共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents workability, compressive strength and microstructure for geopolymer pastes and mortars made of class C fly ash at mass ratios of water-to-fly ash from 0.30 to 0.35. Fluidity was in the range of 145–173 mm for pastes and 131–136 mm for mortars. The highest strengths of paste and mortar were 58 MPa and 85 MPa when they were cured at 70 °C for 24 h. In XRD patterns, unreacted quartz and some reacted product were observed. SEM examination indicated that reacted product has formed and covered the unreacted particles in the paste and mortar that were consistent with their high strength. 相似文献
2.
The development of geopolymers is in line with the requirements of sustainable development. Creating a new type of material from various industrial and bio-based wastes and by-products can lead to reduced energy consumption, reduced waste generation, reduced global CO2 emissions, as well as reduced resource extraction of natural resources. In this study, geopolymer composites based on class F fly ash with the addition of fine quartz sand and ground walnut shells used as a substitute for sand were examined. The study focused on investigating the effects of different weight percentages of ground walnut shells and quartz sand on the density and strength properties, including compressive and flexural strength, thermal conductivity, efflorescence formation, and water absorption of the fly ash-based geopolymer composites. The microstructure of the studied geopolymers was also analyzed using a scanning electron microscope (SEM). It was observed that the addition of ground walnut shells contributes to the decrease in density and mechanical properties, increase in absorption properties, and decrease in porosity of fly ash-based geopolymers. Furthermore, the addition of ground walnut shells allows for a significant reduction in efflorescence on the surface of the tested geopolymer composites. Moreover, partial or complete replacement of sand by ground walnut shells in geopolymer composites based on fly ash allows for a significant reduction in their thermal conductivity, which makes it possible to use these composites as insulation materials. 相似文献
3.
Claudio Ferone Francesco Colangelo Francesco Messina Luciano Santoro Raffaele Cioffi 《Materials》2013,6(8):3420-3437
In this work, three samples of municipal solid waste incinerators fly ash (MSWI-FA) have been stabilized in systems containing coal fly ash to create geopolymers through a polycondensation reaction. Monolithic products have been obtained with both MSWI fly ash as received and after the partial removal of chloride and sulfate by water washing. The polycondensation products have been characterized qualitatively by means of Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy and quantitatively, through the determination of the volume of reacted water and silicate. Furthermore, the heavy metals and chloride releases together with the physico-mechanical properties have been evaluated on the hardened products. In conclusion, considering the technological and environmental performances of the obtained geopolymers, they could be suitable for many non-structural applications, such as backfilling of abandoned quarries, decorative materials or brick fireplaces, hearths, patios, etc. 相似文献
4.
Toon Nongnuang Peerapong Jitsangiam Ubolluk Rattanasak Weerachart Tangchirapat Teewara Suwan Suriyah Thongmunee 《Materials》2021,14(10)
Geopolymer (GP) has been applied as an environmentally-friendly construction material in recent years. Many pozzolanic wastes, such as fly ash (FA) and bottom ash, are commonly used as source materials for synthesizing geopolymer. Nonetheless, many non-pozzolanic wastes are often applied in the field of civil engineering, including waste iron powder (WIP). WIPs are massively produced as by-products from iron and steel industries, and the production rate increases every year. As an iron-based material, WIP has properties of heat induction and restoration, which can enhance the heat curing process of GP. Therefore, this study aimed to utilize WIP in high-calcium FA geopolymer to develop a new type of geopolymer and examine its properties compared to the conventional geopolymer. Scanning electron microscopy and X-ray diffraction were performed on the geopolymers. Mechanical properties, including compressive strength and flexural strength, were also determined. In addition, setting time and temperature monitoring during the heat curing process were carried out. The results indicated that the addition of WIP in FA geopolymer decreased the compressive strength, owing to the formation of tetrahydroxoferrate (II) sodium or Na2[Fe(OH)4]. However, a significant increase in the flexural strength of GP with WIP addition was detected. A flexural strength of 8.5 MPa was achieved by a 28-day sample with 20% of WIP addition, nearly three times higher than that of control. 相似文献
5.
