首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autosomal recessive inherited mutations in each of the five eukaryotic initiation factor 2B (eIF2B) subunits are known to cause white matter abnormalities with a wide continuum of clinical signs and severity leading to the concept of eIF2B-related disorders. The clinical spectrum extends from fatal infantile forms to adult forms with slow or absent neurological deterioration. In this study 15 well-characterised patients with the classical form of leukoencephalopathy with vanishing white matter (VWM) or with phenotypic variants like ovarioleukodystrophy were investigated for mutations in the genes EIF2B1, EIF2B2, EIF2B3, EIF2B4, and EIF2B5 encoding eIF2B. We identified one novel nonsense mutation (EIF2B4, c.625C>T, p.Arg209X), one novel frameshift mutation (EIF2B5, c.453_454del, p.Tyr152fsX12), eight novel missense muations (EIF2B1, c.547G>T, p.Val183Phe; EIF2B2, c. 586C>T, p.Pro196Ser; EIF2B4, c.806T>G, p.Leu269Arg; EIF2B5, c.203T>C, p.Leu68Ser; EIF2B5, c.220G>A, p.Ala74Thr; EIF2B5, c.805C>G, p.Arg269Gly; EIF2B5, c.929G>T, p.Cys310Phe; EIF2B5, c.1003T>C, p.Cys335Arg), and eight previously described alterations.  相似文献   

2.
Spinal Muscular Atrophy with Respiratory Distress (SMARD) is an autosomal recessive disorder characterized by neurogenic muscular atrophy due to progressive anterior horn cell degeneration and early life-threatening respiratory failure ascribed to diaphragmatic dysfunction. SMARD is clinically and genetically heterogeneous. SMARD type 1 is characterized by onset of respiratory failure within the first weeks of life and has been ascribed to mutations in the immunoglobulin mu-binding protein 2 (IGHMBP2) gene on chromosome 11q13-q21. We report here the identification of nine novel IGHMBP2 mutations in five SMARD1 patients, including seven missense [ c.587A>G (p.Gln196Arg), c.647C>T (p.Pro216Leu), c.752T>C (p.Leu251Pro), c.1693G>A (p.Asp565Asn), c.1730T>C (p.Leu577Pro), c.1807C>T (p.Arg603Cys), c.1909C>T (p.Arg637Cys)] and two nonsense mutations [ c.1488C>A (p.Cys496X), c.2368C>T (p.Arg790X)]. Interestingly, 7 of 9 mutations occurred at highly conserved residues of the putative DNA helicase domain. The identification of novel IGHMBP2 variants will hopefully help diagnosing SMARD1 and contribute to a better functional characterization of IGHMBP2 gene product.  相似文献   

3.
To identify mutations in the retinoschisin (RS1) gene in families with X-linked retinoschisis (XLRS). Twenty families with XLRS were enrolled in this study. All six coding exons and adjacent intronic regions of RS1 were amplified by polymerase chain reaction (PCR). The nucleotide sequences of the amplicons were determined by Sanger sequencing. Ten hemizygous mutations in RS1 were detected in patients from 14 of the 20 families. Four of the ten mutations were novel, including c:176G>A (p:Cys59Tyr) in exon?3, c:531T>G (p:Tyr177X), c:607C>G (p:Pro203Ala) and c:668G>A (p:Cys223Tyr) in exon?6. These four novel mutations were not present in 176 normal individuals. The remaining six were recurrent mutations, including c:214G>A (p:Glu72Lys), c:304C>T (p:Arg102Trp), c:436G>A (p:Glu146Lys), c:544C>T (p:Arg182Cys), c:599G>A (p:Arg200His) and c:644A>T (p:Glu215Val). Our study expanded the mutation spectrum of RS1 and enriches our understanding of the molecular basis of XLRS.  相似文献   

