首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Summary Coenzyme Q10 (CoQ) was measured in serum and muscle of 17 patients with ophthalmoplegia plus (including 5 patients with Kearns-Sayre syndrome), in muscle of 9 patients with neurogenic atrophies, 5 patients with myositis, and 5 patients with progressive muscular dystrophies (including 1 patient with oculopharyngeal dystrophy), and in serum and muscle of normal controls. CoQ was markedly decreased in serum and muscle of 1 patient with Kearns-Sayre syndrome and treatment with CoQ resulted in a significant clinical improvement. The other 4 patients with Kearns-Sayre syndrome and the patients with ophthalmoplegia plus exhibited normal concentrations of CoQ in serum and muscle. CoQ levels in muscle of patients with progressive muscular dystrophies, myositis or neurogenic atrophies were within the normal range. Concentrations of CoQ in serum and muscle of normal controls were independent of age and showed no sex difference. The data indicate that CoQ deficiency might be the specific cause of mitochondrial encephalomyopathy in 1 patient but it was not the underlying defect common to all cases with Kearns-Sayre syndrome and ophthalmoplegia plus, although the possibility of a focal CoQ deficiency affecting only single muscle fibres cannot be excluded.Dedicated to the late Dr. Saburo Ogasahara  相似文献   

2.
Familial cerebellar ataxia with muscle coenzyme Q10 deficiency   总被引:10,自引:0,他引:10  
OBJECTIVE: To describe a clinical syndrome of cerebellar ataxia associated with muscle coenzyme Q10 (CoQ10) deficiency. BACKGROUND: Muscle CoQ10 deficiency has been reported only in a few patients with a mitochondrial encephalomyopathy characterized by 1) recurrent myoglobinuria; 2) brain involvement (seizures, ataxia, mental retardation), and 3) ragged-red fibers and lipid storage in the muscle biopsy. METHODS: Having found decreased CoQ10 levels in muscle from a patient with unclassified familial cerebellar ataxia, the authors measured CoQ10 in muscle biopsies from other patients in whom cerebellar ataxia could not be attributed to known genetic causes. RESULTS: The authors found muscle CoQ10 deficiency (26 to 35% of normal) in six patients with cerebellar ataxia, pyramidal signs, and seizures. All six patients responded to CoQ10 supplementation; strength increased, ataxia improved, and seizures became less frequent. CONCLUSIONS: Primary CoQ10 deficiency is a potentially important cause of familial ataxia and should be considered in the differential diagnosis of this condition because CoQ10 administration seems to improve the clinical picture.  相似文献   

3.
Recently, several studies were published on therapy with coenzyme Q (CoQ) in patients with mitochondrial myopathies without biochemically established muscular deficiency of CoQ. Two patients with mitochondrial myopathies presenting as oculocraniosomatic syndromes were treated with coenzyme Q (CoQ). The muscle biopsy of both patients showed ragged-red fibers and single muscle fibers without histochemical reaction for cytochrome c oxidase. Biochemical analysis revealed normal activities of the respiratory chain complexes in muscle and normal levels of CoQ in serum and muscle. After one year of treatment CoQ in serum of both patients had increased 1.4-fold and 2.0-fold, respectively. In muscle, however, there was no increase of CoQ in either patient. In both patients the activities of citrate synthase and of the respiratory chain complexes I + III and IV, and in 1 patient also of complex II + III, were lower in the second biopsy compared with the first biopsy. In both patients there was no improvement of maximal isometric muscle strength assessed by a quantitative electronic strain gauge. The exercise-induced pathological rise of lactate in 1 patient remained essentially unchanged during therapy. The data indicate that orally administered CoQ fails to increase total CoQ in muscle of patients with mitochondrial myopathies but without muscular CoQ deficiency.  相似文献   

4.
APTX gene mutations responsible for ataxia-oculomotor apraxia 1 (AOA1) were identified in a family previously reported with ataxia and coenzyme Q10 (CoQ10) deficiency. We measured muscle CoQ10 levels in six patients with AOA1 and found decreased levels in five. Patients homozygous for the W279X mutation had lower values (p = 0.003). A therapeutic trial of CoQ10 may be warranted in patients with AOA1.  相似文献   

