首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Resting CD45RO+, mature/memory, T cells are phenotypically distinct from intermediate CD45RO+/CD45RA+ and CD45RA+, immature/virgin, T cells, and are characterized by high levels of expression of a number of adhesion molecules, such as CD2, CD18, CD58 and CD29. The kinetics of up-regulation of molecules, like CD25 and CD54 associated with activation, were similar in both subsets and suggested that their high level expression was associated with later events rather than initial recognition and signal transduction. CD45RA+ T cells, unlike CD45RO+ T cells, were unable to proliferate in response to mitogenic combinations of CD2 monoclonal antibodies (mAb), although in combination with submitogenic doses of PMA both up-regulation of cell-surface molecules and proliferation occurred. In addition, recruitment of CD45RA+ T cells by CD2 mAb-activated CD45RO+ T cells can occur.  相似文献   

2.
Peripheral CD4+ T cells can be divided into two different functional populations based on the expression of distinct isoforms of the surface molecule CD45. We have investigated the differences in the proximal signaling induced by anti-CD3 monoclonal antibody in purified populations of "naive" CD45RA+ and "memory" CD45RO+ human CD4+ T cells. Expression of cell surface CD3, CD4 and CD28 was comparable between RA+ and RO+ cells. However, TCR-directed stimulation in the form of anti-CD3 produced markedly different patterns of intracellular signaling. Greater inositol triphosphate generation occurred in naive cells and the rise in intracellular free calcium was also substantially greater in naive than in memory cells. Cells with the naive phenotype were considerably more active in TCR-dependent tyrosine phosphorylation, both at an overall level and specifically in terms of TCR-zeta and ZAP-70 phosphorylation. Despite these differences in phosphorylation, the amounts of TCR-zeta, ZAP-70 and Ick were equivalent between the two subsets. These findings suggest that the TCR-dependent signaling is differentially regulated in naive and memory CD4+ T cells. This may be due to differences in the way that the two isoforms of the CD45 phosphatase regulate the activity of proximal kinases in the TCR signaling pathway, and could be an important means by which the unique functions of differentiated T cell populations are maintained.  相似文献   

3.
This study addresses the question of whether human peripheral CD4+ CD45RA+ T cells possess antigen-specific immune memory. CD4+ CD45RA+ T cells were isolated by a combination of positive and negative selection. Putative CD4+ CD45RA+ cells expressed CD45RA (98.9%) and contained < 0.1% CD4+ CD45RO+ and < 0.5% CD4+ CD45RA+ CD45RO+ cells. Putative CD45RO+ cells expressed CD45RO (90%) and contained 9% CD45RA+ CD45RO+ and < 0.1% CD4+ CD45RA+ cells. The responder frequency of Dermatophagoides pteronyssinus-stimulated CD4+ CD45RA+ and CD4+ CD45RO+ T cells was determined in two atopic donors and found to be 1:11,314 and 1:8031 for CD4+ CD45RA+ and 1:1463 and 1:1408 for CD4+ CD45RO+ T cells. The responder frequencies of CD4+ CD45RA+ and CD4+ CD45RO+ T cells from two non-atopic, but exposed, donors were 1:78031 and 1:176,903 for CD4+ CD45RA+ and 1:9136 and 1:13,136 for CD4+ CD45RO+ T cells. T cells specific for D. pteronyssinus were cloned at limiting dilution following 10 days of bulk culture with D. pteronyssinus antigen. Sixty-eight clones were obtained from CD4+ CD45RO+ and 24 from CD4+ CD45RA+ T cells. All clones were CD3+ CD4+ CD45RO+ and proliferated in response to D. pteronyssinus antigens. Of 40 clones tested, none responded to Tubercule bacillus purified protein derivative (PPD). No difference was seen in the pattern of interleukin-4 (IL-4) or interferon-gamma (IFN-gamma) producing clones derived from CD4+ CD45RA+ and CD4+ CD45RO+ precursors, although freshly isolated and polyclonally activated CD4+ CD45RA+ T cells produced 20-30-fold lower levels of IL-4 and IFN-gamma than their CD4+ CD45RO+ counterparts. Sixty per cent of the clones used the same pool of V beta genes. These data support the hypothesis that immune memory resides in CD4+ CD45RA+ as well as CD4+ CD45RO+ T cells during the chronic immune response to inhaled antigen.  相似文献   

