首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Qualitative and quantitative changes were found in the cerebellar circuitry of old as compared to young rats. The old group had a reduced number of synapses (at least 30%), however, there was an increase in the size of remaining synaptic components (13.5% for spine head volume, 66% for bouton volume, and 17% for the area of synaptic contact zones). Furthermore, there were pronounced morphological changes in the older group appearing as: 1) prominent lipofuscin bodies in Purkinje cell somata, 2) numerous myelinated fibers in the lower part of the molecular layer, 3) tortuous Purkinje cell dendrites in a thinned molecular layer, and 4) abundant vacuolar profiles and membrane swirls in small and intermediate-sized dendrites. Our findings suggest that Purkinje cell dendrites are dying-back reducing the target field for granule cells and that remaining synaptic sites compensate by increasing synaptic contact area as well as the size of pre- and postsynaptic structures.  相似文献   

2.
A quantitative investigation has been carried out on synaptic contact zones of dentate gyrus supragranular layer and cerebellar glomeruli in autoptic samples from adult, old and demented patients. During physiological aging and senile dementia, the synaptic average area was significantly increased as compared to adult values in both the CNS areas investigated. Conversely, the number of contacts and their total surface contact area per unit volume of tissue were decreased. Current literature reports that, in animal models, enlarged synapses undergo perforations and splitting to modify synaptic connectivity. As against these assumptions, the increased synaptic size observed in our study appears to represent a compensative reaction of old and demented CNS to counteract the reduction in number and in total contact area of the synaptic junctions.  相似文献   

3.
大鼠下丘脑弓状核突触的衰老性变化   总被引:2,自引:0,他引:2  
用透射电镜结合体视学方法,对3月龄、10月龄和30~34月龄大鼠弓状核突触进行了定性和定量研究。结果显示:老龄组大鼠神经毯呈萎缩变性相,大树突内脂褐素增多,小到中等大小的树突出现空泡变性、多泡体和膜被多层体等,棘萎缩减少;轴突终末内突触囊泡减少而大颗粒囊泡积聚,部分突触前、后膜变薄、缩短或间断,突触小球少见;轴-体、轴-树和轴-棘突触数减少,突触密度、突触连接带面密度和突触膜总长度降低,GrayⅠ型和即Ⅱ型突触间隙增宽。上述结果表明,老年弓状核突触在数量、形态和结构上发生了衰老性改变,这是导致下丘脑神经内分泌衰老障碍的主要原因之一。  相似文献   

4.
Rats deprived of vitamin E from age of 4 weeks were tested in four independent behavioral experiments and compared with a group fed a control diet. During a 14-minute session in a hole-board, no differences in the level and the course of habituation of parameters of activity and exploration were found. A second group of animals was trained in an automatically controlled six-arm radial tunnel maze. Although no differences were found in various activity measurements, the deprived animals showed a slightly impaired spatial concept formation during 8 acquisition sessions. Testing their relearning ability of the same maze 18 days later, the vitamin E deprived animals showed a significant impairment. In a third experiment, animals were trained 16 days in the same maze configuration and at day 17 they were exposed to the mirror image of the radial maze. Both groups mastered this reversal with an increased level of activity but without differences in patrolling efficiency. In a fourth behavioral experiment, the effects of scopolamine on deprived animals were examined. Compared to the controls, the vitamin E deprived animals were relatively insensitive to the effects of scopolamine. Autofluorescent neuronal lipofuscin accumulation was found especially in the hippocampus (CA3) of vitamin E deprived animals. Based on these results, the usefulness of vitamin E deprivation as an animal model for accelerated normal aging is discussed.  相似文献   

