首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the influence of type 4 metabotropic glutamate (mGlu4) receptors on ischemic brain damage using the permanent middle cerebral artery occlusion (MCAO) model in mice and the endothelin-1 (Et-1) model of transient focal ischemia in rats. Mice lacking mGlu4 receptors showed a 25% to 30% increase in infarct volume after MCAO as compared with wild-type littermates. In normal mice, systemic injection of the selective mGlu4 receptor enhancer, N-phenyl-7-(hydroxyimino)cyclopropa[b]chromen-1a-caboxamide (PHCCC; 10 mg/kg, subcutaneous, administered once 30 minutes before MCAO), reduced the extent of ischemic brain damage by 35% to 45%. The drug was inactive in mGlu4 receptor knockout mice. In the Et-1 model, PHCCC administered only once 20 minutes after ischemia reduced the infarct volume to a larger extent in the caudate/putamen than in the cerebral cortex. Ischemic rats treated with PHCCC showed a faster recovery of neuronal function, as shown by electrocorticographic recording and by a battery of specific tests, which assess sensorimotor deficits. These data indicate that activation of mGlu4 receptors limit the development of brain damage after permanent or transient focal ischemia. These findings are promising because selective mGlu4 receptor enhancers are under clinical development for the treatment of Parkinson''s disease and other central nervous system disorders.  相似文献   

2.
Diffusion-weighted imaging (DWI) and perfusion-weighted imaging (PWI) can rapidly detect lesions in acute ischemic stroke patients. The PWI volume is typically substantially larger than the DWI volume shortly after onset, that is, a diffusion/ perfusion mismatch. The aims of this study were to follow the evolution of the diffusion/ perfusion mismatch in permanent and 60- minute temporary focal experimental ischemia models in Sprague-Dawley rats using the intraluminal middle cerebral artery occlusion (MCAO) method. DWI and arterial spin-labeled PWI were performed at 30, 60, 90, 120, and 180 minutes after occlusion and lesion volumes (mm(3)) calculated At 24 hours after MCAO, and infarct volume was determined using triphenyltetrazolium chloride staining. In the permanent MCAO group, the lesion volume on the ADC maps was significantly smaller than that on the cerebral blood flow maps through the first 60 minutes after MCAO; but not after 90 minutes of occlusion. With 60 minutes of transient ischemia, the diffusion/perfusion mismatch was similar, but after reperfusion, the lesion volumes on ADC and cerebral blood flow maps became much smaller. There was a significant difference in 24- hour infarct volumes between the permanent and temporary occlusion groups.  相似文献   

3.
High susceptibility to cerebral ischemia in GFAP-null mice.   总被引:22,自引:0,他引:22  
Astrocytes perform a variety of functions in the adult central nervous system (CNS) that contribute to the survival of neurons. Thus, it is likely that the activities of astrocytes affect the extent of brain damage after ischemic stroke. The authors tested this hypothesis by using a mouse ischemia model to compare the infarct volume produced in wild-type mice with that produced in mice lacking glial fibrillary acidic protein (GFAP), an astrocyte specific intermediate filament component. Astrocytes lacking GFAP have been shown to have defects in process formation, induction of the blood-brain barrier. and volume regulation; therefore, they might be compromised in their ability to protect the CNS after injury. The authors reported here that 48 hours after combined permanent middle cerebral artery occlusion (MCAO) and 15 minutes transient carotid artery occlusion (CAO) GFAP-null mice had a significantly (P < 0.001) larger cortical infarct volume (16.7 +/- 2.2 mm3) than their wild-type littermates (10.1 +/- 3.9 mm3). Laser-Doppler flowmetry revealed that the GFAP-null mice had a more extensive and profound decrease in cortical cerebral blood flow within 2 minutes after MCAO with CAO. These results indicated a high susceptibility to cerebral ischemia in GFAP-null mice and suggested an important role for astrocytes and GFAP in the progress of ischemic brain damage after focal cerebral ischemia with partial reperfusion.  相似文献   

