首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background : We newly synthesized YF476 ((R)-1-[2,3-dihydro-2-oxo-1-pivaloylmethyl-5-(2'-pyridyl)-1H-1,4-benzodiazepin-3-yl]-3-(3-methylamino-phenyl)urea) as a gastrin/cholecystokinin-B (CCK-B) receptor antagonist. We investigated the pharmacological profile of YF476 in vitro and in vivo .
Methods : We examined the binding properties of YF476 to the rat brain, cloned canine and cloned human gastrin/CCK-B receptors, and the effect of YF476 on secretagogue-induced gastric acid secretion in rats and Heidenhain pouch dogs.
Results : YF476 replaced the specific binding of [125I]CCK-8 to the rat brain, cloned canine and cloned human gastrin/CCK-B receptors, with K i values of 0.068, 0.62 and 0.19 n M , respectively. The affinity of YF476 for rat brain gastrin/CCK-B receptor was 4100-fold higher than that for rat pancreatic CCK-A receptor. In anaesthetized rats, intravenous YF476 inhibited pentagastrin-induced acid secretion with an ED 50 value of 0.0086 μmol/kg, but did not affect histamine- and bethanechol-induced acid secretion at a dose of 10 μmol/kg. In Heidenhain pouch dogs, intravenous and oral YF476 inhibited pentagastrin-stimulated gastric acid secretion in a dose-dependent manner with ED 50 values of 0.018 and 0.020 μmol/kg, respectively, but did not affect histamine-induced acid secretion.
Conclusion : These results suggest that YF476 is an extremely potent and highly selective gastrin/CCK-B receptor antagonist, and that the gastrin/CCK-B receptor is not involved in histamine- or bethanechol-induced gastric acid secretion in dogs or rats.  相似文献   

2.
L-365,260 (3R(+)-N-(2,3-dihydro-1-methyl-2-oxo-5-phenyl-1H-1,4- benzodiazepin-3-yl)-N'-(3-methylphenyl)urea), interacted in a stereoselective and competitive manner with guinea pig stomach gastrin and brain cholecystokinin (CCK) receptors. The affinity of L-365,260 for both gastrin (Ki = 1.9 nM) and brain CCK-B (Ki = 2.0 nM) receptors was greater than 2 orders of magnitude higher than its affinity for peripheral pancreatic CCK-A receptors or various other receptors. L-365,260 exhibited a similar high affinity for brain CCK-B receptors of rats, mice and man. A somewhat lower affinity for gastrin and brain CCK-B (IC50 = 20-40 nM) receptors was observed in dog tissues. In vivo, oral administration of L-365,260 antagonized gastrin-stimulated acid secretion in mice (ED50 = 0.03 mg/kg), rats (ED50 = 0.9 mg/kg) and guinea pigs (ED50 = 5.1 mg/kg). L-365,260 did not affect basal acid secretion and did not antagonize histamine- or carbachol-stimulated acid secretion in mice. L-365,260 represents a potentially powerful new tool for investigating gastrin and brain CCK-B receptors, and possibly their role in physiology and disease.  相似文献   

3.
Cholecystokinin (CCK) is a hormonal regulator of the motility of the gallbladder. CCK-8, i.e. the biologically active C-terminal octapeptide of the hormone, elicits contraction and emptying of the gallbladder. Endogenous CCK released by egg yolk or fatty acids in the duodenum gives the same results. CR 1409 (lorglumide), a glutaramic acid derivative with peripheric competitive CCK-antagonistic activity, was evaluated in comparison with proglumide (the model CCK-receptor antagonist) and other conventional antispasmodic drugs, for their ability to inhibit the emptying of the gallbladder induced in mice by CCK-8 or by lyophylized egg yolk. CR 1409 (1-10 mg/kg) prevented dose-dependently the emptying of the gallbladder in both experimental models; proglumide exhibited a comparable activity at much higher doses (200-800 mg/kg). On the contrary the anticholinergic drug atropine, the calcium-antagonist nifedipine, and the phosphodiesterase inhibitor papaverine were almost ineffective. The present data support the hypothesis that the effects of CCK on gallbladder motility are mediated by a CCK-dependent specific mechanism.  相似文献   