Improving the Mechanical Properties of Fly Ash-Based Geopolymer Composites with PVA Fiber and Powder
In this work, polyvinyl alcohol (PVA) fiber and powder were added to geopolymer composites to toughen fly ash-based geopolymer, and their different toughening mechanisms were revealed. Firstly, different contents of active granulated blast furnace slag (GBFS) were added to the geopolymer to improve the reactivity of the GBFS/fly ash-based geopolymer, and the best ratio of GBFS and fly ash was determined through experiments testing the mechanical properties. Different contents of PVA powders and fibers were utilized to toughen the geopolymer composites. The effect of the addition forms and contents of PVA on the mechanical properties, freeze–thaw cycle resistance, and thermal decomposition properties of geopolymer composites were systematically studied. The results showed that the toughening effect of PVA fiber was better than that of PVA powder. The best compressive strength and flexural strength of geopolymer composites toughened by PVA fiber were 41.11 MPa and 8.43 MPa, respectively. In addition, the composition of geopolymer composites was explored through microstructure analysis, and the toughening mechanisms of different forms of PVA were explained. This study provided a new strategy for the toughening of geopolymer composites, which can promote the low-cost and efficient application of geopolymer composites in the field of building materials. 相似文献
6.
Syafiadi Rizki Abdila Mohd Mustafa Al Bakri Abdullah Romisuhani Ahmad Shayfull Zamree Abd Rahim Magorzata Rychta Izabela Wnuk Marcin Nabiaek Krzysztof Muskalski Muhammad Faheem Mohd Tahir Syafwandi Muhammad Isradi Marek Gucwa 《Materials》2021,14(11)
This study intended to address the problem of damaged (collapsed, cracked and decreased soil strength) road pavement structure built on clay soil due to clay soil properties such as low shear strength, high soil compressibility, low soil permeability, low soil strength, and high soil plasticity. Previous research reported that ground granulated blast slag (GGBS) and fly ash can be used for clay soil stabilizations, but the results of past research indicate that the road pavement construction standards remained unfulfilled, especially in terms of clay’s subgrade soil. Due to this reason, this study is carried out to further investigate soil stabilization using GGBS and fly ash-based geopolymer processes. This study investigates the effects of GGBS and ratios of fly ash (solid) to alkaline activator (liquid) of 1:1, 1.5:1, 2:1, 2.5:1, and 3:1, cured for 1 and 7 days. The molarity of sodium hydroxide (NaOH) and the ratio of sodium silicate (Na2SiO3) to sodium hydroxide (NaOH) was fixed at 10 molar and 2.0 weight ratio. The mechanical properties of the soil stabilization based geopolymer process were tested using an unconfined compression test, while the characterization of soil stabilization was investigated using the plastic limit test, liquid limit test, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The results showed that the highest strength obtained was 3.15 MPA with a GGBS to alkaline activator ratio of 1.5 and Na2SiO3 to NaOH ratio of 2.0 at 7 days curing time. These findings are useful in enhancing knowledge in the field of soil stabilization-based geopolymer, especially for applications in pavement construction. In addition, it can be used as a reference for academicians, civil engineers, and geotechnical engineers. 相似文献
7.
Muhammad Faheem Mohd Tahir Mohd Mustafa Al Bakri Abdullah Shayfull Zamree Abd Rahim Mohd Rosli Mohd Hasan Andrei Victor Sandu Petrica Vizureanu Che Mohd Ruzaidi Ghazali Aeslina Abdul Kadir 《Materials》2022,15(10)
Ordinary Portland cement (OPC) is a conventional material used to construct rigid pavement that emits large amounts of carbon dioxide (CO2) during its manufacturing process, which is bad for the environment. It is also claimed that OPC is susceptible to acid attack, which increases the maintenance cost of rigid pavement. Therefore, a fly ash based geopolymer is proposed as a material for rigid pavement application as it releases lesser amounts of CO2 during the synthesis process and has higher acid resistance compared to OPC. This current study optimizes the formulation to produce fly ash based geopolymer with the highest compressive strength. In addition, the durability of fly ash based geopolymer concrete and OPC concrete in an acidic environment is also determined and compared. The results show that the optimum value of sodium hydroxide concentration, the ratio of sodium silicate to sodium hydroxide, and the ratio of solid-to-liquid for fly ash based geopolymer are 10 M, 2.0, and 2.5, respectively, with a maximum compressive strength of 47 MPa. The results also highlight that the durability of fly ash based geopolymer is higher than that of OPC concrete, indicating that fly ash based geopolymer is a better material for rigid pavement applications, with a percentage of compressive strength loss of 7.38% to 21.94% for OPC concrete. This current study contributes to the field of knowledge by providing a reference for future development of fly ash based geopolymer for rigid pavement applications. 相似文献
8.