4.
Neuroprotective effect of lipoxin A4 methyl ester (LXA4 ME) was tested in a rat model of permanent middle cerebral artery occlusion. LXA4 ME was administrated through intracerebroventricular injection immediately after middle cerebral artery was occluded. Administration of LXA4 ME ameliorated neurological deficit, reduced infarct volume, attenuated histological damage, and decreased number of apoptotic neuron induced by ischemic insult. These neuroprotective effects of LXA4 ME were associated with inhibition of neutrophil infiltration, lipid peroxidation, and astrocyte activation. In addition, LXA4 ME also attenuated proinflammatory cytokines (TNF-α and IL-1β) production. These data suggest that LXA4 ME protects neuron against permanent cerebral ischemia by inhibiting inflammatory responses.  相似文献   

5.
The purposes of this review are to clarify the effect of hypothermia therapy on focal cerebral ischemia in rats, and to consider the relevancy of its application to human focal cerebral ischemia. Since 1990, 26 reports confirming the brain-protecting effect of hypothermia in rat focal cerebral ischemia models have been published. Seventy-four experimental groups in these 26 reports were classified as having transient middle cerebral arterial occlusion (MCAO) with mild hypothermia (group A; 43 groups), permanent MCAO with mild hypothermia (group B; 14 groups), permanent MCAO with deep hypothermia (group C; 8 groups) and transient or permanent MCAO with mild hyperthermia (group D; 9 groups). The results were evaluated as the % infarct volume change caused by hypothermia or hyperthermia compared with the infarct volume in normothermic animals. The effectiveness was confirmed in 36 (83%) of the 43 groups in group A, 10 (71%) of the 14 in group B, and six (75%) of the eight in group C. The infarct volume of eight of the nine groups in group D was markedly aggravated. The percent infarct volume change was 55.3% +/- 27.1% in group A, 57.6% +/- 24.7% in group B, 60.8% +/- 45.5% in group C, and 189.7% +/- 89.4% in group D. For effective reduction of the infarct volume, hypothermia should be started during ischemia or within 1 h, at latest, after the beginning of reperfusion in the rat transient MCAO model. However, it is not clear whether this neuroprotective effect of hypothermia can also be observed in the chronic stage, such as several months later. Keeping the body temperature normothermic in order to avoid mild hyperthermia seems to be rather important for not aggravating cerebral infarction. Clinical randomized studies on the efficacy of mild hypothermia for focal cerebral ischemia and sophisticated mild hypothermia therapy techniques are mandatory.  相似文献   

6.
局灶性脑缺血耐受和星形胶质细胞反应   总被引:11,自引:1,他引:11  
目的 研究短暂性局灶性脑缺血预处理对永久性局灶性脑缺血的保护作用 ,及最佳预处理时间剂量 ,并探讨星形胶质细胞在脑缺血耐受中的反应。方法 采用开颅方法阻断大鼠大脑中动脉 ,通过观察大鼠脑梗死后神经功能损伤状况、脑梗死体积分析及病理形态学变化 ,评价不同的缺血预处理时间剂量 (10分钟、2 0分钟、30分钟 )对永久性局灶性脑缺血的保护作用。采用胶质纤维酸性蛋白 (GFAP)免疫组化法观察星形胶质细胞在脑缺血耐受中的反应。结果 与对照组相比 ,缺血预处理 2 0分钟未引起明显的神经元损伤 ,但使永久性局灶性脑缺血后神经功能损伤减轻 ,梗死体积明显减小 (P <0 .0 1)。免疫组化显示 ,2 0分钟缺血预处理组及重复缺血组星形胶质细胞在损伤预处理侧广泛激活。结论  2 0分钟局灶性脑缺血预处理能够有效诱导脑缺血耐受。星形胶质细胞的激活可能与脑缺血耐受中神经元的存活相关。  相似文献   