4.
Maturity-onset diabetes of the young (MODY) is a clinically heterogeneous group of disorders characterized by early onset non-insulin-dependent diabetes mellitus, autosomal dominant inheritance, and primary defect in the function of the beta cells of the pancreas. Mutations in the glucokinase (GCK) gene account for 8%-56% of MODY, with the highest prevalences being found in the southern Europe. While screening for GCK mutations in 28 MODY families of Italian origin, we identified 17 different mutations (corresponding to 61% prevalence), including eight previously undescribed ones. The novel sequence variants included five missense mutations (p.Lys161Asn c.483G>C in exon 4, p.Phe171Leu c.511T>C in exon 5 and p.Thr228Ala c.682A>G, p.Thr228Arg c.683C>G, p.Gly258Cys c.772G>T in exon 7), one nonsense mutation (p.Ser383Ter c.1148C>A in exon 9), the splice site variant c.1253+1G>T in intron 9, and the deletion of 12 nucleotides in exon 10 (p.Ser433_Ile436del c.1298_1309del12). Our study indicates that mutations in the GCK/MODY2 gene are a very common cause of MODY in the Italian population and broadens our knowledge of the naturally occurring GCK mutation repertoire.  相似文献   

5.
Gaucher disease, the most prevalent sphingolipidosis, is caused by the deficient activity of acid beta-glucosidase, mainly due to mutations in the GBA gene. Over 200 mutations have been identified worldwide, more than 25 of which were in Spanish patients. In order to demonstrate causality for Gaucher disease, some of them: c.662C>T (p.P182L), c.680A>G (p.N188S), c.886C>T (p.R257X), c.1054T>C (p.Y313H), c.1093G>A (p.E326K), c.1289C>T (p.P391L), c.1292A>T (p.N392I), c.1322T>C (p.I402T), and the double mutants [c.680A>G; c.1093G>A] ([p.N188S; p.E326K]) and [c.1448T>C; c.1093G>A] ([p.L444P; p.E326K]), were expressed in Sf9 cells using a baculovirus expression system. Other well-established Gaucher disease mutations, namely c.1226A>G (p.N370S), c.1342G>C (p.D409H), and c.1448T>C (p.L444P), were also expressed for comparison. The levels of residual acid beta-glucosidase activity of the mutant enzymes produced by the cDNAs carrying alleles c.662C>T (p.P182L), c.886C>T (p.R257X), c.1054T>C (p.Y313H), c.1289C>T (p.P391L), and c.1292A>T (p.N392I) were negligible. The c.1226A>G (p.N370S), c.1322T>C (p.I402T), c.1342G>C (p.D409H), c.1448T>C (p.L444P), and [c.1448T>C; c.1093G>A] ([p.L444P; p.E326K]) alleles produced enzymes with levels ranging from 6 to 14% of the wild-type. The three remaining alleles, c.680A>G (p.N188S), c.1093G>A (p.E326K), and [c.680A>G; c.1093G>A] ([p.N188S; p.E326K]), showed higher activity (66.6, 42.7, and 23.2%, respectively). Expression studies revealed that the c.1093G>A (p.E326K) change, which was never found alone in a Gaucher disease-causing allele, when found in a double mutant such as [c.680A>G; c.1093G>A] ([p.N188S; p.E326K]) and [c.1448T>C; c.1093G>A] ([p.L444P; p.E326K]), decreases activity compared to the activity found for the other mutation alone. These results suggest that c.1093G>A (p.E326K) should be considered a "modifier variant" rather than a neutral polymorphism, as previously considered. Mutation c.680A>G (p.N188S), which produces a mutant enzyme with the highest level of activity, is probably a very mild mutation or another "modifier variant."  相似文献   