4.
5.
Alloantigens, unlike recall antigens, activate both CD45RA+ (naive) and CD45R0+ (memory) CD4+ cells to the same extent. These T cell subsets may therefore interact with each other in response to alloantigens on transplanted grafts. We have investigated if the ability of activated CD4+CD45RA+ and CD4+CD45R0+ T cells to produce and respond to interleukin 2 (IL2) and IL4 may be involved in this interaction. After activation, both subsets up-regulate their IL2 receptor (IL2R) and IL4R expression, yet IL4 substantially enhanced the proliferation of the CD4+CD45RA+ but not of the CD4+CD45R0+ T cell subset, while IL2 increased the proliferation of CD4+CD45R0+ but not of the CD4+CD45RA+ T cells. Significantly, the CD4+CD45RA+ T cells synthesized two- to threefold more mRNA for IL2 than the CD4+CD45R0+ subset, while the CD4+CD45R0+ T cells synthesized mRNA for IL4 and interferon-gamma exclusively. The addition of IL2 to alloactivated CD4+CD45R0+ T cells further up-regulated their production of all three lymphokine mRNA; in contrast, IL4 induced an increase in mRNA for IL2 in only the alloactivated CD4+CD45RA+ subset. The reciprocity in the ability of both these CD4+ T cells to synthesize and respond to IL2 and IL4 may provide a rationale for the regulation of lymphokine interactions in vivo. Furthermore, the synergy between these subsets in response to alloantigens, which was directly quantitated by co-culturing CD4+CD45RA+ and CD4+CD45R0+ cells together prior to activation, may potentiate the alloreactivity against transplanted grafts in vivo.  相似文献   

6.
CD4+ T cells were separated into subpopulations according to their expression of different isoforms of the CD45R molecule, i.e. CD45RA and CD45RO. The separated cells were activated with staphylococcal enterotoxin A (SEA) in the presence of formalin fixed Raji cells. Each set of cells was activated twice with a 6-day interval, and the lymphokine gene expression during the first 3 days after initiation of each stimulation was followed by use of polymerase chain reaction (PCR) technology. The lymphokine messenger RNA (mRNA) profiles were found to differ between the subsets, since after the first stimulation the CD45RA+ cells produced mRNA encoding interleukin-2 (IL-2) and IL-1 alpha, whereas the CD45RO+ cells transcribed genes for IL-1 alpha, IL-2, IL-4, IL-5 and interferon-gamma (IFN-gamma). After 6 days of SEA stimulation both populations were mainly CD45RO reactive, and when restimulated displayed the lymphokine mRNA profile restricted to this subset. These results indicate that the CD45RA subset is a precursor of the CD45RO and further strengthen the hypothesis that the former cell population represents naive whereas the latter subset represents memory T cells within the CD4 subset.  相似文献   

7.
Antigen-independent adhesion of resting adult CD4+ CD45RO+ T cells to B lymphocytes has been shown to be transient and can be down-regulated by CD4 major histocompatibility complex (MHC) class II molecule interactions. Conversely, adhesion of adult CD4+ CD45RA+ subpopulation to B cells is not regulated by ligands of CD4. We have investigated the regulation of adhesion of cord blood CD45RA+ CD4+ T lymphocytes. In contrast to adult CD45RA+ CD4+ T cells, cord blood CD45RA+ CD4+ T cells were strongly sensitive to the down-regulation of adhesion mediated by the CD4-HLA class II interaction, since adhesion to MHC class II(+) B cells was transient and inhibited by an anti-CD4 antibody. In addition, human immunodeficiency virus gpl60, synthetic gpl06-derived peptides encompassing a CD4 binding site inhibited conjugate formation between cord blood CD45RA+ CD4+ T cells and B cells. Following activation of the cord blood CD4 T cells by an anti-CD3 antibody, a conversion from a transient to a stable adhesion pattern of cord blood CD4 T cells to B cells occurred in 2 days. The reversal to a transient adhesion occurred at day 8 following anti-CD3 activation in correlation with a complete shift to a CD45RO phenotype of the cord blood CD4 T cells. These data suggest that CD4 T cell adhesion can be developmentally regulated.  相似文献   