7.
用c-fos反义寡聚核苷酸脑内微量注射、TTC染色、c-Fos免疫组织化学和电针等技术和方法,探讨即早反应基因c-fos在大鼠局灶性脑缺血(MCAO)模型的脑损伤中和电针抗局灶性脑缺血脑损伤中所起的作用。实验结果表明,局灶性脑缺血可引起c-fos在缺血侧皮质的大量表达,电针能部分抑制这种表达,使脑缺血梗死灶体积减小。在缺血中心区注射c-fos反义寡聚核苷酸后,脑内c-fos的表达基本上被完全阻断,导致脑梗死灶的体积明显增大,电针抗脑缺血脑损伤的作用也被取消,提示脑缺血后,脑内的c-fos适度表达可能对脑损伤有一定的保护作用。电针可能部分抑制了脑内c-fos表达,调整了缺血后的c-fos表达的程度,对脑缺血损伤起一定的保护作用。  相似文献   

8.
The non-competitive N-methyl-D-aspartate receptor/channel antagonist dizocilipine maleate (MK-801) has been reported to reduce infarct volume in a variety of focal stroke models. We examined the effect of MK-801 on infarct volume and cerebral blood flow in temporary and permanent focal ischemia in rats. In Wistar rats exposed to permanent right common carotid artery and 2 h of transient right middle cerebral and left common carotid artery occlusion followed by 22 h of reperfusion, MK-801 reduced infarct volume by 73% (P less than 0.05) and significantly increased cerebral blood flow to the ischemic core throughout the 2-h period of ischemia. In spontaneously hypertensive rats (SHRs) exposed to permanent right common carotid artery occlusion and 2 h of transient right middle cerebral artery occlusion followed by 22 h of reperfusion, MK-801 decreased infarct volume by 13% (P greater than 0.05) and increased cerebral blood flow to the penumbral region. In SHRs subjected to permanent right common carotid and middle cerebral artery occlusion MK-801 reduced infarct volume by 18% at 3 h (P greater than 0.05), by 25% at 6 h (P less than 0.01) and by 18% at 24 h (P less than 0.05). MK-801-treated SHRs had no difference in cerebral blood flow to the ischemic core, but increased cerebral blood flow to penumbral zones as compared with untreated SHRs. These results suggest that the protective effect of MK-801, at least in part, relates to improved cerebral blood flow.  相似文献   

9.
Nitric oxide synthase in cerebral ischemia   总被引:9,自引:0,他引:9  
The results of our continuing studies on the role of nitric oxide (NO) in cellular mechanisms of ischemic brain damage as well as related reports from other laboratories are summarized in this paper. Repetitive ip administration ofN G-nitro-L-arginine (L-NNA), a NO synthase (NOS) inhibitor, protected against neuronal necrosis in the gerbil hippocampal CA1 field after transient forebrain ischemia with a bell-shaped response curve, the optimal dose being 3 mg/kg. Repeated ip administration of L-NNA also mitigated rat brain edema or infarction following permanent and transient middle cerebral artery (MCA) occlusion with a U-shaped response. The significantly ameliorative dose-range and optimal dose were 0.01–1 mg/kg and 0.03 mg/kg, respectively. Studies using a NO-sensitive microelectrode revealed that NO concentration in the affected hemisphere was remarkably increased by 15–45 min and subsequently by 1.5–4 h after MCA occlusion. Restoration of blood flow after 2 h-MCA occlusion resulted in enhanced NO production by 1–2 h after reperfusion. Administration of L-NNA (1 mg/kg, ip) diminished the increments in NO production during ischemia and reperfusion, leading to a remarkable reduction in infarct volume. In brain microvessels obtained from the affected hemisphere, Ca2+-dependent constitutive NOS (cNOS) was activated significantly at 15 min, and Ca2+-independent inducible NOS (iNOS) was activated invariably at 4 h and 24 h after MCA occlusion. Two hour reperfusion following 2 h-MCA occlusion caused more than fivefold increases in cNOS activity with no apparent alterations in iNOS activity. Thus, we report here based on available evidence that there is good reason to think that NOS activation in brain microvessels may play a role in the cellular mechanisms underlying ischemic brain injury.  相似文献   