4.
[3H]L-365,260, [(3R-(+)-2,3-dihydro-1-methyl-2-oxo-5-phenyl-1H-1,4- benzodiazepin-3-yl)-N'-(3-methylphenyl)urea], a new potent and selective nonpeptide brain cholecystokinin (CCK-B) and gastrin receptor antagonist, bound saturably and reversibly to guinea pig brain membranes. Scatchard analysis indicated a single class of high affinity (Kd = 2.3 nM) binding sites. The binding of [3H]L-365,260 was stereospecific, because unlabeled L-365,260 (an R-enantiomer) was approximately 100 times more potent than its S-enantiomer in displacing binding. The relative potencies of various CCK/gastrin-related peptides and nonpeptide peripheral CCK-A antagonists in displacing [3H]L-365,260 brain binding correlated with their potencies in displacing the binding of 125I-CCK to brain receptors but not their potencies in displacing the peripherally selective CCK-A ligand [3H]L-364,718 from pancreatic receptors. The regional distribution of [3H]L-365,260 binding in various brain areas correlated with 125I-CCK binding. Specific [3H]L-365,260 binding to guinea pig brain membranes was reduced by omission of NaCl but was not affected by omission of MgCl2 or addition of guanosine 5'-(beta-gamma-imido)triphosphate or various pharmacological agents known to interact with other common peptide and nonpeptide receptor systems. [3H]L-365,260 also bound in a specific manner to guinea pig gastric glands but only negligibly to guinea pig or rat pancreas. The binding of [3H]L-365,260 to gastric glands was inhibited by CCK/gastrin antagonists with potencies similar to those for inhibition of 125I-gastrin binding in this tissue. Collectively, the data indicates that [3H]L-365,260 represents a new potent nonpeptide antagonist radioligand suitable for the study of brain CCK-B and gastrin receptors.  相似文献   

5.
To improve our knowledge of the bioactive conformation of CCK(1) antagonists, we previously described that replacement of the alpha-MeTrp residue of dipeptoids with the (2S,5S, 11bR)-2-amino-3-oxohexahydroindolizino[8,7-b]indole-5-carbox ylate (IBTM) skeleton, a probed type II' beta-turn mimetic, led to restricted analogues (2S,5S,11bR,1'S)- and (2S,5S,11bR, 1'R)-2-(benzyloxycarbonyl)amino-5-[1'-benzyl-2'-(carboxy)ethyl]carbam oyl-3-oxo-2,3,5,6,11,11b-hexahydro-1H-indolizino[8,7-b]indole, 1a,b, showing high binding affinity and selectivity for CCK(1) receptors. In this report, we describe the synthesis and binding profile of new analogues of compounds 1 designed to explore the importance of the C-terminal residue and of the type of beta-turn on the receptor binding affinity and selectivity. Structure-affinity relationship studies show that a C-terminal free carboxylic acid and an S configuration of the Phe and betaHph residues are favorable for CCK(1) receptor recognition. Moreover, selectivity for this receptor subtype is critically affected by the beta-turn type. Thus, while compounds 15a and 16a, containing the (2S,5S,11bR)- and (2R,5R, 11bS)-IBTM frameworks, respectively, are both endowed with nanomolar affinity for CCK(1) receptors, restricted dipeptoid derivative 15a, incorporating the type II' IBTM mimetic, shows approximately 6-fold higher CCK(1) selectivity than analogue 16a, with the type II mimetic. From these results, we propose that the presence of a beta-turn-like conformation within the peptide backbone of dipeptoids could contribute to their bioactive conformation at the CCK(1) receptor subtype. Concerning functional activity, compounds 15a and 16a behave as CCK(1) receptor antagonists.  相似文献   