8.
Peripheral blood lymphocytes from nonallergic individuals acquired responsiveness to interleukin 2 (IL2) after stimulation with ovalbumin (OVA) or Dermatophagoides farinae (Df) antigens when they were pretreated with the CD45RA antibody, which has been shown to define the suppressor inducer subset of CD4+ cells and also to block its suppressor activity. The effect provided by the CD45RA antibody was lost if the lymphocytes had initially been activated with the OVA of Df antigens. The magnitude of the responses was comparable to the allergen-induced responses observed in OVA- or Df-sensitized lymphocytes from allergic patients. The pre-existing IL2 responsiveness in the patients was not increased by the CD45RA antibody pretreatment. However, the CD45RA antibody pretreatment gave rise to Df-induced IL2 responsiveness in the lymphocytes of the patients sensitized with OVA but not with Df; conversely, OVA-induced IL2 responsiveness was enhanced in Df- but not in OVA-sensitized lymphocytes. The CD45RA antibody apparently acts on CD4+ T cells, but not on CD8+ T cells, to induce the IL2 response. A further dissection of normal CD4+ T cells indicated that CD4+45RA- T cells preferentially respond to IL2 after stimulation with OVA or Df antigens. Since normal CD4+45RA+ T cells did not show antigen-induced IL2 responsiveness even after pretreatment with the CD45RA antibody, it is unlikely that the CD45RA antibody stimulates CD4+45RA+ T cells to become responsive to IL2 after antigenic challenge. Alternatively, CD4+45RA+ T cells may modulate the activity of CD4+45RA- T cells, which are potentially responsive to IL2 by antigenic stimulation and thus provide tolerance in nonallergic lymphocytes. Collectively, a defective suppressor activity of CD4+45RA+ T cells may exist in patients with hen-egg allergy and/or bronchial asthma, which may cause lymphocytes to be hyperreactive to OVA or Df antigens.  相似文献   

9.
Deficiency of suppressor-inducer (CD4+CD45RA+) T cells in autism   总被引:2,自引:0,他引:2  
CD4+ cells are a heterogenous population of lymphocytes including at least two distinct subpopulations: CD45RA+ cells, inducers of suppressor T cells and CDw29+ cells, inducers of helper function for antibody production. To investigate the possibility that immune abnormalities in autism may involve abnormal distribution of these helper subpopulations, monoclonal antibodies were used in flow cytometric analysis to characterize peripheral blood lymphocytes of 36 subjects with autism. The autistic subjects as compared to a group of 35 healthy age-matched subjects had a significantly reduced number of lymphocytes, a decreased number of CD2+ T cells and reduced numbers of CD4+ and CD4+CD45RA+ lymphocytes. The numbers of B (CD20+) cells, suppressor T (CD8+) cells, inducers of helper function (CD4+CDw29+) and natural killer (CD56+) cells were not altered in the autistic subjects. Our results suggest that an alteration in the suppressor-inducer T-cell subset is associated with autism.  相似文献   

10.
Peripheral blood mononuclear cells were obtained from people ranging in age from newborn to 102 years old and analyzed by dual color flow cytometer in terms of number and percentage of various subsets of T cells, B cells and natural killer cells (CD3, 4, 5, 8, 11b, 19, 20, 21, 25, 29, 45RA and 56). Numbers of T cells (CD3+ or CD5+ cells) significantly declined at the 3rd decade as compared with those of younger people, stayed at a relatively constant level between the 3rd and the 7th decade and gradually declined thereafter. In T cell subsets, both CD4 and CD8 positive positive cells decreased with age, but a decrease was more pronounced in the latter, showing an age-related increase of CD4/CD8 ratio. The most interesting finding was a contrasting age-change in two subsets of CD4+ T cells; i.e. a subset of suppressor inducer T cells (CD4+CD45RA+ naive cells) decreased with age, while a subset of helper inducer T cells (CD4+CD29+ memory cells) increased with age. CD20+ B cells also decreased with age in a manner similar to that observed in T cells. Natural killer cells (CD56) showed an increase in numbers with age. The relationship between these changes in various subsets of peripheral blood leukocytes and the age-related decline in immune functions has been discussed.  相似文献   