6.
Mild citrullinemia is an allelic variant of classical citrullinemia type I also caused by deficiency of the urea cycle enzyme argininosuccinate synthetase (ASS). Affected patients comprise a biochemical but no clinical phenotype. However, there is no reliable parameter allowing conclusions regarding the course of the disorder or its type of manifestation. The aim of this study was to test the importance of varying levels of ASS residual activities for the severity at diagnosis. Bacterial in vitro expression studies allowed the enzymatic analysis of purified wild-type and the mutant ASS proteins p.Ala118Thr (c.352G>A), p.Trp179Arg (c.535T>C), p.Val263Met (c.787G>A), p.Arg265Cys (c.793C>T), p.Met302Val (c.904A>G), p.Gly324Ser (c.970G>A), p.Gly362Val (c.1085G>T), and p.Gly390Arg (c.1168G>A). In the chosen system, classical mutations do not show any significant enzymatic activity, whereas mutations associated with a mild course yield significant ASS activity levels. The mutation p.Ala118Thr (c.352G>A) impresses by a high residual activity (62%) but a severe reduction of affinity toward the substrates citrulline and aspartate. This mutation was identified in a hitherto healthy female adult with no history of known citrullinemia who had died during the postpartum period from hyperammonemic coma. The results of this study suggest that even a high level of residual ASS activity is not a reliable prognostic marker for an uneventful clinical course. Determination of ASS residual activities, therefore, cannot help in anticipating the risk of metabolic derangement. This study should guide clinicians as well as patients with mild citrullinemia toward a lifelong awareness of the disorder.  相似文献   

7.
Mucopolysaccharidosis type IIIA (MPSIIIA) is an autosomal recessive lysosomal storage disease caused by mutations in the N-sulfoglucosamine sulfohydrolase gene (SGSH; encoding sulfamidase, also sulphamidase) leading to the lysosomal accumulation and urinary excretion of heparan sulfate. Considerable variation in the onset and severity of the clinical phenotype is observed. We report here on expression studies of four novel mutations: c.318C>A (p.Ser106Arg), c.488T>C (p.Leu163Pro), c.571G>A (p.Gly191Arg), and c.1207_1209delTAC (p.Tyr403del), and five previously known mutations: c.220C>T (p.Arg74Cys), c.697C>T (p.Arg233X), c.1297C>T (p.Arg433Trp), c.1026dupC (p.Leu343fsX158), and c.1135delG (p.Val379fsX33) identified in MPSIIIA patients. Transient expression of mutant sulfamidases in BHK or CHO cells revealed that all the mutants were enzymatically inactive with the exception of c.318C>A (p.Ser106Arg), which showed 3.3% activity of the expressed wild-type enzyme. Western blot analysis demonstrated that the amounts of expressed mutant sulfamidases were significantly reduced compared with cells expressing wild type. No polypeptides were immunodetectable in extracts of cells transfected with the cDNA carrying the c.697C>T (p.Arg233X) nonsense mutation. In vitro translation and pulse-chase experiments showed that rapid degradation rather than a decrease in synthesis is responsible for the low, steady-state level of the mutant proteins in cells. The amounts of secreted mutant precursor forms, the cellular stability, the proteolytic processing, and data from double-label immunofluorescence microscopy suggest that the degradation of the majority of newly synthesized c.220C>T (p.Arg74Cys), c.571G>A (p.Gly191Arg), c.1297C>T (p.Arg433Trp), c.1026dupC (p.Leu343fsX158), and c.1135delG (p.Val379fsX33) mutant proteins probably occurs in the ER, whereas c.488T>C (p.Leu163Pro) mutant protein showed instability in the lysosomes.  相似文献   

8.
Norrie disease is a rare X-inked recessive condition characterized by congenital blindness and occasionally deafness and mental retardation in males. This disease has been ascribed to mutations in the NDP gene on chromosome Xp11.1. Previous investigations of the NDP gene have identified largely sixty disease-causing sequence variants. Here, we report on ten different NDP gene allelic variants in fourteen of a series of 21 families fulfilling inclusion criteria. Two alterations were intragenic deletions and eight were nucleotide substitutions or splicing variants, six of them being hitherto unreported, namely c.112C>T (p.Arg38Cys), c.129C>G (p.His43Gln), c.133G>A (p.Val45Met), c.268C>T (p.Arg90Cys), c.382T>C (p.Cys128Arg), c.23479-1G>C (unknown). No NDP gene sequence variant was found in seven of the 21 families. This observation raises the issue of misdiagnosis, phenocopies, or existence of other X-linked or autosomal genes, the mutations of which would mimic the Norrie disease phenotype.  相似文献   