Alkali-activated mortars and concretes have been gaining increased attention due to their potential for providing a more sustainable alternative to traditional ordinary Portland cement mixtures. In addition, the inclusion of high volumes of recycled materials in these traditional mortars and concretes has been shown to be particularly challenging. The compositions of the mixtures present in this paper were designed to make use of a hybrid alkali-activation model, as they were mostly composed of class F fly ash and calcium-rich precursors, namely, ordinary Portland cement and calcium hydroxide. Moreover, the viability of the addition of fine milled glass wastes and fine limestone powder, as a source of soluble silicates and as a filler, respectively, was also investigated. The optimization criterium for the design of fly ash-based alkali-activated mortar compositions was the maximization of both the compressive strength and environmental performance of the mortars. With this objective, two stages of optimization were conceived: one in which the inclusion of secondary precursors in ambient-cured mortar samples was implemented and, simultaneously, in which the compositions were tested for the determination of short-term compressive strength and another phase containing a deeper study on the effects of the addition of glass wastes on the compressive strength of mortar samples cured for 24 h at 80 °C and tested up to 28 days of curing. Furthermore, in both stages, the effects (on the compressive strength) of the inclusion of construction and demolition recycled aggregates were also investigated. The results show that a heat-cured fly ash-based mortar containing a 1% glass powder content (in relation to the binder weight) and a 10% replacement of natural aggregate for CDRA may display as much as a 28-day compressive strength of 31.4 MPa. 相似文献
9.
Phosphorus slag (PS), an industrial waste slag, has been used in geopolymers because it is rich in silicon and calcium. The poor performance of phosphorus slag-based geopolymer is due to its aluminum deficiency. In this work, low-calcium fly ash, treated by a wet-grinding process, named wet-grinding ultrafine fly ash (WUFA) was used as an Al supplement to replace some of the phosphorus slag, and the wet-grinding, ultrafine fly ash-phosphorus slag (WUFA-PS)-based geopolymer was prepared. The effects of the substitution amount of WUFA and the activator dosage on the hydration properties, mechanical properties, pore structure and SEM of the WUFA-PS geopolymer were discussed in detail. The results indicate that WUFA and more activators contribute to the Al and high alkalinity environment, which positively induces the production of more geopolymer gels, thus releasing more heat and optimizing the pore structure of the matrix. The compressive strength increased by up to 28.1%. The enhanced performance of the WUFA-PS-based geopolymer may also arise from the filling effect and activity improvement of WUFA. This study has proved the feasibility of preparing a geopolymer by blending wet-grinding ultrafine fly ash and phosphorus slag and has provided references for the ratio and performance evaluation of WUFA-PS-based geopolymer concrete. 相似文献
10.
Biomass combustion is a significant new source of green energy in the European Union. The adequate utilization of byproducts created during that process is a growing challenge for the energy industry. Biomass fly ash could be used in cement composite production after appropriate activation of that material. This study had been conducted to assess the usefulness of mechanical and physical activation methods (grinding and sieving), as well as activation through the addition of active silica in the form of silica fume, as potential methods with which to activate biomass fly ash. Setting time, compressive strength, water absorption and bulk density tests were performed on fresh and hardened mortar. While all activation methods influenced the compressive strength development of cement mortar with fly ash, sieving of the biomass fly ash enhanced the early compressive strength of cement mortar. The use of active silica in the form of silica fume ensured higher compressive strength results than those of control specimens throughout the entire measurement period. 相似文献
11.