11.
The leukocyte common antigen isoforms CD45RA and CD45RO havelong been used to discriminate human naive and memory T cellsrespectively. This model was largely based on the observationthat CD45RO+ T cells respond preferentially to and show a higherfrequency of precursors specific for recall antigens. However,CD45RA+ T cells have more stringent requirements for stimulationand standard in vitro assays may favour CD45RO+ cells in thisrespect. We tested the hypothesis that CD45RAf T cells respondpoorly to in vitro stimulation with recall antigens becauseof inadequate stimulation rather than a lack of precursors.Limiting dilution analyses (LDA) for tetanus toxoid (lT)-specificT cells were performed in the presence or absence of exogenousantLCD28 antibody. Addition of antLCD28 yielded no proliferationin the absence of specific antigen. The precursor frequencyfor lT in the CD4+ CD45RO+ population was –1:4000, whilethe frequency of CD4+ CD45RA+ T cells specific for lT was 4-to >>20-fold lower. Addition of anti-CD28 antibody didnot significantly alter the apparent precursor frequency forCD45RA+ cells but yielded an enhancement of the value for CD45RA+cells by 3- to >>5-fold. No enhancement of antigen-specificproliferation by antLCD28 was observed with CD45RA+ T cellsderived from cord blood, although phytohemagglutinin responsesof these cells were amplified by CD28 antibody. These resultsindicate that conventional LDA underestimate the true precursorfrequency of antigen-specific cells within the adult CD45RA+population and support the possibility that a small number ofcells revert from a primed (CD45RO+) to an unprimed (CD45RA+)state. The majority of memory T cells, however, appear to residein the CD45RO+ population  相似文献   

12.
Introduction: The role of CD4+ T cells in the immunopathogenesis of asthma is well documented. Little is known about the role of CD8+ T cells. The aim of this study was to assess peripheral blood subsets of CD4+ and CD8+ T cells expressing naive/memory markers (CD45RA+/RO+) and the activation marker (CD25+) in children with allergic asthma. Materials and Methods: Peripheral blood mononuclear cells were isolated from children with allergic asthma and healthy children. T cell subsets were analyzed by flow cytometry for the expressions of CD45RA, CD45RO, and CD25. In this study, some differences in the memory compartment of peripheral blood T cells between asthmatic children and healthy controls were detected. Results: The absolute number of CD8+ T cells expressing CD45RO was significantly elevated and the percentages of CD3+ T cells expressing activation marker CD25 and of CD4+ T cells expressing memory marker CD45RO were significantly lower in children with asthma compared with controls. No correlation was found between severity of asthma and peripheral blood lymphocyte subsets. Conclusions: There were some differences in the memory compartment of peripheral blood T cells between asthmatic children and healthy controls. The increase in the number of CD8+ T cells expressing the memory marker (CD45RO) in children with allergic asthma may indicate that CD8+ T cells play a role in the pathogenesis of asthma.  相似文献   

13.
We have studied the alterations in CD45R phenotypes of CD4(+)CD45RA(-)RO(+) T cells in recipients of T cell-depleted bone marrow grafts. These patients are convenient models because early after transplantation, their T cell compartment is repopulated through expansion of mature T cells and contains only cells with a memory phenotype. In addition, re-expression of CD45RA by former CD4(+)CD45RA(-) T cells can be accurately monitored in the pool of recipient T cells that, in the absence of recipient stem cells, can not be replenished with CD45RA(+) T cells through the thymic pathway. We found that CD4(+)CD45RA(-)RO(+) recipient T cells could re-express CD45RA but never reverted to a genuine CD4(+)CD45RA(+)RO(-) naive phenotype. Even 5 years after transplantation, they still co-expressed CD45RO. In addition, the level of CD45RA and CD45RC expression was lower ( approximately 35 %) than that of naive cells. In contrast, the level of CD45RB expression was comparable to that of naive cells. We conclude that CD4(+)CD45RA(-)RO(+) T cells may re-express CD45(high) isoforms but remain distinguishable from naive cells by their lower expression of CD45RA / RC and co-expression of CD45RO. Therefore, it is likely that the long-lived memory T cell will be found in the population expressing both low and high molecular CD45 isoforms.  相似文献   

