首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Composite materials are increasingly used to strengthen existing structures or new load-bearing elements, also made of timber. In this paper, the effect of the number of layers of Carbon Fiber Reinforced Polymer (CFRP) on the load-bearing capacity and stiffness of Glued Laminated Timber beams was determined. Experimental research was performed on 32 elements—a series of eight unreinforced beams, and three series of eight reinforced beams: with one, three and five layers of laminate each. The beams with a cross-section of 38 mm × 80 mm and a length of 750 mm were subjected to the four-point bending test according to standard procedure. For each series, destructive force, deflection, mode of failure, and equivalent stiffness were determined. In addition, for the selected samples, X-ray computed tomography was performed before and after their destruction to define the quality of the interface between wood and composite. The results of the conducted tests and analyses showed that there was no clear relationship between the number of reinforcement layers and the load-bearing capacity of the beams and their stiffness. Unreinforced beams failed due to tension, while reinforced CFRP beams failed due to shear. Despite this, a higher energy of failure of composite-reinforced elements was demonstrated in relation to the reference beams.  相似文献   

2.
With the development of wooden structures and buildings, there is a need to research physical and numerical tests of wood-based structures. The presented research is focused on construction and computational approaches for new types of joints to use in wooden structures, particularly glued lamella elements made of wood and wood-based composites. This article focuses on improving the frame connection of a wooden post and a beam with the use of fasteners to ensure better load-bearing capacity and stiffness of the structure. In common practice, bolts or a combination of bolts and pins are used for this type of connection. The aim is to replace these commonly used fasteners with modern ones, namely full thread screws. The aim is also to shorten and simplify the assembly time in order to improve the load-bearing capacity and rigidity of this type of frame connection. Two variations of the experimental test were tested in this research. The first contained bolts and pins as connecting means and the second contained the connecting means of a full threaded screw. Each experiment contained a total of two tests. For a detailed study of the problem, we used a 2D or 3D computational model that models individual components, including fasteners.  相似文献   

3.
This paper adopts the method of steel tube wall thickness and strength reduction to simulate corrosion damage. The numerical model of the square concrete-filled steel tube long column (SCFST-LC) under eccentric compression after acid rain corrosion is established in the finite element software, ABAQUS. The reliability and accuracy of the model are verified by comparing it with published relevant experimental results. The failure mode, load-deformation curve, and ultimate compressive load were analysed. Following that, the impacts of section size, yield strength of the steel tube, axial compressive strength of concrete, steel ratio, slenderness ratio, and load eccentricity on its ultimate compressive load are comprehensively investigated. The results demonstrate that the ultimate compressive load of the SCFST-LC decreases significantly with the increase in corrosion rate. The corrosion rate increases from 10 to 40%, and the ultimate bearing capacity decreases by 37.6%. Its ultimate bearing capacity can be enhanced due to the increase in section size, material strength, and steel ratio. In contrast, the ascending slenderness ratio and load eccentricity has harmful effects on the ultimate compressive load of the specimens. Finally, a simplified formula for the axial compressive load of the SCFST-LC under eccentric compression after acid rain corrosion is proposed. The calculation accuracy is high and the deviation of the results is basically within 15%, which is in good agreement with the numerical simulation results.  相似文献   

4.
The paper presents the response of a three-layered annular plate with different damaged laminate facings to the action of the static or dynamic temperature field model. Various damages of laminate, composite facings change the plate structure reaction under the temperature fields. Obtained results indicate practical meaning of analyses in failure diagnostic process. The thermal sensitivity of two kinds of plate structures, undamaged and damaged, offers both new practical and scientific possibilities in evaluation of the plate behavior. The relations between macro-damage, i.e., the buckling of the plate structure and micro-damages of plate layers subjected to temperature gradient, are shown. The numerical solution is proposed as the most effective in examinations of the various transversally symmetrical and asymmetrical plate structures with a different rate of damages. The graphical distribution of changes in values of static and dynamic critical loads illustrate the process of structural damaging during its exploitation. They have practical importance in the evaluation of the structure capacity. The knowledge of the effect of laminate degradation process on plate buckling phenomenon located in thermal environment complements previous investigations and designates complex, multi-parameter problems as having scientifically new elements.  相似文献   

5.
This paper describes the process of creating a numerical FEM (finite element method) model of the 5.56 × 45 mm SS109 projectile. The model was used to calculate the temperatures occurring in the projectile materials during the impact on the steel plate at an angle of 45°. The purpose of the investigation is to estimate the ability of a ricocheting projectile to cause ignition. For the same projectile, experimental tests were also carried out under the conditions adopted for the numerical investigation in order to validate the FEM model. During the experiment, temperature was measured with a thermal camera; the phenomenon was also recorded with a colour high-speed camera.  相似文献   