6.
SB-271046, potently displaced [(3)H]-LSD and [(125)I]-SB-258585 from human 5-HT(6) receptors recombinantly expressed in HeLa cells in vitro (pK(i) 8.92 and 9.09 respectively). SB-271046 also displaced [(125)I]-SB-258585 from human caudate putamen and rat and pig striatum membranes (pK(i) 8.81, 9.02 and 8.55 respectively). SB-271046 was over 200 fold selective for the 5-HT(6) receptor vs. 55 other receptors, binding sites and ion channels. In functional studies on human 5-HT(6) receptors SB-271046 competitively antagonized 5-HT-induced stimulation of adenylyl cyclase activity with a pA(2) of 8.71. SB-271046 produced an increase in seizure threshold over a wide-dose range in the rat maximal electroshock seizure threshold (MEST) test, with a minimum effective dose of < or =0.1 mg kg(-1) p.o. and maximum effect at 4 h post-dose. The level of anticonvulsant activity achieved correlated well with the blood concentrations of SB-271046 (EC(50) of 0.16 microM) and brain concentrations of 0.01-0.04 microM at C(max). These data, together with the observed anticonvulsant activity of other selective 5-HT(6) receptor antagonists, SB-258510 (10 mg kg(-1), 2-6 h pre-test) and Ro 04-6790 (1-30 mg kg(-1), 1 h pre-test), in the rat MEST test, suggest that the anticonvulsant properties of SB-271046 are likely to be mediated by 5-HT(6) receptors. Overall, these studies demonstrate that SB-271046 is a potent and selective 5-HT(6) receptor antagonist and is orally active in the rat MEST test. SB-271046 represents a valuable tool for evaluating the in vivo central function of 5-HT(6) receptors.  相似文献   

7.
We describe characteristics of a selective endothelin (ET) ET(B) receptor antagonist, BQ-788 [N-cis-2,6-dimethylpiperidinocarbonyl-L-gamma-methylleucyl-D-1-methoxycarbonyltryptophanyl-D-norleucine], which is widely used to demonstrate the role of endogenous or exogenous ETs in vitro and in vivo. In vitro, BQ-788 potently and competitively inhibited (125)I-labeled ET-1 binding to ET(B) receptors in human Girrardi heart cells (hGH) with an IC(50) of 1.2 nM, but only poorly inhibited the binding to ET A receptors in human neuroblastoma cell line SK-N-MC cells (IC(50), 1300 nM). In isolated rabbit pulmonary arteries, BQ-788 showed no agonistic activity up to 10 microM and competitively inhibited the vasoconstriction induced by an ET(B)-selective agonist (pA(2), 8.4). BQ-788 also inhibited several bioactivities of ET-1, such as bronchoconstriction, cell proliferation, and clearance of perfused ET-1. Thus, it is confirmed that BQ-788 is a potent, selective ET(B) receptor antagonist. In vivo, in conscious rats, BQ-788, 3 mg/kg/h, i.v., completely inhibited a pharmacological dose of ET-1- or sarafotoxin6c (S6c) (0.5 nmol/kg, i.v.)-induced ET(B) receptor-mediated depressor, but not pressor responses. Furthermore, BQ-788 markedly increased the plasma concentration of ET-1, which is considered an index of potential ET(B) receptor blockade in vivo. In Dahl salt-sensitive hypertensive (DS) rats, BQ-788, 3 mg/kg/h, i.v., increased blood pressure by about 20 mm Hg. It is reported that BQ-788 also inhibited ET-1-induced bronchoconstriction, tumor growth and lipopolysaccharide-induced organ failure. These data suggest that BQ-788 is a good tool for demonstrating the role of ET-1 and ET(B) receptor subtypes in physiological and/or pathophysiological conditions.  相似文献   

8.
MK-996 (N-((4′-((5,7-Dimethyl-2-ethyl-3H-imidazo[4,5-b]pyridin-3-yl)methyl) (1,1′-biphenyl)-2-yl) sulfonylbenzamide) interacted in a competitive manner with rabbit aortic angiotensin II (All) receptors as determined by Scatchard analysis of specific binding of [125l]-Sar1lle8-All. MK-996 also exhibited high affinity at All receptors in several tissues from different animal species (Ki = 0.1–0.4 nM). In vitro functional assays utilizing All-induced aldosterone release in rat adrenal cortical cells demonstrated further that MK-996 acts as a competitive, high affinity antagonist of All (pA2 = 10.3) and lacks agonist activity. MK-996 also potently inhibited All-induced contractile response in isolated rabbit aorta and pulmonary artery with a reduction in maximal response. The specificity of MK-996 for All receptors was demonstrated by its lack of activity (IC50> 1 μM) in several other receptor binding assays and its inability to affect in vitro functional responses produced by other agonists. MK-996 demonstrated a very high selectivity for the AT1 compared to AT2 receptor subtype (AT2 IC50 ≥ 2 μM). Direct binding studies using [3H]-MK-996 in rat adrenal indicated specific binding of [3H]-MK-996 is saturable and of high affinity (Kd = 0.47 nM). The specific [3H]-MK-996 binding in rat adrenal represents binding to pharmacologically relevant AT1 receptors as demonstrated by the similar Ki values for various All agonists and antagonists in inhibiting specific 3H-MK-996 and [125l]-All binding to AT1 receptors. Dissociation rate studies of specific [3H]-MK-996 binding indicated a t1/2 of 103 min. This slow dissociation may account for the reduction in maximal responses to All in MK-996 treated isolated blood vessels.  相似文献   