Mugahed Amran Roman Fediuk Gunasekaran Murali Siva Avudaiappan Togay Ozbakkaloglu Nikolai Vatin Maria Karelina Sergey Klyuev Aliakbar Gholampour 《Materials》2021,14(15)
Development of sustainable concrete as an alternative to conventional concrete helps in reducing carbon dioxide footprint associated with the use of cement and disposal of waste materials in landfill. One way to achieve that is the use of fly ash (FA) as an alternative to ordinary Portland cement (OPC) because FA is a pozzolanic material and has a high amount of alumina and silica content. Because of its excellent mechanical properties, several studies have been conducted to investigate the use of alkali-activated FA-based concrete as an alternative to conventional concrete. FA, as an industrial by-product, occupies land, thereby causing environmental pollution and health problems. FA-based concrete has numerous advantages, such as it has early strength gaining, it uses low natural resources, and it can be configurated into different structural elements. This study initially presents a review of the classifications, sources, chemical composition, curing regimes and clean production of FA. Then, physical, fresh, and mechanical properties of FA-based concretes are studied. This review helps in better understanding of the behavior of FA-based concrete as a sustainable and eco-friendly material used in construction and building industries. 相似文献
12.
This paper investigated the curing effects on the mechanical properties of calcium-containing geopolymer mortar. Three precursors are used: Class C fly ash, Class F fly ash plus calcium hydroxide and Class F fly ash plus slag. Curing conditions included: (1) standard curing at 20 ± 3 °C and RH 95% (C); (2) steam curing at 60 °C for 24 h (S); (3) steam curing at 60 °C for 6 h (S6); and (4) oven curing at 60 °C for 24 h (O), then the latter three followed by the standard curing. Under the standard conditions, the flexural strength and compressive strength of Class C fly ash geopolymer mortars developed quickly until the age of 7 days, followed by a gradual increase. Specimens with Class F fly ash plus Ca(OH)2 showed slow increase till the age of 28 days. Under these non-standard conditions (2–4), all specimens showed higher 3-day strength, while later strengths were either higher or lower than those in standard conditions, depending on the type of the precursor. 相似文献
13.
Meor Ahmad Faris Mohd Mustafa Al Bakri Abdullah Ratnasamy Muniandy Mohammad Firdaus Abu Hashim Katarzyna Boch Bartomiej Je Sebastian Garus Pawe Palutkiewicz Nurul Aida Mohd Mortar Mohd Fathullah Ghazali 《Materials》2021,14(5)
Geopolymer concrete has the potential to replace ordinary Portland cement which can reduce carbon dioxide emission to the environment. The addition of different amounts of steel fibers, as well as different types of end-shape fibers, could alter the performance of geopolymer concrete. The source of aluminosilicate (fly ash) used in the production of geopolymer concrete may lead to a different result. This study focuses on the comparison between Malaysian fly ash geopolymer concrete with the addition of hooked steel fibers and geopolymer concrete with the addition of straight-end steel fibers to the physical and mechanical properties. Malaysian fly ash was first characterized by X-ray fluorescence (XRF) to identify the chemical composition. The sample of steel fiber reinforced geopolymer concrete was produced by mixing fly ash, alkali activators, aggregates, and specific amounts of hook or straight steel fibers. The steel fibers addition for both types of fibers are 0%, 0.5%, 1.0%, 1.5%, and 2.0% by volume percentage. The samples were cured at room temperature. The physical properties (slump, density, and water absorption) of reinforced geopolymer concrete were studied. Meanwhile, a mechanical performance which is compressive, as well as the flexural strength was studied. The results show that the pattern in physical properties of geopolymer concrete for both types of fibers addition is almost similar where the slump is decreased with density and water absorption is increased with the increasing amount of fibers addition. However, the addition of hook steel fiber to the geopolymer concrete produced a lower slump than the addition of straight steel fibers. Meanwhile, the addition of hook steel fiber to the geopolymer concrete shows a higher density and water absorption compared to the sample with the addition of straight steel fibers. However, the difference is not significant. Besides, samples with the addition of hook steel fibers give better performance for compressive and flexural strength compared to the samples with the addition of straight steel fibers where the highest is at 1.0% of fibers addition. 相似文献
14.