5.
The authors measured coenzyme Q10 (CoQ10) concentration in muscle biopsies from 135 patients with genetically undefined cerebellar ataxia. Thirteen patients with childhood-onset ataxia and cerebellar atrophy had markedly decreased levels of CoQ10. Associated symptoms included seizures, developmental delay, mental retardation, and pyramidal signs. These findings confirm the existence of an ataxic presentation of CoQ10 deficiency, which may be responsive to CoQ10 supplementation.  相似文献   

6.
For 2 years we administered high doses of coenzyme Q10 (CoQ) to a patient having mitochondrial encephalomyopathy with cytochrome c oxidase deficiency. Abnormal elevation of the serum lactate per pyruvate ratio and the increased concentration of serum lactate plus pyruvate induced by exercise decreased with CoQ treatment. This therapeutic effect continued for 2 years. 31P nuclear magnetic resonance spectroscopy showed acceleration of the postexercise recovery of the ratio of phosphocreatine to inorganic phosphate in muscle during CoQ treatment. These observations support the beneficial effect of CoQ on the impaired mitochondrial oxidative metabolism in muscle. Also, impaired central and peripheral nerve conductivities consistently improved during CoQ treatment. These results indicate that CoQ has clinical value in the long-term management of patients with mitochondrial encephalomyopathies, even though there are clinical limitations to the effects of this therapy.  相似文献   

7.
Two brothers had late-onset progressive ataxia, cerebellar atrophy, and hypergonadotropic hypogonadism associated with coenzyme Q10 (CoQ10) deficiency in skeletal muscle. Both patients improved on high-dose CoQ10 supplementation, stressing the importance of CoQ10 deficiency in the differential diagnosis of cerebellar ataxia, even when onset is late.  相似文献   

8.
Primary muscle coenzyme Q10 (CoQ10) deficiency is an apparently autosomal recessive condition with heterogeneous clinical presentations. Patients with these disorders improve with CoQ10 supplementation. In a family with ataxia and CoQ10 deficiency, analysis of genome-wide microsatellite markers suggested linkage of the disease to chromosome 9p13 and led to identification of an aprataxin gene (APTX) mutation that causes ataxia oculomotor apraxia (AOA1 [MIM606350]). The authors' observations indicate that CoQ10 deficiency may contribute to the pathogenesis of AOA1.  相似文献   

9.
Coenzyme Q(10) (CoQ(10)) deficiency has been associated with 5 major clinical phenotypes: encephalomyopathy, severe infantile multisystemic disease, nephropathy, cerebellar ataxia, and isolated myopathy. Primary CoQ(10) deficiency is due to defects in CoQ(10) biosynthesis, while secondary forms are due to other causes. A review of 149 cases, including our cohort of 76 patients, confirms that CoQ(10) deficiency is a clinically and genetically heterogeneous syndrome that mainly begins in childhood and predominantly manifests as cerebellar ataxia. Coenzyme Q(10) measurement in muscle is the gold standard for diagnosis. Identification of CoQ(10) deficiency is important because the condition frequently responds to treatment. Causative mutations have been identified in a small proportion of patients.  相似文献   