6.
The objective of this study was to investigate the wear characteristics of the U-shaped rings of power connection fittings, and to construct a wear failure prediction model of U-shaped rings in strong wind environments. First, the wear evolution and failure mechanism of U-shaped rings with different wear loads were studied by using a swinging wear tester. Then, based on the Archard wear model, the U-shaped ring wear was dynamically simulated in ABAQUS, via the Umeshmotion subroutine. The results indicated that the wear load has an important effect on the wear of the U-shaped ring. As the wear load increases, the surface hardness decreases, while plastic deformation layers increase. Furthermore, the wear mechanism transforms from adhesive wear, slight abrasive wear, and slight oxidation wear, to serious adhesive wear, abrasive wear, and oxidation wear with the increase of wear load. As plastic flow progresses, the dislocation density in ferrite increases, leading to dislocation plugs and cementite fractures. The simulation results of wear depth were in good agreement with the test value of, with an error of 1.56%.  相似文献   

7.
A practical method to analyze the mechanical behavior of the asymmetric extradosed cable-stayed (AECS) bridge is provided in this paper. The work includes the analysis of the equivalent membrane tension of the cables, the ratio of side-span cable force to middle-span cable force, and the deflection of the main girder subject to uniformly distributed load. The Ritz method is a simple and efficient way to solve composite structures, such as the AECS bridge, compared with the traditional force method, displacement method, or finite element method. The theoretical results obtained from the Ritz method are in good agreement with that from the finite element analysis, which shows the accuracy of this approach. Then, a parametric study of AECS bridges is carried out by using the proposed equations directly, instead of using the traditional finite element modeling process, which requires a lot of modeling work. As a result, reasonable values of very important parameters are suggested, which helps the readers reach a better understanding of the mechanical behavior of AECS bridges. More importantly, it helps the designers to enhance the efficiency in the stage of conceptual design.  相似文献   

8.
As the environmental pollution issue has recently become significant, environmental regulations in Europe and the United States are being strengthened. Thus, there is a demand for the quality improvement of emission after-treatment systems to satisfy the strengthened environmental regulations. Reducing the amount of welding heat distortion by optimization of the welding order of each part could be a solution for quality improvement since the emission after-treatment system consists of many parts and each assembly is produced by welding individual ones. In this research, a method to derive a welding sequence that effectively minimizes welding deformation was proposed. A two-stage simulation was performed to obtain the optimal welding sequence. In the first stage, the welding sequence was derived by analyzing the number of welding groups in each assembly of a structure. The derived welding sequence was verified by performing a thermal elasto-plastic analysis and comparing it with the experimental results.  相似文献   

9.
10.
We present a method for the simulation of the kinetic evolution in the sub µs timescale for composite materials containing regions occupied by alloys, compounds, and mixtures belonging to the Ni-Si-C ternary system. Pulsed laser irradiation (pulses of the order of 100 ns) promotes this evolution. The simulation approach is formulated in the framework of the phase-field theory and it consists of a system of coupled non-linear partial differential equations (PDEs), which considers as variables the following fields: the laser electro-magnetic field, the temperature, the phase-field and the material (Ni, Si, C, C clusters and Ni-silicides) densities. The model integrates a large set of materials and reaction parameters which could also self-consistently depend on the model variables. A parameter calibration is also proposed, specifically suited for the wavelength of a widely used class of excimer lasers (λ = 308 nm). The model is implemented on a proprietary laser annealing technology computer-aided design (TCAD) tool based on the finite element method (FEM). This integration allows, in principle, numerical solutions in systems of any dimension. Here we discuss the complex simulation trend in the one-dimensional case, considering as a starting state, thin films on 4H-SiC substrates, i.e., a configuration reproducing a technologically relevant case study. Simulations as a function of the laser energy density show an articulated scenario, also induced by the variables’ dependency of the materials’ parameters, for the non-melting, partial-melting and full-melting process conditions. The simulation results are validated by post-process experimental analyses of the microstructure and composition of the irradiated samples.  相似文献   