14.
To assess possible differences in immune status, proportions and absolute numbers of subsets of CD4+ and CD8+ T cells were compared between HIV- healthy Ethiopians (n = 52) and HIV- Dutch (n = 60). Both proportions and absolute numbers of naive CD4+ and CD8+ T cells were found to be significantly reduced in HIV Ethiopians compared with HIV- Dutch subjects. Also, both proportions and absolute numbers of the effector CD8+ T cell population as well as the CD4+CD45RA-CD27- and CD8+CD45RA-CD27- T cell populations were increased in Ethiopians. Finally, both proportions and absolute numbers of CD4+ and CD8+ T cells expressing CD28 were significantly reduced in Ethiopians versus Dutch. In addition, the possible association between the described subsets and HIV status was studied by comparing the above 52 HIV- individuals with 32 HIV+ Ethiopians with CD4 counts > 200/microliter and/or no AIDS-defining conditions and 39 HIV+ Ethiopians with CD4 counts < 200/microliter or with AIDS-defining conditions. There was a gradual increase of activated CD4+ and CD8+ T cells, a decrease of CD8+ T cells expressing CD28 and a decrease of effector CD8+ T cells when moving from HIV- to AIDS. Furthermore, a decrease of naive CD8+ T cells and an increase of memory CD8+ T cells in AIDS patients were observed. These results suggest a generally and persistently activated immune system in HIV- Ethiopians. The potential consequences of this are discussed, in relation to HIV infection.  相似文献   

15.
It has long been recognized that T cells in the cerebrospinal fluid (CSF) and other inflammatory compartments cannot be stimulated by mitogen and the reason for this has remained unknown. This question was investigated using mononuclear cells (MNC) isolated from the CSF of subjects with multiple sclerosis and other inflammatory brain diseases which predominantly express the CD4 and CDw29 but not CD45RA determinants. CSF and blood cells were stimulated by either the CD3/T cell receptor complex, the CD2 activation pathway, calcium ionophore, or an activator of protein kinase C, phorbol myristate acetate (PMA). CSF MNC proliferated less than blood MNC following stimulation by phytohemagglutinin in subjects with inflammation in the CSF, but not in subjects with non-inflammatory CNS diseases. Moreover, CSF MNC were not induced to proliferate through stimulation of the CD2 pathway by anti-T11(2) + anti-T11(3) monoclonal antibodies (mAb). This was not due to defects in either interleukin 2 receptors, interleukin 2 secretion, or to T cell pre-activation in vivo. Instead, the refractory activation state of inflammatory CSF T cells was corrected by PMA. That CSF contains predominantly CD4+CDw29+CD45RA- cells suggests that PMA may be co-stimulatory with anti-CD2 mAb to activate this population of T cells. This was confirmed in experiments with sorted T cells from normal subjects. These data suggest that the inability of mitogens or anti-CD2 mAb to stimulate inflammatory CSF T cells, which can be corrected by an inducer of protein kinase C, is related to the relative absence of CD4+CD45RA+ cells in the CSF. Alterations of protein kinase C and protein phosphorylation may exist in inflammatory T cell populations that regulate the immune response.  相似文献   

16.
T cell activation requires costimulation of TCR/CD3 plus accessory receptors (e.g. CD28). A hallmark of costimulation is the dynamic reorganization of the actin cytoskeleton, important for receptor polarization in the immunological synapse. The classical model of T cell costimulation was challenged by the detection of superagonistic anti-CD28 antibodies. These induce T cell proliferation and--as demonstrated here--production of IFN-gamma, CD25 and CD69 even in the absence of TCR/CD3 coligation. Here, we analyzed whether superagonistic CD28 stimulation induces costimulatory signaling events. Costimulation leads to phosphorylation of the actin-bundling protein L-plastin and dephosphorylation of the actin-reorganizing protein cofilin. Cofilin binds to F-actin only in its dephosphorylated form. Binding of cofilin to F-actin leads to depolymerization or severing of F-actin. The latter ends up in smaller F-actin fragments, which can be elongated at the free barbed ends. This results in enhanced actin polymerization. Dephosphorylation of cofilin requires activation of Ras and PI3Kinase. Interestingly, superagonistic CD28 stimulation activates human peripheral blood T cells independently of Ras and PI3Kinase. Accordingly, it does not lead to cofilin dephosphorylation and receptor polarization. Likewise, L-plastin is not phosphorylated. Thus, superagonistic CD28 stimulation does not mimic costimulation. Instead, it leads to a Ras/PI3Kinase/cofilin-independent state of "unpolarized T cell activation".  相似文献   