10.
The aim of this study is to determine whether coenzyme Q (CoQ) muscle concentrations and redox state are associated with pathologic changes in muscle biopsy specimens. Skeletal muscle biopsies were collected (January 2002-February 2004) and underwent pathologic evaluation. Quadriceps specimens (n = 47) were stratified accordingly: Group 1, controls without evidence of pathologic abnormalities; Group 2, type I myofiber predominance; Group 3, type II myofiber atrophy; Group 4, lower motor unit disease; and Group 5, muscular dystrophy. Ubiquinol-10, ubiquinone-10, total coenzyme Q10 (CoQ10), coenzyme Q9 (CoQ9), total CoQ (CoQ9+CoQ10) concentrations were analyzed in biopsy muscle by high-performance liquid chromatography. Ubiquinone-10, total CoQ10, and total CoQ concentrations were significantly decreased in Group 5. Significant positive correlations (r congruent with 0.40) were found between muscle ubiquinone-10, total CoQ10, and total CoQ concentrations vs the percentage of myofibers having subsarcolemmal mitochondrial aggregates. CoQ redox ratio and the fraction CoQ9/total CoQ were negatively correlated with subsarcolemmal mitochondrial aggregates. A significant correlation (r = 0.328) also occurred between ubiquinol-10 concentration and citrate synthase activity. This study suggests that total CoQ concentration provides a new method for estimating mitochondrial activity in biopsy muscle; and that the muscle CoQ test is feasible and potentially useful for diagnosing CoQ deficiency states.  相似文献   

11.
Steinert's myotonic dystrophy (DM) is a genetic autosomal dominant disease and the most frequent muscular dystrophy in adulthood. Although causative mutation is recognized as a CTG trinucleotide expansion on 19q13.3, pathogenic mechanisms of multisystem involvement of DM are still under debate. It has been suggested that mitochondrial abnormalities can occur in this disease and deficiency of coenzyme Q 10 (CoQ10) has been considered one possible cause for this. The aim of this investigation was to evaluate, in 35 DM patients, CoQ10 blood levels and relate them to the degree of CTG expansion as well as to the amount of lactate production in exercising muscle as indicator of mitochondrial dysfunction. CoQ10 concentrations appeared significantly reduced with respect to normal controls: 0.85 +/- 0.25 vs. 1.58 +/- 0.28 microg/ml (p < 0.05). Mean values of blood lactate were significantly higher in DM patients than controls (p < 0.05) both in resting conditions (2.9 +/- 0.55 vs. 1.44 +/- 1.11 mmol/L) and at the exercise peak (6.77 +/- 1.79 vs. 4.90 +/- 0.59 mmol/L), while exercise lactate threshold was anticipated (30-50% vs. 60-70% of the predicted normal maximal power output, p < 0.05). Statistical analysis showed that serum CoQ10 levels were significantly (p < 0.05) inversely correlated with both CTG expansion degree and lactate values at exercise lactate threshold level. Our data indicates the occurrence of reduced CoQ10 levels in DM, possibly related to disease pathogenic mechanisms associated with abnormal CTG trinucleotide amplification.  相似文献   

12.
Coenzyme Q10 (CoQ) deficiency is an autosomal recessive disorder presenting five phenotypes: a myopathic form, a severe infantile neurological syndrome associated with nephritic syndrome, an ataxic variant, Leigh syndrome and a pure myopathic form. The third is the most common phenotype related with CoQ deficiency and it will be the focus of this review. This new syndrome presents muscle CoQ deficiency associated with cerebellar ataxia and cerebellar atrophy as the main neurological signs. Biochemically, the hallmark of CoQ deficiency syndrome is a decreased CoQ concentration in muscle and/or fibroblasts. There is no molecular evidence of the enzyme or gene involved in primary CoQ deficiencies associated with cerebellar ataxia, although recently a family has been reported with mutations atCOQ2 gene who present a distinct phenotype. Patients with primary CoQ deficiency may benefit from CoQ supplementation, although the clinical response to this therapy varies even among patients with similar phenotypes. Some present an excellent response to CoQ while others show only a partial improvement of some symptoms and signs. CoQ deficiency is the mitochondrial encephalomyopathy with the best clinical response to CoQ supplementation, highlighting the importance of an early identification of this disorder.  相似文献   