9.
Mutations in the vitelliform macular dystrophy 2 (VMD2) gene encoding besrtophin are responsible for Best macular dystrophy (BMD), a juvenile-onset autosomal dominant disorder of the central retina. Here, we report ten novel VMD2 mutations identified in clinically diagnosed BMD patients. The heterozygous alterations include nine missense mutations (c.32A>T, c.76G>C, c.85T>C, c.122T>C, c.122T>C, c.310G>C, c.722C>A, c.880C>G, c.893T>C) resulting in amino acid changes (respectively: Asn11Ile, Gly26Arg, Tyr29His, Leu41Pro, Trp102Arg, Asp104His, Thr241Asn, Leu294Val and Phe298Ser) located within four previously defined hotspot regions of the gene. In addition, a silent exonic mutation (c.624G>A) was identified in a two generation BMD pedigree. To determine a possible pathogenic effect of this variant, the consequences on splicing behaviour and potential exonic splice enhancer (ESE) motifs were analyzed. Finally, a 1-bp deletion (c.779delC) resulting in a frameshift mutation (Pro260fsX288) was found in exon 7, representing the first case of a potential frameshift mutation that affects the N-terminal half of the VMD2 protein. Besides a dominant negative effect which is likely attributable to the identified missense mutations, the deletion mutation suggests haploinsufficiency as an infrequent disease-causing mechanism in BMD.  相似文献   

10.
X-linked agammaglobulinemia (XLA) is an immunodeficiency caused by mutations in the Bruton tyrosine kinase (BTK) gene. Twenty Australian patients with an XLA phenotype, from 15 unrelated families, were found to have 14 mutations. Five of the mutations were previously described c.83G>A (p.R28H), c.862C>T (p.R288W), c.904G>A (p.R302G), c.1535T>C (p.L512P), c.700C>T (p.Q234X), while nine novel mutations were identified: four missense c.82C>A (p.R28S), c.494G>A (p.C165Y), c.464G>A (p.C155Y), c.1750G>A (p.G584E), one deletion c.142_144delAGAAGA (p.R48_G50del), and four splice site mutations c.241-2A>G, c.839+4A>G, c.1350-2A>G, c.1566+1G>A. Carrier analysis was performed in 10 mothers and 11 female relatives. The results of this study further support the notion that molecular genetic testing represents an important tool for definitive and early diagnosis of XLA and may allow accurate carrier status and prenatal diagnosis.  相似文献   

11.
G(M1)-gangliosidosis is a lysosomal storage disorder caused by a deficiency of beta-galactosidase (GLB1). The GLB1 gene gives rise to the GLB1 lysosomal enzyme and to the elastin binding protein (EBP), involved in elastic fiber deposition. GLB1 forms a complex with protective protein cathepsin A (PPCA), alpha neuraminidase (NEU1), and galactosamine 6-sulphate sulfatase (GALNS) inside lysosomes, while EBP binds to PPCA and NEU1 on the cell surface. We investigated the function of the GLB1 and EBP mutated proteins by analyzing the clinical, genetic, and cellular data of 11 G(M1)-gangliosidosis patients. Their molecular analysis, followed by expression studies, lead to the identification of four new and 10 known GLB1 mutations. Some common amino acid substitutions [c.1445G>A (p.Arg482H), c.622C>T (p.Arg208His), c.175C>T (p.Arg59Cys) and c.176G>A (p.Arg59His)] were present in the GLB1 enzyme of several patients, all of Mediterranean origin, suggesting a common origin. Western blotting analyses against GLB1, EBP, and PPCA proteins showed that the identified mutations affect GLB1 enzyme activity and/or stability. The c.1445G>A (p.Arg482His), c.175C>T (p.Arg59Cys), c.733+2T>C, c.1736G>A (p.Gly579Asp), and c.1051C>T (p.Arg351X) GLB1 mutations, affect the stabilization of PPCA probably because they hamper the interaction between GLB1/EBP and PPCA within the multiprotein complex. The amount of EBP was normal, but the detection of impaired elastogenesis in such patients suggests an alteration in its function. We conclude that the presence of genetic lesions in both GLB1 and EBP coding region does not directly predict impaired elastogenesis and that elastic fiber assembly has to be evaluated specifically in each case. Nevertheless, the degree of EBP involvement may be linked to specific clinical findings.  相似文献   