10.
The present study was aimed to evaluate the effect of the free radical scavenger Edaravone on infarct volume due to permanent MCA occlusion in mice and, if so, to elucidate the mechanism of its neuroprotective effects. Male Balb/c mice were subjected to permanent middle cerebral artery occlusion and were treated with 3.0 mg/kg of Edaravone or vehicle 30 min before ischemia. Infarct volume was assessed by 2,3,5-triphenyltetrazolium chloride (TTC) method after 24 h. Furthermore, in situ detection of superoxide in the ipsilateral neocortex was carried out using the superoxide-sensitive dye dihydroethidium (DHE) staining technique. Pretreatment with 3.0 mg/kg of Edaravone ameliorated the tissue damage in the infarct rim and significantly reduced infarct volume to about 77% of the control (p<0.05). Semi-quantitative measurement of red fluorescence emitted from DHE revealed that the superoxide increased in the ischemic core at 1 h after the onset of ischemia and extended towards the infarct rim at 3 and 6 h, and that pretreatment with 3.0 mg/kg of Edaravone significantly inhibited the increase of superoxide in the infarct rim at 3 and 6 h (p<0.01). Double staining with DHE and monoclonal antibody against NeuN showed that the majority of the nuclei positive for DHE were also positive for NeuN. These findings suggest that Edaravone salvages the boundary zone of infarct by scavenging reactive oxygen species especially in the neurons during permanent focal cerebral ischemia.  相似文献   

11.
In the past experimental methods used for producing focal cerebral ischemia have had considerable difficulty with regard to reproducibility of the size of the infarcted region. In this study we have developed an experimental model which enables us to consistently produce focal regions of cerebral ischemia (resulting in infarction) which vary little in size in a number of animals. Thirty-seven cats (3–4 kg b. wt.) anesthetized with chlorolose and urethane were used. Physiologic monitoring and adjustments maintained arterial food values as follows: pCO2 27–35 Torr, pO2 100–150 Torr, pH ± 7.4, glucose 200 mg%, hematocrit > 25. The left middle cerebral artery was exposed via a transorbital approach and occluded for 1–2 h with and without left and/or both carotid artery occlusion. Sixteen hours following the ischemic episode, the animals were sacrificed and sections of fresh brain tissue were processed for vital staining using 1% tetrazolium solution. With this method normal brain areas appear dark red, ischemic regions (without infarction) appear gray and irreversibly infarcted areas appear pinkish-white. The volumetric dimensions of the lesioned area were measured using a planimeter. The same tissue was also evaluated histologically by means of standard histopathologic techniques on paraffin-embedded material. Infarcted areas as delineated macroscopically by the tetrazolium correlated well with the light microscopic findings. Ten animals subjected to a 2-h occlusion of the left middle cerebral artery (LMCA) and both carotid arteries resulted in a reproducible infarct which was 3.2 ± 0.7 ml in volume. This represents 13.3 ± 2.9 % of the total volume of both cerebral hemispheres (above the level of the inferior colliculus). This experimental procedure was used to yield reproducible regions of focal cerebral ischemia in a subsequent study involving the use of flourocarbon emulsion to reverse the ischemic process and prevent permanent neurological damage with infarction. Neurological manifestations of permanent cerebral ischemia were assessed using a clinical scale developed in this model.  相似文献   

12.
Involvement of adenosine and adenosine triphosphate-sensitive potassium (KATP) channels in the development of ischemic tolerance has been suggested in global ischemia, but has not been studied extensively in focal cerebral ischemia. This study evaluated modulating effects of adenosine A1 receptor antagonist DPCPX (8-cyclopentyl-1,3-dipropylxanthine) and mitochondrial KATP channel blocker 5HD (5-hydroxydecanoate) on the development of tolerance to focal cerebral ischemia in rats. Preconditioning with 30-minute middle cerebral artery occlusion (MCAO) reduced cortical and subcortical infarct volume following 120-minute MCAO (test ischemia) given 72 hours later. The neuroprotective effect of preconditioning was attenuated by 0.1 mg/kg DPCPX given before conditioning ischemia (30-minute MCAO), but no influence was provoked when it was administered before test ischemia. DPCPX had no effect on infarct volume after conditioning or test ischemia when given alone. The preconditioning-induced neuroprotection disappeared when 30 mg/kg 5HD was administered before test ischemia. These results suggest a possible involvement of adenosine A1 receptors during conditioning ischemia and of mitochondrial KATP channels during subsequent severe ischemia in the development of tolerance to focal cerebral ischemia.  相似文献   