17.
CD4+CD25+ regulatory T cells (Treg), if properly expanded from umbilical cord blood (UCB), may provide a promising immunotherapeutic tool. Our previous data demonstrated that UCB CD4+CD25+ T cells with 4-day stimulation have comparable phenotypes and suppressive function to that of adult peripheral blood (APB) CD4+CD25+ T cells. We further examined whether 2-week culture would achieve higher expansion levels of Tregs. UCB CD4+CD25+ T cells and their APB counterparts were stimulated with anti-CD3/anti-CD28 in the presence of IL-2 or IL-15 for 2 weeks. The cell proliferation and forkhead box P3 (FoxP3) expression were examined. The function of the expanded cells was then investigated by suppressive assay. IL-21 was applied to study whether it counteracts the function of UCB and APB CD4+CD25+ T cells. The results indicate that UCB CD4+CD25+ T cells expanded much better than their APB counterparts. IL-2 was superior to expand UCB and APB Tregs for 2 weeks than IL-15. FoxP3 expression which peaked on Day 10–14 was comparable. Most importantly, expanded UCB Tregs showed greater suppressive function in allogeneic mixed lymphocyte reaction. The addition of IL-21, however, counteracted the suppressive function of expanded UCB and APB Tregs. The results support using UCB as a source of Treg cells.  相似文献   

18.
Co-stimulatory signals are absolutely required for T cell activationafter TCR–MHC-peptide interaction. The most importantco-stimulatory signal known so far is mediated by the interactionof CD28 on T cells with B7 on APC. Here we demonstrate thatthe co-stimulatory signal from the B7 molecule does not necessarilyhave to come from the same cell which presents antigen. Titrationcurves obtained by limiting the amount of anti-CD3 mAb suggeststhat the same amount of TCR–CD3 cross-linking is requiredfor full T cell activation whether B7 is present on the sameor on another cell, but that the kinetics of T cell activationis slower when B7 is present on a separate cell from the primarysignal. Finally and most importantly we also show that CD45RO+memory T cells, but not CD45RA+ naive T cells, can be efficientlyactivated when B7 is expressed on bystander cells. These findingsimply that co-stimulatory activation requirements of B7 aremore stringent for naive than for memory T cells, which couldbe an important mechanism involved in the maintenance of self-tolerance.  相似文献   

19.
Differences in levels of specific enzymes utilized in intracellular signalling could be a factor in the distinct signalling properties observed in memory and naive T cells. We have studied the expression of both classical and non-classical protein kinase of C (PKC) isoenzymes in CD45RA and CD45RO cells using a combination of Western blot and flow cytometric analysis. These data indicate that CD45RA cells express higher levels of PKC alpha, PKC beta and PKC delta than CD45RO cells. In addition, CD45RA+ cells show greater proliferative activity when stimulated with phorbol myristate acetate (PMA) and calcium ionophore than their CD45RO+ counterparts. Variations in the levels of these isoenzymes could be implicated in functional differences, such as proliferation and cytokine production, in these cell subsets.  相似文献   

20.
目的: 研究霉酚酸酯(MMF)对实验性自身免疫性脑脊髓炎(EAE)大鼠症状及血CD4+CD45RA+T淋巴细胞的影响。方法: 用豚鼠全脊髓匀浆和完全弗氏佐剂制成的完全抗原免疫Wistar大鼠制备EAE大鼠模型,以生理盐水和完全弗氏佐剂注射Wistar大鼠作为对照。造模成功且存活的大鼠为25只。随机分为4组:MMF大剂量组(30 mg·kg-1·d-1)、MMF小剂量组(20 mg·kg-1·d-1)、 甲基强的松龙组(30 mg·kg-1·d-1)、EAE组(生理盐水),并给予相应的药物治疗14 d。每天进行神经功能评分,14d后流式细胞术观察各组血CD4+CD45RA+T淋巴细胞百分率,HE染色观察脑、脊髓组织病理变化。结果: 与对照组相比EAE模型大鼠脑脊髓组织血管周围有大量炎细胞浸润,神经功能评分明显增加,血CD4+CD45RA+T淋巴细胞百分数明显减少(均P<0.01);与EAE组相比,经MMF及甲基强的松龙治疗的各组大鼠神经功能评分下降,病理改变程度减轻,血CD4+CD45RA+T淋巴细胞百分数增加(均P<0.01);且大剂量MMF组疗效优于小剂量MMF组和甲基强的松龙组(均P<0.01);小剂量MMF组和甲基强的松龙组疗效差异无显著。结论: MMF通过上调CD4+CD45RA+T淋巴细胞比例发挥免疫抑制作用,不同剂量间疗效差异显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号