11.
Composites can be engineered to exhibit high strength, high stiffness, and high toughness. Composite structures have been used increasingly in various engineering applications. In recent decades, most fundamentals of science have expanded their reach by many orders of magnitude. Currently, one of the primary goals of science and technology seems to be the quest to develop reliable methods for linking the physical phenomena that occur over multiple length scales, particularly from a nano-/micro-scale to a macroscale. The aim of this Special Issue is to assemble high quality papers that advance the field of multiscale simulation of composite structures, through the application of any modern computational and/or analytical methods alone or in conjunction with experimental techniques, for damage assessment or mechanical analysis and prediction.  相似文献   

12.
Mechanical energy is the most ubiquitous form of energy that can be harvested and converted into useful electrical power. For this reason, the piezoelectric energy harvesters (PEHs), with their inherent electromechanical coupling and high-power density, have been widely incorporated in many applications to generate power from ambient mechanical vibrations. However, one of the main challenges to the wider adoption of PEHs is how to optimize their design for maximum energy harvesting. In this paper, an investigation was conducted on the energy harvesting from seven piezoelectric patch shapes (differing in the number of edges) when attached to a non-deterministic laminated composite (single/double lamina) plate subjected to change in fiber orientation. The performance of the PEHs was examined through a coupled-field finite element (FE) model. The plate was simply supported, and its dynamics were randomized by attaching randomly distributed point masses on the plate surface in addition to applying randomly located time-harmonic point forces. The randomization of point masses and point force location on a thin plate produce non-deterministic response. The design optimization was performed by employing the ensemble-responses of the electrical potential developed across the electrodes of the piezoelectric patches. The results present the optimal fiber orientation and patch shape for maximum energy harvesting in the case of single and double lamina composite plates. The results show that the performance is optimal at 0° or 90° fiber orientation for single-lamina, and at 0°/0° and 0°/90° fiber orientations for double-lamina composites. For frequencies below 25 Hz, patches with a low number of edges exhibited a higher harvesting performance (triangular for single-lamina/quadrilateral for double-lamina). As for the broadband frequencies (above 25 Hz), the performance was optimal for the patches with a higher number of edges (dodecagonal for single-lamina/octagonal for double-lamina).  相似文献   

13.
To ensure safety and prevent failure of engineering equipment throughout its lifespan, the concept of ‘Safety Design’ is proposed, which covers all the cradle-to-grave phases of engineering equipment, considers at least ten essential factors of failure causes, and conducts root cause analysis at three different scales, in order to proactively control the safety risks before the occurrence of failure rather than passively conduct the remedial measures after failure. Herein, in order to demonstrate how to implement this effective and efficient concept in engineering practice, a case study of failure analysis and prevention is addressed on the extraction column in the production line for methyl methacrylate. Based on the analysis results, the causes were finally determined to be all derived from the stages before operation, including inappropriate design, limited quality inspection of fabrication and installation. Pertinent countermeasures were then proposed from the ‘Safety Design’ point of view, which would not only solve the failure problem for this sole equipment but also contribute to safety risk control of other engineering equipment before operation.  相似文献   

14.
The radiant floor system market is growing rapidly because Europe is moving toward a low-carbon economy and increased awareness about environmental sustainability and energy efficiency, stimulated by the ambitious EU Energy Efficient Directive and nZEB challenge. The high growth rate of the market share is due to the involvement of homeowners in the specifications of their living commodities, so they are thus willing to invest more at the initial stage to obtain long-term benefits and lower energy exploration costs. We performed an experimental campaign over three slabs with a hydronic radiant floor system of equal dimensions, shape, and pipe pitch with different screed mortar formulations to assess their performance throughout a heating/cooling cycle. The temperature at different heights within the interior of the screed mortars and at the surface were monitored. The results revealed that an improved screed mortar has a relevant impact on the efficiency of the system. Moreover, a three-dimensional transient heat transfer model was validated using the experimental data. The model was used to evaluate the impact of different finishing materials, namely wood, cork, ceramic, and linoleum, on the floor surface temperatures. The results showed differences of 15% in the surface temperature when using different floor finishing solutions.  相似文献   

15.
In this work, the deformation behavior of MXene-based polymer composites with bioinspired brick and mortar structures is analyzed. MXene/Polymer nanocomposites are modeled at microscale for bioinspired configurations of nacre-mimetic brick-and-mortar assembly structure. MXenes (brick) with polymer matrix (mortar) are modeled using classical analytical methods and numerical methods based on finite elements (FE). The analytical methods provide less accurate estimation of elastic properties compared to the numerical one. MXene nanocomposite models analyzed with the FE method provide estimates of elastic constants in the same order of magnitude as literature-reported experimental results. Bioinspired design of MXene nanocomposites results in an effective increase of Young’s modulus of the nanocomposite by 25.1% and strength (maximum stress capacity within elastic limits) enhanced by 42.3%. The brick and mortar structure of the nanocomposites leads to an interlocking mechanism between MXene fillers in the polymer matrix, resulting in effective load transfer, good strength, and damage resistance. This is demonstrated in this paper by numerical analysis of MXene nanocomposites subjected to quasi-static loads.  相似文献   