13.
Middle cerebral artery occlusion (MCAO) is widely used as a rat model of focal brain ischemia. Evaluation of brain damage often includes the morphological analysis of the injury area, MRI, and various scales which depend on functional tests, commonly known as neurological severity score (NSS). We determined the optimal number of NSS tests and assessed their capacity for non-invasive evaluation of brain ischemic injury in the rat MCAO model. 275 male Sprague-Dawley rats were randomly divided into five groups, given either permanent (p) MCAO or transient (t) MCAO using an uncoated 4-0 monofilament catheter or a silicone-coated monofilament. The rats’ neurological status was examined before and at 1 and 24 h following MCAO. The size of brain injury was then measured histologically and the extent of right cerebral hemisphere edema was calculated. We established a correlation between these tests and morphological data for brain injury. Adjusted R2 of the prediction of total histology score was 0.7. The Hosmer-Lemeshow p-value of this model was 0.812 for total brain histology. For the brain edema the adjusted R2 of the prediction model was 0.48. The Hosmer-Lemeshow p-value of this model was 0.558 for brain edema. Our methods of estimating infarct size produces reliable and well correlated results at 24 h and demonstrates to be an easy and quick way to assess infarct size soon after ischemic injury has occurred. The described method for neurological assessment could ultimately aid in assessing various treatment modalities in the early hours following stroke.  相似文献   

14.
Inflammatory processes have been implicated in the pathogenesis of brain damage after stroke. In rodent stroke models, focal ischemia induces several proinflammatory chemokines, including monocyte chemoattractant protein-1 (MCP-1). The individual contribution to ischemic tissue damage, however, is largely unknown. To address this question, the authors subjected MCP-1-deficient mice (MCP-1-/-) to permanent middle cerebral artery occlusion (MCAO). Measurement of basal blood pressure, cerebral blood flow, and blood volume revealed no differences between wild-type (wt) and MCP-1-/- mice. MCAO led to similar cerebral perfusion deficits in wt and MCP-1-/- mice, excluding differences in the MCA supply territory and collaterals. However, compared with wt mice, the mean infarct volume was 29% smaller in MCP-1-/- mice 24 hours after MCAO (P = 0.022). Immunostaining showed a reduction of phagocytic macrophage accumulation within infarcts and the infarct border in MCP-1-/- mice 2 weeks after MCAO. At the same time point, the authors found an attenuation of astrocytic hypertrophy in the infarct border and thalamus in MCP-1-/- mice. However, these effects on macrophages and astrocytes in MCP-1-/- mice occurred too late to suggest a protective role in acute infarct growth. Of note: at 6 hours after MCAO, MCP-1-/- mice produced significantly less interleukin-1beta in ischemic tissue; this might be related to tissue protection. The results of this study indicate that inhibition of MCP-1 signaling could be a new acute treatment approach to limit infarct size after stroke.  相似文献   