13.
Introduction: Corticosteroid treatment slows disease progression and is the standard of care for Duchenne muscular dystrophy (DMD). Coenzyme Q10 (CoQ10) is a potent antioxidant that may improve function in dystrophin‐deficient muscle. Methods: We performed an open‐label, “add‐on” pilot study of CoQ10 in thirteen 5–10‐year‐old DMD patients on steroids. The primary outcome measure was the total quantitative muscle testing (QMT) score. Results: Twelve of 16 children (mean age 8.03 ± 1.64 years) completed the trial. Target serum levels of CoQ10 (≥2.5 μg/ml) were shown to be subject‐ and administration‐dependent. Nine of 12 subjects showed an increase in total QMT score. Overall, CoQ10 treatment resulted in an 8.5% increase in muscle strength (P = 0.03). Conclusions: Addition of CoQ10 to prednisone therapy in DMD patients resulted in an increase in muscle strength. These results warrant a larger, controlled trial of CoQ10 in DMD. Muscle Nerve, 2011  相似文献   

14.
Coenzyme Q10 (CoQ10) deficiency has been associated with various clinical phenotypes, including an infantile multisystem disorder. The authors report a 33-month-old boy who presented with corticosteroid-resistant nephrotic syndrome in whom progressive encephalomyopathy later developed. CoQ10 was decreased both in muscle and in fibroblasts. Oral CoQ10 improved the neurologic picture but not the renal dysfunction.  相似文献   

15.
Our aim was to report a new case with cerebellar ataxia associated with coenzyme Q10 (CoQ) deficiency, the biochemical findings caused by this deficiency and the response to CoQ supplementation. PATIENT: A 12-year-old girl presenting ataxia and cerebellar atrophy. BIOCHEMICAL STUDIES: Coenzyme Q10 in muscle was analysed by HPLC with electrochemical detection and mitochondrial respiratory chain (MRC) enzyme activities by spectrophotometric methods. CoQ biosynthesis in fibroblasts was assayed by studying the incorporation of radiolabeled 4-hydroxy[U 14C] benzoic acid by HPLC with radiometric detection. RESULTS: Mitochondrial respiratory chain enzyme analysis showed a decrease in complex I + III and complex II + III activities. CoQ concentration in muscle was decreased (56 nmol/g of protein: reference values: 157-488 nmol/g protein). A reduced incorporation of radiolabeled 4-hydroxy[U- 14C] benzoic acid was observed in the patient (19% of incorporation respect to the median control values). After 16 months of CoQ supplementation, the patient is now able to walk unaided and cerebellar signs have disappeared. CONCLUSIONS: Cerebellar ataxia associated with CoQ deficiency in our case might be allocated in the transprenylation pathway or in the metabolic steps after condensation of 4-hydroxybenzoate and the prenyl side chain of CoQ. Clinical improvement after CoQ supplementation was remarkable, supporting the importance of an early diagnosis of this kind of disorders.  相似文献   

16.
We tested the efficacy of coenzyme Q10 (ubidecarenone, CoQ10) therapy in patients with Kearns-Sayre syndrome and other mitochondrial myopathies with chronic progressive external ophthalmoplegia (CPEO). We treated seven patients for 1 year with daily oral administration of 120 mg of CoQ10. Throughout the treatment most of our patients showed a progressive reduction of serum lactate and pyruvate levels following standard muscle exercise and generally improved neurologic functions. The ECG and echocardiogram showed no significant changes in our patients. None of our patients showed any improvement in ptosis and CPEO.  相似文献   

17.
Exercise intolerance and the mitochondrial respiratory chain   总被引:1,自引:0,他引:1  
The syndrome of exercise intolerance, cramps, and myoglobinuria is a common presentation of metabolic myopathies and has been associated with several specific inborn errors of glycogen or lipid metabolism. As disorders in fuel utilization presumably impair muscle energy production, it was more than a little surprising that exercise intolerance and myoglobinuria had not been associated with defects in the mitochondrial respiratory chain, the terminal energy-yielding pathway. Recently, however, specific defects in complex I, complex III, and complex IV have been identified in patients with severe exercise intolerance with or without myoglobinuria. All patients were sporadic cases and all harbored mutations in protein-coding genes of muscle mtDNA, suggesting that these were somatic mutations not affecting the germ-line. Another respiratory chain defect, primary coenzyme Q10 (CoQ10) deficiency, also causes exercise intolerance and recurrent myoglobinuria, usually in conjunction with brain symptoms, such as seizures or cerebellar ataxia. Primary CoQ10 deficiency is probably due to mutations in nuclear gene(s) encoding enzymes involved in CoQ10 biosynthesis.  相似文献   