This article presents test results of aggressive environment impact, i.e., seawater, acid solutions and carbonation, on the durability of cement–ash mortars. Tests were conducted on CEM I 42.5R-based mortars containing 35 to 70% by mass of FBC fly ash from brown and black coal combustion in a homogeneous form and mixtures of 35% by mass of siliceous fly ashes (CFA) and 35% by mass of FBC fly ash. It was demonstrated that in normal conditions (20 °C), FBC ashes showed higher pozzolanic activity than CFA, except when their curing temperature was increased to 50 °C. FBC ashes increased mortars’ water demands, which led to an accelerated carbonation process. In an environment of Cl- ions, cement–ash mortars showed more Ca2+ ions leached and no expansive linear and mass changes, which, with their increased strength, might be an argument in favour for their future use in construction of coastal structures resistant to seawater. FBC ash content may be increased to 35% by mass, maintaining mortars’ resistance to seawater, acid rain and carbonation. A favourable solution turned out to be a FBC and CFA mixed addition to cement of 35% by mass each, in contrast to mortars containing 70% of FBC fly ash in homogeneous form. 相似文献
15.
Barbara Kozub Patrycja Bazan Rihards Gailitis Kinga Korniejenko Dariusz Mierzwiski 《Materials》2021,14(17)
This study examines foamed geopolymer composites based on fly ash from the Skawina coal-fired power plant in Poland. The paper presents the effect of adding 3% and 5% by weight of glass wool waste on selected properties of foamed geopolymers. The scope of the tests carried out included density measurements, compressive and bending strength tests, measurements of the heat conduction coefficient, and the results of measurements of changes in thermal radiation in samples subjected to a temperature of 800 °C. The obtained results indicate that glass wool waste can be successfully used to lower the density and heat conduction coefficient of foamed geopolymer composites with a fly ash matrix. In addition, the results of changes in thermal radiation in the samples subjected to the temperature of 800 °C showed a positive effect of the addition of glass wool waste. Moreover, the introduction of the addition of glass wool waste made it possible to increase the compressive strength of the examined foamed geopolymers. For the material modified with 3% by weight of mineral wool, the increase in compressive strength was about 10%, and the increase in fibers in the amount of 5% by weight resulted in an increase of 20% concerning the base material. The obtained results seem promising for future applications. Such materials can be used in technical constructions as thermal insulation materials. 相似文献
16.
For the production of geopolymer concrete (GPC), fly-ash (FA) like waste material has been effectively utilized by various researchers. In this paper, the soft computing techniques known as gene expression programming (GEP) are executed to deliver an empirical equation to estimate the compressive strength of GPC made by employing FA. To build a model, a consistent, extensive and reliable data base is compiled through a detailed review of the published research. The compiled data set is comprised of 298 experimental results. The utmost dominant parameters are counted as explanatory variables, in other words, the extra water added as percent FA (), the percentage of plasticizer (), the initial curing temperature (), the age of the specimen (), the curing duration (), the fine aggregate to total aggregate ratio (), the percentage of total aggregate by volume (), the percent SiO2 solids to water ratio () in sodium silicate (Na2SiO3) solution, the NaOH solution molarity (), the activator or alkali to FA ratio (), the sodium oxide (Na2O) to water ratio () for preparing Na2SiO3 solution, and the Na2SiO3 to NaOH ratio (). A GEP empirical equation is proposed to estimate the of GPC made with FA. The accuracy, generalization, and prediction capability of the proposed model was evaluated by performing parametric analysis, applying statistical checks, and then compared with non-linear and linear regression equations. 相似文献
17.