9.
Iodo-resiniferatoxin, a new potent vanilloid receptor antagonist   总被引:13,自引:0,他引:13  
The highly potent vanilloid receptor (VR) agonist resiniferatoxin has been radiolabeled with 125I, and the pharmacology to the cloned rodent VR, VR1, and the endogenous VR in rat spinal cord membranes has been characterized. [125I]RTX binding to human embryonic kidney 293 cells expressing VR1 was reversible and with high affinity (Kd = 4.3 nM) in an apparent monophasic manner. In rat spinal cord membranes, [125I]RTX bound with a similar high affinity (Kd = 4.2 nM) to a limited number of binding sites (Bmax = 51 +/- 8 fmol/mg of protein). The pharmacology of recombinant rodent VR1 and the endogenous rat VR1 was indistinguishable when measuring displacement of [125I]RTX binding (i.e., the following rank order of affinity was observed: RTX > I-RTX > olvanil > capsaicin > capsazepine). Capsaicin and RTX induced large nondesensitizing currents in Xenopus laevis oocytes expressing VR1 (EC50 values were 1300 nM and 0.2 nM, respectively), whereas I-RTX induced no current per se at concentrations up to 10 microM. However, I-RTX completely blocked capsaicin-induced currents (IC50 = 3.9 nM). In vivo, I-RTX effectively blocked the pain responses elicited by capsaicin (ED50 = 16 ng/mouse, intrathecally). The present study showed that I-RTX is at least 40-fold more potent than the previously known VR antagonist, capsazepine. Thus, I-RTX as well as its radiolabeled form, should be highly useful for further exploring the physiological roles of VRs in the brain and periphery.  相似文献   

10.
5'-Guanidinonaltrindole (GNTI) possesses 5-fold greater opioid antagonist potency (K(e)=0.04 nM) and an order of magnitude greater selectivity (selectivity ratios >500) than the prototypical kappa-opioid receptor antagonist, norbinaltorphimine, in smooth muscle preparations. Binding and functional studies conducted on cloned human opioid receptors expressed in Chinese hamster ovarian (CHO) cells afforded pA(2) values that were comparable to the smooth muscle data. In view of the high selectivity and potency of GNTI, it is a potentially valuable pharmacological tool for opioid research.  相似文献   

11.
The pharmacological profile of the new CCK1 receptor antagonist IQM-97,423, (4aS,5R)-2-benzyl-5-(tert-butylaminocarbonyl-tryptophyl)amino-1,3-dioxoperhydropyrido-[1,2-c]pyrimidine, was examined in in vitro and in vivo studies and compared with typical CCK1 antagonists such as devazepide and lorglumide. IQM-97,423 showed a high affinity at [3H]-pCCK8-labeled rat pancreatic CCK1 receptors, and was virtually devoid of affinity at brain CCK2 receptors. IQM-97,423 antagonized CCK8S-stimulated alpha-amylase release from rat pancreatic acini with a potency similar to devazepide and much higher than lorglumide. In the guinea pig isolated longitudinal muscle-myenteric plexus preparation, IQM-97,423 produced a full antagonism of the contractile response elicited by CCK8S and a weaker effect on the contraction elicited by CCK4, suggesting a selective antagonism at CCK1 receptors. The protective effect of IQM-97,423 and devazepide was tested in two models of acute pancreatitis in rats, induced by injection of cerulein or by combined bile and pancreatic duct obstruction. The new compound fully prevented the cerulein-induced increase in plasma pancreatic enzymes and in pancreas weight with a potency similar to devazepide. In common bile-pancreatic duct ligature-induced acute pancreatitis, IQM-97,423 partially prevented, like devazepide, the increase in plasma pancreatic enzyme activity and in pancreas weight. Consequently, the pyridopyrimidine derivative IQM-97,423 is a potent and highly selective CCK1 receptor antagonist with preventive effects in two experimental models of acute pancreatitis and a potential therapeutic interest.  相似文献   