15.
We investigated the effect of moderate whole body hypothermia (30 degrees C) on transient middle cerebral artery occlusion (MCAO) in the rat. Male Wistar rats were subjected to 2 h of ischemia by inserting a suture into the lumen of the internal carotid artery and occluding the origin of the MCA. Experimental groups were (a) MCAO induced at 37 degrees C body temperature (n = 15); (b) 30 degrees C body temperature induced prior to ischemia and maintained for 2 h of MCAO and 1 h of reperfusion (n = 12); and (c) MCAO with regional brain and body temperatures measured in normothermic (n = 3) and hypothermic MCAO rats (n = 2). Histopathological evaluation was performed 96 h after reperfusion. All normothermic MCAO animals exhibited ischemic infarct involving the ipsilateral cortex and basal ganglia with infiltration of neutrophils, macrophages, and microvascular proliferation. Hypothermic MCAO animals exhibited minor ischemic damage ranging from selective neuronal injury to small focal areas of infarct with minimal inflammatory response. Our data demonstrate that transient ischemia induced by using the intra-arterial suture method to occlude the MCA results in a reproducible brain lesion and that moderate hypothermia has a profound protective effect on the brain injury after transient MCAO.  相似文献   

16.
Basic fibroblast growth factor (bFGF) is a polypeptide with potent trophic and protective effects on the brain. bFGF has been reported to exert neuroprotection against a wide variety of insults, including ischemic neuronal injury. To date, animal models of focal ischemia have not been translated to efficacy in stroke clinically with respect to testing of neuroprotective agents. Because functional outcome is the measurement of efficacy for putative neuroprotective agents in the clinic, we sought to evaluate the functional consequences of bFGF administration in rats subjected to focal ischemia. In this study, we assessed the effects of bFGF on functional outcome as well as infarct size in rats subjected to severe cerebral ischemia by permanent occlusion of the middle cerebral artery (MCAO). Male Sprague-Dawley rats were subjected to permanent MCAO by the intraluminal filament technique. Two hours following occlusion, rats were infused intravenously with either bFGF, at a dose of 150 microg/kg, or vehicle alone. Functional sensorimotor impairment, which was assessed by the accelerating rotarod test, was recorded at baseline and compared to performance assessed at 24 h after MCAO. Permanent occlusion of the MCA caused marked impairment in rotarod performance in both groups. Treatment of rats with bFGF showed a significant 46% improvement in rotarod fall latency when compared with that from the animals treated with vehicle alone. The volume of cortical infarction was significantly reduced by 32% as a function of bFGF treatment. These results suggest that the delayed intravenous administration of bFGF improves sensorimotor function as well as reduces infarct size following permanent focal ischemia in rat.  相似文献   

17.
FGF-2, a potent multifunctional and neurotrophic growth factor, is widely expressed in the brain and upregulated in cerebral ischemia. Previous studies have shown that intraventricularly or systemically administered FGF-2 reduces the size of cerebral infarcts. Whether endogenous FGF-2 is beneficial for the outcome of cerebral ischemia has not been investigated. We have used mice with a null mutation of the fgf2 gene to explore the relevance of endogenous FGF-2 in brain ischemia. Focal cerebral ischemia was produced by occlusion of the middle cerebral artery (MCAO). We found a 75% increase in infarct volume in fgf2 knock-out mice versus wild type littermates (P < 0.05). This difference in the extent of ischemic damage was observed after 24 h, and correlated with decreased viability in fgf2 mutant mice following MCA occlusion. Increased infarct volume in fgf2 null mice was associated with a loss of induction in hippocampal BDNF and trkB mRNA expression. These findings indicate that signaling through trkB may contribute to ameliorating brain damage following ischemia and that bdnf and trkB may be target genes of FGF-2. Together, our data provide the first evidence that endogenous FGF-2 is important in coping with ischemic brain damage suggesting fgf2 as one crucial target gene for new therapeutic strategies in brain ischemia.  相似文献   