12.
Glycogen storage disease type Ia (GSD-Ia) is caused by deleterious mutations in the glucose-6-phosphatase gene (G6PC). A molecular study of this gene was carried out in 11 Argentinean patients from 8 unrelated families. Four missense (p.Gln54Pro, p.Arg83Cys, p.Thr16Arg, and p.Tyr209Cys) and one deletion (c.79delC) mutations have been identified. Two novel mutations, p.Thr16Arg (c.47C>G) located within the amino-terminal domain and p.Tyr209Cys (c.626A>G) situated in the sixth transmembrane helix, were uncovered in this study. Site-directed mutagenesis and transient expression assays demonstrated that both p.Thr16Arg and p.Tyr209Cys mutations abolished enzymatic activity as well as reduced G6Pase stability.  相似文献   

13.
Several polymorphisms of genes involved in one-carbon metabolism have been identified. The reported metabolic phenotypes are often based on small studies providing inconsistent results. This large-scale study of 10,601 population-based samples was carried out to investigate the association between a panel of biochemical parameters and genetics variants related to one-carbon metabolism. Concentrations of total homocysteine (tHcy), folate, vitamin B(12) (cobalamin), methylmalonic acid (MMA), vitamin B(2) (riboflavin), vitamin B(6) (PLP), choline, betaine, dimethylglycine (DMG), cystathionine, cysteine, methionine, and creatinine were determined in serum/plasma. All subjects were genotyped for 13 common polymorphisms: methylenetetrahydrofolate reductase (MTHFR) c.665C>T (known as 677C>T; p.Ala222Val) and c.1286A>C (known as 1298A>C; p.Glu429Ala); methionine synthase (MTR) c.2756A>G (p.Asp919Gly); methionine synthase reductase (MTRR) c.66A>G (p.Ile22Met); methylenetetrahydrofolate dehydrogenase (MTHFD1) c.1958G>A (p.Arg653Gln); betaine homocysteine methyltransferase (BHMT) c.716G>A (known as 742G>A; p.Arg239Gln); cystathionine beta-synthase (CBS) c.844_845ins68 and c.699C>T (p.Tyr233Tyr); transcobalamin-II (TCN2) c.67A>G (p.Ile23Val) and c.776C>G (p.Pro259Arg); reduced folate carrier-1 (SLC19A1) c.80G>A (p.Arg27His); and paraoxonase-1 (PON1) c.163T>A (p.Leu55Met) and c.575A>G (p.Gln192Arg). The metabolic profile in terms of the measured vitamins and metabolites were investigated for these 13 polymorphisms. We confirmed the strong associations of MTHFR c.665C>T with tHcy and folate, but also observed significant (P<0.01) changes in metabolite concentrations according to other gene polymorphisms. These include MTHFR c.1286A>C (associations with tHcy, folate and betaine), MTR c.2756A>G (tHcy), BHMT c.716G>A (DMG), CBS c.844_845ins68 (tHcy, betaine), CBS c.699C>T (tHcy, betaine, cystathionine) and TCN2 c.776C>G (MMA). No associations were observed for the other polymorphisms investigated.  相似文献   