18.
BACKGROUND: Statins (3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors) are widely used for the treatment of hypercholesterolemia and coronary heart disease and for the prevention of stroke. There have been various adverse effects, most commonly affecting muscle and ranging from myalgia to rhabdomyolysis. These adverse effects may be due to a coenzyme Q(10) (CoQ(10)) deficiency because inhibition of cholesterol biosynthesis also inhibits the synthesis of CoQ(10). OBJECTIVE: To measure CoQ(10) levels in blood from hypercholesterolemic subjects before and after exposure to atorvastatin calcium, 80 mg/d, for 14 and 30 days. DESIGN: Prospective blinded study of the effects of short-term exposure to atorvastatin on blood levels of CoQ(10). SETTING: Stroke center at an academic tertiary care hospital.Patients We examined a cohort of 34 subjects eligible for statin treatment according to National Cholesterol Education Program: Adult Treatment Panel III criteria. RESULTS: The mean +/- SD blood concentration of CoQ(10) was 1.26 +/- 0.47 micro g/mL at baseline, and decreased to 0.62 +/- 0.39 micro g/mL after 30 days of atorvastatin therapy (P<.001). A significant decrease was already detectable after 14 days of treatment (P<.001). CONCLUSIONS: Even brief exposure to atorvastatin causes a marked decrease in blood CoQ(10) concentration. Widespread inhibition of CoQ(10) synthesis could explain the most commonly reported adverse effects of statins, especially exercise intolerance, myalgia, and myoglobinuria.  相似文献   

19.
Two brothers with myopathic coenzyme Q10 (CoQ10) deficiency responded dramatically to CoQ10 supplementation. Muscle biopsies before therapy showed ragged-red fibers, lipid storage, and complex I + III and II + III deficiency. Approximately 30% of myofibers had multiple features of apoptosis. After 8 months of treatment, excessive lipid storage resolved, CoQ10 level normalized, mitochondrial enzymes increased, and proportion of fibers with TUNEL-positive nuclei decreased to 10%. The authors conclude that muscle CoQ10 deficiency can be corrected by supplementation of CoQ10, which appears to stimulate mitochondrial proliferation and to prevent apoptosis.  相似文献   

20.
Muscle coenzyme Q10 level in statin-related myopathy   总被引:3,自引:0,他引:3  
BACKGROUND: Statin drugs (3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors) reduce the level of cholesterol by inhibiting the synthesis of mevalonate, an intermediary in the cholesterol biosynthetic pathway. Use of statin drugs has been associated with a variety of skeletal muscle-related complaints. Coenzyme Q10 (CoQ10), a component of the mitochondrial respiratory chain, is also synthesized from mevalonate, and decreased muscle CoQ10 concentration may have a role in the pathogenesis of statin drug-related myopathy. OBJECTIVES: To measure the CoQ10 concentration and respiratory chain enzyme activities in muscle biopsy specimens from 18 patients with statin drug-related myopathy and to look for evidence of apoptosis using the TUNEL (terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling) assay. DESIGN: An open-labeled study of CoQ10 concentration in muscle from patients with increased serum creatine kinase concentrations while receiving standard statin drug therapy. SETTING: Neuromuscular centers at 2 academic tertiary care hospitals. RESULTS: Muscle structure was essentially normal in 14 patients and showed evidence of mitochondrial dysfunction and nonspecific myopathic changes in 2 patients each. Muscle CoQ10 concentration was not statistically different between patients and control subjects, but it was more than 2 SDs below the normal mean in 3 patients and more than 1 SD below normal in 7 patients. There was no TUNEL positivity in any patients. CONCLUSION: These data suggest that statin drug-related myopathy is associated with a mild decrease in muscle CoQ10 concentration, which does not cause histochemical or biochemical evidence of mitochondrial myopathy or morphologic evidence of apoptosis in most patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号