16.
In this paper, the stochastic parameters of the effective thermal conductivity of multilayer composites are considered. The examined specimens of composites were built with a different number of layers and each had a different saturation density of a composite matrix with fibers. For each case of laminate built with a prescribed number of layers and assumed saturation density, 10,000 tests of its effective thermal conductivity were carried out using numerical experiments. It was assumed that the fibers located in each layer were rectilinear, had a circular cross-section and that they could take random positions in their repeatable volume elements (RVEs). In view of the mentioned assumptions, the heat flux passing throughout a cross-section of a composite sample, perpendicular to the fibers’ direction, was considered. The probability density functions were fitted to the obtained data and then the chosen stochastic parameters of the effective thermal conductivity coefficients were determined.  相似文献   

17.
The spreading use of cellular structures brings the need to speed up manufacturing processes without deteriorating mechanical properties. By using Selective Laser Melting (SLM) to produce cellular structures, the designer has total freedom in defining part geometry and manufacturing is simplified. The paper investigates the suitability of Selective Laser Melting for manufacturing steel cellular lattice structures with characteristic dimensions in the micrometer range. Alternative lattice topologies including reinforcing bars in the vertical direction also are considered. The selected lattice structure topology is shown to be superior over other lattice structure designs considered in literature. Compression tests are carried out in order to evaluate mechanical strength of lattice strut specimens made via SLM. Compressive behavior of samples also is simulated by finite element analysis and numerical results are compared with experimental data in order to assess the constitutive behavior of the lattice structure designs considered in this study. Experimental data show that it is possible to build samples of relative density in the 0.2456–0.4367 range. Compressive strength changes almost linearly with respect to relative density, which in turns depends linearly on the number of vertical reinforces. Specific strength increases with cell and strut edge size. Numerical simulations confirm the plastic nature of the instability phenomena that leads the cellular structures to collapse under compression loading.  相似文献   

18.
This paper describes the influence of defects occurring in struts under tension, obtained using the additive method of laser powder bed fusion (LPBF), on the stress and strain distributions. The study used struts of different thicknesses separated from Ti-6Al-4V diamond lattice structures. For numerical modeling of stress and strain fields, models that reflect the realistic shape of the tested struts with their imperfections were used. The shape of the diamond structure struts was obtained based on microtomographic measurements. Based on the results obtained, the influence of defects in the material structure on the stress and strain distribution was analyzed. It was observed that the main factor influencing the stress and strain distribution in the struts are micronotches on their external surface. These imperfections have a significantly greater impact on the stress and strain concentration than the micropores inside. Furthermore, the interactions of the imperfections are also important, which in turn affects the stress distributions and the formation of bands of high-stress values inside the material. The relationship between the presence of micropores, the stress–strain curves, and the mechanical properties of the material was also assessed.  相似文献   

19.
20.
Several experiments are conducted to investigate the seismic behavior of composite shear walls because of their advantages compared to traditional reinforced concrete (RC) walls. However, the numerical studies are limited due to the complexities for the steel and concrete behaviors and their interaction. This paper presents a numerical study of composite shear walls with stiffened steel plates and infilled concrete (CWSC) using ABAQUS. The mechanical mechanisms of the web plate and concrete are studied. FE models are used to conduct parametric analysis to study the law of parameters on the seismic behaviour. The finite element (FE) model shows good agreement with the test results, including the hysteresis curves, failure phenomenon, ultimate strength, initial stiffness, and ductility. The web plate and concrete are the main components to resist lateral force. The web plate is found to contribute between 55% and 85% of the lateral force of wall. The corner of web plate mainly resists the vertical force, and the rest of web plate resists shear force. The concrete is separated into several columns by stiffened plates, each of which is independent and resisted vertical force. The wall thickness, steel ratio, and shear span ratio have the greatest influence on ultimate bearing capacity and elastic stiffness. The shear span ratio and axial compression ratio have the greatest influence on ductility. The test and analytical results are used to propose formulas to evaluate the ultimate strength capacity and stiffness of the composite shear wall under cyclic loading. The formulas could well predict the ultimate strength capacity reported in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号