14.
We report the molecular findings in 14 patients (12 families) with X-linked adrenoleukodystrophy (X-ALD, MIM# 300100), a well-defined peroxisomal disorder attributed to mutations in the ABCD1 gene on chromosome Xq28. With the aims of determining the spectrum of mutations and developing an efficient molecular genetic test for analysis of at-risk women whose carrier status is unknown, and to offer molecular confirmation of their status to obligate heterozygotes, regardless of their clinical status, we carried out molecular screening by setting up a denaturing high-performance liquid chromatography (DHPLC)-based protocol. We identified eleven hemizygous base changes in ABCD1, including seven new mutations (c.145underscore;146ins4, c.264C>G, c.919C>T, c.994C>T, c.1027G>A, c.1508T>C, and c.1540A>C, resulting in the p.Pro193fs, p.Cys88Trp, p.Gln307X, p.Gln332X, p.Gly343Ser, p.Leu503Pro, and p.Ser514Arg changes, respectively). Adding new variants to the repertoire of ABCD1 mutations in X-ALD, our data provide an efficient, cost-effective, and reliable DHPLC detection protocol for mutation screening of X-ALD families.  相似文献   

15.
Mutations in the tumor-suppressor p53 gene TP53 are frequent in most human cancers including breast cancer. A new solid phase chemical cleavage of mismatch method (CCM) allowed rapid and efficient screening and analysis of the TP53 gene in DNA samples extracted from tumors of 89 breast cancer patients. The novel CCM technique utilized silica beads and the potassium permanganate/tetraethylammonium chloride (KMnO(4)/TEAC) and hydroxylamine (NH(2)OH) reactions were performed sequentially in a single tube. Mutation analysis involved amplification of five different fragments of the TP53 gene using DNA from the 89 tumor samples, then pairing of the 391 labeled PCR products and forming heteroduplexes. A total of 41 unique signals were revealed in the analysis of TP53 exons 5-9 and eight were identified by direct sequencing. The three novel mutations detected are c.600T>G (p.Asn200Lys), c.601T>G (p.Leu201Val), and c.766-768delACA (p.Thr256del). The detected mutations c.638G>T (p.Arg213Leu), c.730G>T (p.Gly244Cys), and c.758C>T (p.Thr253Ile) have not been reported in breast cancer but have been recorded in tumors of other organs. A previously reported mutation c.535C>T (p.His179Tyr) and a heterozygous polymorphism c.639A>G were also detected. Of the 41 unique signals, 36 were not identified as a sequence change. As direct sequencing requires the mutant allele concentration to be greater than 30% when the mutant allele is present in a mixture with the wild-type allele, the CCM method represents a more sensitive technique requiring a lower mutant allele concentration in the wild-type mixture compared with direct sequencing. This reveals the advantage of CCM for unknown point mutation detection in DNA samples of cancer patients.  相似文献   

16.
The aim of this study was to identify mutations in the TRPM1, GRM6, NYX and CACNA1F genes in patients with congenital stationary night blindness (CSNB). Twenty-four unrelated patients with CSNB were ascertained. Sanger sequencing was used to analyze the coding exons and adjacent intronic regions of TRPM1, GRM6, NYX and CACNA1F. Six mutations were identified in six unrelated patients, including five novel and one known. Of the six, three novel hemizygous mutations, c.92G>A (p.Cys31Tyr), c.149G>C (p.Ary50Pro), and c.[272T>A;1429G>C] (p.[Leu91Gln;Gly477Arg]), were found in NYX in three patients, respectively. A novel c.[1984_1986delCTC;3001G>A] (p.[Leu662del;Gly1001Arg]) mutation was detected in CACNA1F in one patient. One novel and one known heterozygous variation, c.1267T>C (p.Cys423Arg) and c.1537G>A (p.Val513Met), were detected in GRM6 in two patients, respectively. No variations were found in TRPM1. The results expand the mutation spectrum of NYX, CACNA1F and GRM6. They also suggest that NYX mutations are a common cause of CSNB.  相似文献   