12.
1. BIIE0246, a newly synthesized non-peptide neuropeptide Y (NPY) Y(2) receptor antagonist, was able to compete with high affinity (8 to 15 nM) for specific [(125)I]PYY(3 - 36) binding sites in HEK293 cells transfected with the rat Y(2) receptor cDNA, and in rat brain and human frontal cortex membrane homogenates. 2. Interestingly, in rat brain homogenates while NPY, C2-NPY and PYY(3 - 36) inhibited all specific [(125)I]PYY(3 - 36) labelling, BIIE0246 failed to compete for all specific binding suggesting that [(125)I]PYY(3 - 36) recognized, in addition to the Y(2) subtype, another population of specific NPY binding sites, most likely the Y(5) receptor. 3. Quantitative receptor autoradiographic data confirmed the presence of [(125)I]PYY(3 - 36)/BIIE0246-sensitive (Y(2)) and-insensitive (Y(5)) binding sites in the rat brain as well as in the marmoset monkey and human hippocampal formation. 4. In the rat vas deferens and dog saphenous vein (two prototypical Y(2) bioassays), BIIE0246 induced parallel shifts to the right of NPY concentration-response curves with pA(2) values of 8.1 and 8.6, respectively. In the rat colon (a Y(2)/Y(4) bioassay), BIIE0246 (1 microM) completely blocked the contraction induced by PYY(3 - 36), but not that of [Leu(31), Pro(34)]NPY (a Y(1), Y(4) and Y(5) agonist) and hPP (a Y(4) and Y(5) agonist). Additionally, BIIE0246 failed to alter the contractile effects of NPY in prototypical Y(1) in vitro bioassays. 5. Taken together, these results demonstrate that BIIE0246 is a highly potent, high affinity antagonist selective for the Y(2) receptor subtype. It should prove most useful to establish further the functional role of the Y(2) receptor in the organism.  相似文献   

13.
Vanilloid receptor-1 (TRPV1) is a non-selective cation channel, predominantly expressed by peripheral sensory neurones, which is known to play a key role in the detection of noxious painful stimuli, such as capsaicin, acid and heat. To date, a number of antagonists have been used to study the physiological role of TRPV1; however, antagonists such as capsazepine are somewhat compromised by non-selective actions at other receptors and apparent modality-specific properties. SB-366791 is a novel, potent, and selective, cinnamide TRPV1 antagonist isolated via high-throughput screening of a large chemical library. In a FLIPR-based Ca(2+)-assay, SB-366791 produced a concentration-dependent inhibition of the response to capsaicin with an apparent pK(b) of 7.74 +/- 0.08. Schild analysis indicated a competitive mechanism of action with a pA2 of 7.71. In electrophysiological experiments, SB-366791 was demonstrated to be an effective antagonist of hTRPV1 when activated by different modalities, such as capsaicin, acid or noxious heat (50 degrees C). Unlike capsazepine, SB-366791 was also an effective antagonist vs. the acid-mediated activation of rTRPV1. With the aim of defining a useful tool compound, we also profiled SB-366791 in a wide range of selectivity assays. SB-366791 had a good selectivity profile exhibiting little or no effect in a panel of 47 binding assays (containing a wide range of G-protein-coupled receptors and ion channels) and a number of electrophysiological assays including hippocampal synaptic transmission and action potential firing of locus coeruleus or dorsal raphe neurones. Furthermore, unlike capsazepine, SB-366791 had no effect on either the hyperpolarisation-activated current (I(h)) or Voltage-gated Ca(2+)-channels (VGCC) in cultured rodent sensory neurones. In summary, SB-366791 is a new TRPV1 antagonist with high potency and an improved selectivity profile with respect to other commonly used TRPV1 antagonists. SB-366791 may therefore prove to be a useful tool to further study the biology of TRPV1.  相似文献   