18.
目的 通过观察姜黄素(curcumin)对Notch 1及NF-κB表达的影响及脑含水量和梗死体积的变化,探 讨其对大脑中动脉梗死(middle cerebral artery occlusion,MCAO)模型大鼠的神经保护作用及机制。 方法 采用成年健康雄性Sprague-Dawl ey大鼠93只,随机分为假手术组(sham),溶剂对照组(vehi cl econtrol ),姜黄素组(CUR)。MCAO术后立即腹腔注射姜黄素溶液(80 mg/kg),溶剂对照组及假手术 组给予同体积含0.5 mol/L NaOH的0.01 PBS。根据不同时间点每组分为对照、3 h、6 h、12 h、24 h、48 h、 72 h共7个亚组,分别在相应时间点进行神经功能学评分,2~4分者纳入实验组。归组后将动物断头 处死,留取病变侧脑组织利用免疫组织化学法及Western blot观察Notch 1及NF-κB的表达。各组仅取 48 h一个时间点进行脑含水量测定及2%的2,3,5-三苯基四唑氮红(triphenyltetrazolium chloride,TTC) 染色观测梗死体积。 结果 CUR组降低Notch 1和NF-κB的表达,这种抑制效果至少持续至MCAO后72 h(P<0.05)。与 vehicle-control组相比,CUR组在MCAO后48 h时即可显著改善神经功能缺损(P<0.05),减少脑含水量 ([ 80.42±9.00)% vs(83.71±7.00)%(P<0.05)]及梗死体积([ 40.08±3.66)% vs(28.94±6.20)% (P<0.05)]。 结论 姜黄素干预后,MCAO模型病变脑组织含水量降低,梗死体积减小,Notch 1和NF-κB表达水平 同步下调,推测姜黄素有脑保护作用,姜黄素可能通过抑制Notch 1和NF-κB的表达对缺血性脑组织 起到脑保护作用。  相似文献   

19.
Sublethal insults can induce a transient tolerance toward subsequent lethal ischemia, a phenomenon termed ischemic preconditioning (IPC). In the myocardium, nitric oxide derived from 'inducible' nitric oxide synthase (iNOS or NOS II) plays a critical role in the expression of IPC produced by sublethal ischemia. Here, we investigated whether iNOS is involved in IPC in brain. Ischemic preconditioning was produced in mice by three episodes of 1-min bilateral common carotid artery (BCCA) occlusion, each followed by 5 mins of reperfusion. After 24 h, mice underwent middle cerebral artery (MCA) occlusion for 20 mins. Intraischemic cerebral blood flow was monitored during both in BCCA and MCA occlusion (MCAO) by laser-Doppler flowmetry. Mice were killed 3 days after MCAO, and infarct volume was determined in thionine-stained sections. Infarct volume was significantly reduced 24 h after IPC (70%; P<0.05). Treatment with the iNOS inhibitor aminoguanidine (400 mg/kg), abolished the IPC-induced protection. Furthermore, IPC failed to induce ischemic tolerance in iNOS-null mice. In wild-type mice, IPC increased the resistance to Ca(2+)-mediated depolarization in isolated brain mitochondria. However, in iNOS-null mice IPC failed to induce such resistance. We conclude that iNOS is required for the full expression of IPC and that such effect is coupled to an increased resistance of mitochondria to injury. Thus, iNOS-derived nitric oxide, in addition to its deleterious effects on the late stages of ischemic brain damage, can also be beneficial by promoting ischemic tolerance through signaling, ultimately resulting in mitochondrial protection.  相似文献   

20.
大鼠局灶性脑缺血预处理的抗细胞凋亡作用机制的研究   总被引:12,自引:3,他引:9  
目的研究大鼠短暂局灶性脑缺血预处理对再次脑缺血神经细胞凋亡的保护作用,及bcl-2、bax与脑缺血耐受的关系.方法用开颅方法阻断大鼠大脑中动脉(MCA)20分钟,3天后再次阻断6小时.观察大鼠脑梗死体积及组织病理学改变,采用TUNEL法观察神经细胞凋亡状况,采用免疫组织化学方法观察bcl-2、bax蛋白表达的改变.结果与假预处理组和缺血组相比,预处理后缺血组梗死灶体积明显减小(均P<0.01),半影区凋亡细胞数明显减少(P<0.01),bax蛋白表达下降(P<0.05),bcl-2蛋白表达显著上升(P<0.01).结论 20分钟局灶性脑缺血预处理能够通过bcl-2表达增加及bax表达下降对再次脑缺血神经细胞起保护作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号