17.
Mucopolysaccharidosis type VI (MPS VI), or Maroteaux-Lamy syndrome, is a lysosomal storage disorder caused by a deficiency of N-acetylgalactosamine-4-sulfatase (ARSB). Seven MPS VI patients were chosen for the initial clinical trial of enzyme replacement therapy. Direct sequencing of genomic DNA from these patients was used to identify ARSB mutations. Each individual exon of the ARSB gene was amplified by PCR and subsequently sequenced. Nine substitutions (c.289C>T [p.Q97X], c.629A>G [p.Y210C], c.707T>C [p.L236P], c.936G>T [p.W312C], c.944G>A [p.R315Q], c.962T>C [p.L321P], c.979C>T [p.R327X], c.1151G>A [p.S384N], and c.1450A>G [p.R484G]), two deletions (c.356_358delTAC [p.Y86del] and c.427delG), and one intronic mutation (c.1336+2T>G) were identified. A total of 7 out of the 12 mutations identified were novel (p.Y86del, p.Q97X, p.W312C, p.R327X, c.427delG, p.R484G, and c.1336+2T>G). Two of these novel mutations (p.Y86del and p.W312C) were expressed in Chinese hamster ovary cells and analyzed for residual ARSB activity and mutant ARSB protein. The two common polymorphisms c.1072G>A [p.V358M] and c.1126G>A [p.V376M] were identified among the patients, along with the silent mutation c.1191A>G. Cultured fibroblast ARSB mutant protein and residual activity were determined for each patient, and, together with genotype information, were used to predict the expected clinical severity of each MPS VI patient.  相似文献   

18.
We examined CMT1A duplication of 17p11.2-p12, mutations of PMP22, MPZ (P0), GJB1 (Cx32), EGR2 and NEFL genes in 57 Korean families with patients diagnosed as having Charcot-Marie-Tooth (CMT) disease. The CMT1A duplication was present in 53.6% of 28 CMT type 1 patients. In the 42 CMT families without CMT1A duplication, 10 pathogenic mutations were found in 9 families. The 10 mutations were not detected in 105 healthy controls. Seven mutations (c.318delT (p.Ala106fs) in PMP22, c.352G>A (p.Asp118Asn), c.449-1G>T (3'-splice site), c.706A>G (p.Lys236Glu) in MPZ, c.407T>C (p.Val136Ala)[corrected], c.502T>C (p.Cys168Arg) in GJB1, and c.1001T>C (p.Leu334Pro) in NEFL) were determined to be novel. The mutation frequencies of PMP22 and MPZ were similar to those found in several European populations, however, it appeared that mutations in GJB1 are less frequent in East Asian CMT patients than in Eur opean patients. We described the identified mutations and phenotype-genotype correlations based on nerve conduction studies.  相似文献   

19.
Mucopolysaccharidosis type VI (MPS VI; Maroteaux-Lamy syndrome) is a lysosomal storage disorder caused by mutations in the N-acetylgalactosamine-4-sulfatase (ARSB) gene. These mutations result in a deficiency of ARSB activity. Ten MPS VI patients were involved in a phase II clinical study of enzyme replacement therapy. Direct sequencing of genomic DNA from these patients was used to identify ARSB mutations. Each individual exon of the ARSB gene was amplified by PCR and subsequently sequenced. Thirteen substitutions (c.215T>G [p.L72R] c.284G>A [p.R95Q], c.305G>A [p.R102H], c.323G>T [p.G108V], c.389C>T [p.P130L], c.511G>A [p.G171S], c.904G>A [p.G302R], c.944G>A [p.R315Q], c.1057T>C [p.W353R], c.1151G>A [p.S384N], c.1178A>C [p.H393P], c.1289A>G [p.H430R] and c.1336G>C [p.G446R]), one deletion (c.238delG), and two intronic mutations (c.1213+5G>A and c.1214-2A>G) were identified. Nine of the 16 mutations identified were novel (R102H, G108V, P130L, G171S, W353R, H430R, G446R, c.1213+5G>A and c.1214-2A>G). The two common polymorphisms c.1072G>A [p.V358M] and c.1126G>A [p.V376M] were identified in some of the patients, along with the silent mutations c.972A>G and c.1191A>G. Cultured fibroblast ARSB mutant protein and residual activity were determined for each patient and, together with genotype information, used to predict the expected clinical severity of each patient.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号