, CD8-dependent transplant rejection. Instead, rejection by alloreactive (CD4-independent) CD8+ T cells correlated with expression of CD25, CD154 and CD43 by CD8+ GICs, in vitro alloproliferation by recipient CD8+ T cells, and the development of in vivo allospecific cytolytic effector function. These results suggest that tissue-derived factors influence the activation and maturation of (CD4-independent) CD8+ T cells into cytolytic effectors, which correlates with transplant rejection.  相似文献   

15.
Following transplantation, recipient T cells can recognize and respond to donor antigens expressed directly on donor cells, and can respond to donor-derived peptides that have been processed and presented in the context of recipient MHC through the indirect pathway. Indirectly primed CD4+ T cells have been well studied in transplantation, but little information is available regarding whether indirectly primed CD8+ T cells participate in rejection. To address this, we placed MHC class I-deficient DbKb knockout skin grafts onto allogeneic H-2 k SCID recipients followed by adoptive transfer of purified H-2 k CD8+ T cells. The MHC class I-deficient grafts were rejected and only CD8+ T cells were detectable in the recipient lymphoid organs and in the skin grafts. Immunohistochemical analysis showed that CD8+ T cells were found in close proximity to vascular endothelial cells and to recipient infiltrating macrophages, suggesting specific interactions. The data demonstrate that cross-primed polyclonal CD8+ T cells can function as active participants in the effector phase of rejection. The findings confirm and extend previous studies using a monoclonal TCR transgenic T cell and shed light on mechanisms of acute and chronic graft injury that are potentially relevant to human transplant recipients.  相似文献   

16.
Absolute and human cytomegalovirus (HCMV)-specific CD4+ and CD8+ T-cell counts were monitored in 38 solid organ (20 heart, 9 lung and 9 kidney) transplant recipients during the first year after transplantation by a novel assay based on T-cell stimulation with HCMV-infected autologous dendritic cells. According to the pattern of T-cell restoration occurring either within the first month after transplantation or later, patients were classified as either early (n = 21) or late responders (n = 17). HCMV-specific CD4+ and CD8+ T-cell counts were consistently lower in late compared to early responders from baseline through 6 months after transplantation. In addition, in late responders, while HCMV infection preceded immune restoration, HCMV-specific CD4+ restoration was significantly delayed with respect to CD8+ T-cell restoration. The number of HCMV-specific CD4+ and CD8+ T-cells detected prior to transplantation significantly correlated with time to T-cell immunity restoration, in that higher HCMV-specific T-cell counts predicted earlier immune restoration. Clinically, the great majority of early responders (18/21, 85.7%) underwent self-resolving HCMV infections (p = 0.004), whereas the great majority of late responders (13/17, 76.5%) were affected by HCMV infections requiring antiviral treatment (p = <0.0001). Simultaneous monitoring of HCMV infection and HCMV-specific T-cell immunity predicts T-cell-mediated control of HCMV infection.  相似文献   

17.
CD4+ CD25+ regulatory T cells (Treg) are potent suppressors, and play important roles in autoimmunity and transplantation. Recent reports suggest that CD4+ CD25+ Treg are not a homogeneous cell population, but the differences in phenotype, function, and mechanisms among different subsets are unknown. Here, we demonstrate CD4+ CD25+ Treg cells can be divided into subsets according to cell-surface expression of CD62L. While both subsets express foxp3 and are anergic, the CD62L+ population is more potent on a per cell basis, and proliferates and maintains suppressive function far better than the CD62L- population and unseparated CD4+ CD25+ Treg. The CD62L+ population preferentially migrates to CCL19, MCP-1 and FTY720. Both CD62L+ and CD62L- subsets prevent the development of autoimmune gastritis and colitis induced by CD4+ CD25-CD45RBhigh cells in severe combined immunodeficiency (SCID) mice. Overall, these results suggest CD4+ CD25+ Treg are not a homogenous cell population, but can be divided into at least two subsets according to CD62L expression. The CD62L+ subset is a more potent suppressor than the CD62L- population or unfractionated CD4+ CD25+ Treg cells, can be expanded far more easily in culture, and is more responsive to chemokine-driven migration to secondary lymphoid organs. These properties may have significant implications for the clinical manipulation of the CD4+ CD25+ CD62L+ cells.  相似文献   

18.
Due to the shortage of human organs, xenotransplantation is being explored as an alternative to allotransplantation, but immune rejection remains a major hurdle to its implementation. We tested the ability of human CD4+CD25+ T cells (Treg cells) to suppress CD4+ T cell-mediated anti-porcine xenoresponses usingin vitroassays. Human Treg cells were hyporesponsive to porcine cell stimulation and suppressed the proliferative response of CD4+CD25- T cells in a dose-dependent manner, and comparison of the allo- and xenoresponses indicated that more Treg cells might be required to suppress the xenogeneic response than the allogeneic response. Stimulation of CD4+CD25- T cells with porcine cells resulted in secretion of IFN-gamma, TNF-alpha, IL-10, IL-6 and IL-2, and Treg cells suppressed the secretion of these cytokines, as well as the CD4+CD25- T-cell cytolytic response against porcine cells. These results suggest a potential role for Treg cells in promoting xenograft survival.  相似文献   

19.
ABSTRACT: The popliteal lymph node cells of immunocompetent mice generated a strong in vitro cytotoxic response to footpad injection of several human tumor cell lines and the resulting mouse effector cells predominantly used a perforin-mediated cytotoxic mechanism. A relatively minor FasL-dependent cytotoxic response to CEM-CCRF and Jurkat leukemias, but not colon carcinoma COLO 205 cells, was also detected in immunized perforin-deficient mice. In vitro depletion of CD3+ CD8+ T cells, but not CD4+ T or NK1.1+ cells, completely inhibited lysis of human tumor cells, suggesting that CD3+ CD8+ T cells were effectors of perforin-mediated xenospecific cytotoxicity. Xenospecific cytotoxic T cells from wild-type mice were extremely efficient at rejecting tumor when adoptively transferred into scid mice bearing established COLO 205, CEM-CCRF, or Jurkat tumor xenografts. By contrast, cytotoxic T lymphocytes of perforin-deficient mice had no effect on the growth of established tumor xenografts. These data indicate that perforin, and hence direct cytotoxicity, plays a key role in the ability of adoptively transferred CD8+ cytotoxic T lymphocytes to eradicate established xenografts.  相似文献   

20.
CMV-specific immunity was assessed in a longitudinal cohort of 39 lung transplant recipients (LTR) who were followed prospectively from the time of transplant using a novel assay. At the time of surveillance bronchoscopy, CMV-specific CD8+ T-cell responses were assessed in the peripheral blood, using the QuantiFERON®-CMV assay, which measures IFN-γ-secreting T cells following stimulation with CMV peptides. In total, 297 samples were collected from 39 LTR (CMV D+/R−, n = 8; D+/R+, n = 18; D−/R+, n = 6; D−/R−, n = 7). CMV-specific T-cell immunity was not detected in any of the CMV D−/R− LTR. In CMV seropositive LTR levels of CMV immunity were lowest early posttransplant and increased thereafter. While levels of CMV-specific immunity varied between LTR, measurements at any one time point did not predict episodes of CMV reactivation. In CMV mismatched (D+/R−) LTR, primary CMV immunity was not observed during the period of antiviral prophylaxis, but typically developed during episodes of CMV reactivation. Measuring CMV-specific CD8+ T-cell function with the QuantiFERON®-CMV assay provides insights into the interrelationship between CMV immunity and CMV reactivation in individual LTR. A better understanding of these dynamics may allow the opportunity to individualize antiviral prophylaxis in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号