14.
15.
  1. In the present paper, we describe the in vitro pharmacological properties of LF 16.0335 (1-[[3-[(2,4-dimethylquinolin-8-yl)oxymethyl]-2,4-dichloro-phenyl]sulphonyl] -2(S) - [[4 -[4-(aminoiminomethyl)phenylcarbonyl]piperazin-1-yl]carbonyl]pyrrolidine), a novel and potent nonpeptide antagonist of the human bradykinin (BK) B2 receptor.
  2. LF 16.0335 displaced [3H]-BK binding to membrane preparations from CHO cells expressing the cloned human B2 receptor, INT 407 cells and human umbilical vein with Ki values of 0.84±0.39 nM, 1.26±0.68 nM and 2.34±0.36 nM, respectively.
  3. In saturation binding studies performed in INT 407 cell membranes in the presence or absence of LF 16.0335, Bmax values of [3H]-BK were not significantly changed suggesting that LF 16.0335 behaves as a competitive antagonist.
  4. LF 16.0335 had no affinity for the cloned human kinin B1 receptor stably expressed in 293 cells. In addition, this compound at 1 μM did not significantly bind to a range of 40 different membrane receptors and eight ion channels except muscarinic M2 and M1 receptors for which an IC50 value of 0.9 and 1 μM was obtained.
  5. BK stimulates in a concentration-dependent manner phosphoinositosides (IPs) production in cultured INT 407 cells. Concentration-response-curves to BK were shifted to the right in the presence of LF 16.0335 (0.1 μM) without reduction of the maximum. LF 16.0335 inhibited the concentration-contraction curve to BK in the human umbilical vein giving a pA2 value of 8.30±0.30 with a Schild plot slope that was not different from unity.
  6. These results demonstrate that LF 16.0335 is a potent, selective and competitive antagonist of the human bradykinin B2 receptor.
  相似文献   

16.
The novel 5-HT(7) receptor antagonist, SB-269970-A, potently displaced [(3)H]-5-CT from human 5-HT(7(a)) (pK(i) 8.9+/-0.1) and 5-HT(7) receptors in guinea-pig cortex (pK(i) 8.3+/-0.2). 5-CT stimulated adenylyl cyclase activity in 5-HT(7(a))/HEK293 membranes (pEC(50) 7.5+/-0.1) and SB-269970-A (0.03 - 1 microM) inhibited the 5-CT concentration-response with no significant alteration in the maximal response. The pA(2) (8.5+/-0.2) for SB-269970-A agreed well with the pK(i) determined from [(3)H]-5-CT binding studies. 5-CT-stimulated adenylyl cyclase activity in guinea-pig hippocampal membranes (pEC(50) of 8.4+/-0.2) was inhibited by SB-269970-A (0.3 microM) with a pK(B) (8.3+/-0.1) in good agreement with its antagonist potency at the human cloned 5-HT(7(a)) receptor and its binding affinity at guinea-pig cortical membranes. 5-HT(7) receptor mRNA was highly expressed in human hypothalamus, amygdala, thalamus, hippocampus and testis. SB-269970-A was CNS penetrant (steady-state brain : blood ratio of ca. 0.83 : 1 in rats) but was rapidly cleared from the blood (CLb=ca. 140 ml min(-1) kg(-1)). Following a single dose (3 mg kg(-1)) SB-269970 was detectable in rat brain at 30 (87 nM) and 60 min (58 nM). In guinea-pigs, brain levels averaged 31 and 51 nM respectively at 30 and 60 min after dosing, although the compound was undetectable in one of the three animals tested. 5-CT (0.3 mg kg(-1) i.p.) induced hypothermia in guinea-pigs was blocked by SB-269970-A (ED(50) 2.96 mg kg(-1) i.p.) and the non-selective 5-HT(7) receptor antagonist metergoline (0.3 - 3 mg kg(-1) s.c.), suggesting a role for 5-HT(7) receptor stimulation in 5-CT induced hypothermia in guinea-pigs. SB-269970-A (30 mg kg(-1)) administered at the start of the sleep period, significantly reduced time spent in Paradoxical Sleep (PS) during the first 3 h of EEG recording in conscious rats.  相似文献   