Pedro Antonio Salazar Carlos Leiva Fernndez Yolanda Luna-Galiano Rosario Villegas Snchez Constantino Fernndez-Pereira 《Materials》2022,15(23)
This research analyzes whether a titanium dioxide waste (TiO2 waste) can be used as a source material for geopolymers with good fire resistance properties. Samples with different proportions were prepared, replacing fly ashes with titanium dioxide waste on geopolymers (0, 20, 30, 40 and 100% w/w). The activating solution has a Na2O/SiO2 molar ratio of 0.98. Physical (bulk density, moisture content and water absorption) and mechanical (superficial hardness and compressive strength) characteristics have been evaluated. In addition, their thermal behavior at high temperatures (fire resistance, compressive strength at elevated temperature and absorbed energy) has also been evaluated to see if they can be used as fire insulating materials. This work also studies the radiological activity of geopolymer materials. The replacement of FA with WTiO2 increases the bulk density due to its higher specific bulk density. The highest compressive strength values were obtained with a TiO2 waste content between 30 and 40% w/w. The compressive strength decreases at high temperatures, especially when more TiO2 waste is added. When the amount of TiO2 waste is increased, so is the plateau of evaporation, and this, in turn, increases the resistance to fire. Geopolymers containing FA and TiO2 waste do not present radiological problems, although, when the TiO2 waste is increased, the activity index of the geopolymer also rises. 相似文献
18.
Micha ach Kinga Pawecka Agnieszka Bk Katarzyna Lichocka Kinga Korniejenko An Cheng Wei-Ting Lin 《Materials》2021,14(17)
The research described in this article was aimed at determining the influence of hydraulic additives on the foaming process and the stability of the produced geopolymer foams. These foams can be used as insulation materials to replace the currently commonly used insulations such as expanded polystyrene or polyurethane foams. Geopolymers have low thermal conductivity, excellent fire- and heat-resistant properties, and have fairly good mechanical properties. Research on foamed materials shows that they have the highest class of fire resistance; therefore, they are most often used as insulation products in construction. Geopolymer foams were made of aluminosilicate materials (fly ash) and foaming agents (H2O2 and Al powder), and the stabilizers were gypsum and portland cement. Additionally, surfactants were also used. It was found that better foaming effects were obtained for H2O2—it is a better foaming agent for geopolymers than Al powder. When using a hydraulic additive—a stabilizer in the form of cement—lower densities and better insulation parameters were obtained than when using gypsum. Portland cement is a better stabilizer than gypsum (calcium sulfates), although the effect may change due to the addition of surfactants, for example. 相似文献
19.
The complexity of composite geopolymer materials results in instability in the setting and hardening of geopolymer-stabilized soil. In order to determine the appropriate mix proportion scheme for composite geopolymer-stabilized soil, this study investigated the effects of two preparation methods, fly ash/slag ratio and alkali activator modulus, on workability and strength development trends in alkali-excited fly ash and slag-based geopolymer-stabilized soil. The results showed that the high ambient temperatures created by the one-step method were more conducive to the setting and hardening of the geopolymer-stabilized soil; its 3 d/28 d UCS (unconfined compression strength) ratio was 62.43–78.60%, and its 7 d/28 d UCS ratio was 70.37–83.63%. With increases of the alkali activator modulus or the proportion of fly ash, the setting time of stabilized soil was gradually prolonged, and its fluidity increased. Meanwhile, the strength development of stabilized soil was significantly affected by the proportion of fly ash and the alkali activator modulus; the maximum UCS value was obtained at II-2-O, prepared by the one-step method, with an alkali activator modulus of 1.2 and a fly ash/slag ratio of 20/80. Specifically, the 3, 7, and 28 d UCS values of II-2-O were 1.65, 1.89, and 2.26 MPa, respectively, and its 3 d/28 d UCS ratio and 7 d/28 d UCS ratio were 73.01% and 83.63%, respectively. These results will be of great importance in further research on (and construction guidance of) composite geopolymer-stabilized soil. 相似文献
20.
This study discusses strength deterioration during the curing process of fly ash geopolymer and the use of CaSO4·2H2O (gypsum) as a deterioration remedy when the ash was synthesized using a 10M NaOH and Na-silicate solution. The strength decline was mainly due to the widespread formation of nanometer-sized cracks that were related to excessive Na and Si concentrations at an early age. Use of 2 wt% CaSO4·2H2O resulted in the best measured strength by temporarily reducing Na and Si concentrations; Na was absorbed by SO42−, up to 11% in the matrix within one day, and formed Na2SO4 (thenardite), which gradually dissolved over time, slowly releasing Na ions. However, more than 4% gypsum suppressed overall strength development because too many Na ions were locked into Na2SO4 and could not participate in geopolymerization. The addition of gypsum impeded glass dissolution and even halted the process when more than 4% gypsum was used. 相似文献