17.
Polymyxin B is a selective and potent antagonist of calmodulin   总被引:3,自引:0,他引:3  
Polymyxin B, a cyclic peptide antibiotic, is considered to be a rather selective antagonist of protein kinase C. This drug is therefore widely used to evaluate the involvement of protein kinase C in cellular processes. In the present study, we investigated the effects of polymyxin B on the activity of calmodulin-dependent cyclic 3':5'-nucleotide phosphodiesterase in vitro. The drug potently inhibited this enzyme (IC50 80 nM in the presence of 500 microM Ca2+), while about 200-fold higher concentrations were required to inhibit protein kinase C to the same extent. Phosphodiesterase inhibition was competitive with respect to Ca2+ and calmodulin. Evidence for the formation of a complex between polymyxin B and calmodulin was obtained by polyacrylamide gel electrophoresis under non-denaturing conditions, and by affinity chromatography of calmodulin on polymyxin B-agarose. We therefore suggest that, at least in vitro, polymyxin B is a potent and selective inhibitor of calmodulin.  相似文献   

18.
19.

Aims

To compare gastric acid suppression by netazepide, a gastrin/CCK2 receptor antagonist, with that by a proton pump inhibitor (PPI), and to determine if netazepide can prevent the trophic effects of PPI-induced hypergastrinaemia.

Methods

Thirty healthy subjects completed a double-blind, randomized, parallel group trial of oral netazepide and rabeprazole, alone and combined, once daily for 6 weeks. Primary end points were: basal and pentagastrin-stimulated gastric acid and 24 h circulating gastrin and chromogranin A (CgA) at baseline, start and end of treatment, gastric biopsies at baseline and end of treatment and basal and pentagastrin-stimulated gastric acid and dyspepsia questionnaire after treatment withdrawal.

Results

All treatments similarly inhibited pentagastrin-stimulated gastric acid secretion. All treatments increased serum gastrin, but the combination and rabeprazole did so more than netazepide alone. The combination also reduced basal acid secretion.Rabeprazole increased plasma CgA, whereas netazepide and the combination reduced it. None of the biopsies showed enterochromaffin-like (ECL) cell hyperplasia. Withdrawal of treatments led neither to rebound hyperacidity nor dyspepsia.

Conclusions

Netazepide suppressed pentagastrin-stimulated gastric acid secretion as effectively as did rabeprazole. The reduction in basal acid secretion and greater increase in serum gastrin by the combination is consistent with more effective acid suppression. Despite our failure to show rabeprazole-induced ECL cell hyperplasia and rebound hyperacidity, the increase in plasma CgA after rabeprazole is consistent with a trophic effect on ECL cells, which netazepide prevented. Thus, netazepide is a potential treatment for the trophic effects of hypergastrinaemia and, with or without a PPI, is a potential treatment for acid-related conditions.  相似文献   

20.
BACKGROUND AND PURPOSE: The ATP-gated P2X(7) receptor has been shown to play a role in several inflammatory processes, making it an attractive target for anti-inflammatory drug discovery. We have recently identified a novel set of cyclic imide compounds that inhibited P2X(7) receptor-mediated dye uptake in human macrophage THP-1 cells. In this study the actions and selectivity of one of these compounds, AZ11645373, were characterized. EXPERIMENTAL APPROACH: We measured membrane currents, calcium influx, and YOPRO-1 uptake from HEK cells expressing individual P2X receptors, and YOPRO1 uptake and interleukin-1beta release from THP-1 cells in response to ATP and the ATP analogue benzoylbenzoyl ATP (BzATP). KEY RESULTS: AZ11645373 up to 10 microM, had no agonist or antagonist actions on membrane currents due to P2X receptor activation at human P2X(1), rat P2X(2), human P2X(3), rat P2X(2/3), human P2X(4), or human P2X(5) receptors expressed in HEK cells. AZ11645373 inhibited human P2X(7) receptor responses in HEK cells in a non-surmountable manner with K (B) values ranging from 5 - 20 nM, with mean values not significantly different between assays. K (B) values were not altered by removing extracellular calcium and magnesium. ATP-evoked IL-1beta release from lipopolysaccharide-activated THP-1 cells was inhibited by AZ11645373, IC(50) = 90 nM. AZ11645373 was > 500-fold less effective at inhibiting rat P2X(7) receptor-mediated currents with less than 50% inhibition occurring at 10 microM. CONCLUSIONS AND IMPLICATIONS: AZ11645373 is a highly selective and potent antagonist at human but not rat P2X(7) receptors and will have much practical value in studies of human cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号