5.
17beta-Estradiol (E) increases axospinous synapse density in the hippocampal CA1 region of young female rats, but not in aged rats. This may be linked to age-related alterations in signaling pathways activated by synaptic estrogen receptor alpha (ER-alpha) that potentially regulate spine formation, such as LIM-kinase (LIMK), an actin depolymerizing factor/cofilin kinase. We hypothesized that, as with ER-alpha, phospho-LIM-kinase (pLIMK) may be less abundant or responsive to E in CA1 synapses of aged female rats. To address this, cellular and subcellular distribution of pLIMK-immunoreactivity (IR) in CA1 was analyzed by light and electron microscopy in young and aged female rats that were ovariectomized and treated with either vehicle or E. pLIMK-IR was found primarily in perikarya within the pyramidal cell layer and dendritic shafts and spines in stratum radiatum (SR). While pLIMK-IR was occasionally present in terminals, post-embedding quantitative analysis of SR showed that pLIMK had a predominant post-synaptic localization and was preferentially localized within the postsynaptic density (PSD). The percentage of pLIMK-labeled synapses increased (30%) with E treatment (P<0.02) in young animals, and decreased (43%) with age (P<0.002) regardless of treatment. The pattern of distribution of pLIMK-IR within dendritic spines and synapses was unaffected by age or E treatment, with the exception of an E-induced increase in the non-synaptic core of spines in young females. These data suggest that age-related synaptic alterations similar to those seen with ER-alpha occur with signaling molecules such as pLIMK, and support the hypothesis that age-related failure of E treatment to increase synapse number in CA1 may be due to changes in the molecular profile of axospinous synapses with respect to signaling pathways linked to formation of additional spines and synapses in response to E.  相似文献   

6.
Using double-label ultrastructural immunocytochemistry, we found the synaptic input to gonadotropin-releasing hormone (GnRH) neurons in the preoptic area of aged (20 months old), virgin, male Sprague-Dawley rats to be denser than that in young adults (3 months old). These results confirmed earlier observations on F-344 virgin male rats. The aging F-344 rat, however, is prone to testicular tumor and so it was essential to see if the phenomenon was reproducible in another rat strain. In the first study, a portion of the increase in synaptic density was due to an increase in the proportion of synapses containing pleimorphic vesicles, frequently associated with the neurotransmitter GABA. We tested the possibility directly using a double-label protocol for GnRH and glutamic acid decarboxylase (GAD). However, in the present study the density of input by GABA did not change with age. This inhibitory amino acid represented about 10% of the total innervation in young animals; but, in aged animals, because the total synaptic input was greater, GABA represented only about 4% of the innervation. Synaptic vesicles within GAD-immunoreactive terminals were uniformly clear and spherical, suggesting that pleiomorphic vesicle shape is not an appropriate criterion for GABAergic innervation.  相似文献   

7.
Behavioral correlates of vitamin D deficiency   总被引:3,自引:0,他引:3  
Rats deprived of vitamin D at weaning were compared to control rats on open field, stabilimeter, radial arm maze and spatial reversal tasks in order to test the hypothesis that vitamin D deficiency alters behavior and learning. The deficient animals engaged in statistically less open field rearing activity and spent more time each day negotiating the radial maze than did the control rats. These findings are consistent with the known influence of vitamin D on the musculoskeletal system. The deprived rats did not differ from the control animals on the learning measures. This would indicate that vitamin D deficiency may not significantly impair cognitive functions in young adult rats.  相似文献   

8.
Han SN  Wu D  Ha WK  Beharka A  Smith DE  Bender BS  Meydani SN 《Immunology》2000,100(4):487-493
Compared with young mice, old mice infected with influenza virus have significantly higher pulmonary viral titres, although these can be reduced significantly with dietary vitamin E supplementation. T helper 1 (Th1) cytokines, especially interferon-gamma (IFN-gamma), play an important role in defending against influenza infection. However, there is an age-associated loss of Th1 cytokine production. Prostaglandin E2 (PGE2) production, which increases with age, can modulate the T helper cell function by suppressing Th1 cytokine production. To investigate the mechanism of vitamin E supplementation on reduction of influenza severity in old mice, we studied the cytokine production by splenocytes, and PGE2 production by macrophages (Mphi), in young and old C57BL mice fed semipurified diets containing 30 (control) or 500 parts per million (ppm) (supplemented) vitamin E for 8 weeks, and then infected with influenza A/PC/1/73 (H3N2). Old mice fed the control diet had significantly higher viral titres than young mice; old mice fed the vitamin E-supplemented diet had significantly lower pulmonary viral titres than those fed the control diet (P = 0.02 and 0.001 for overall age and diet effect, respectively). Following influenza infection, interleukin (IL)-2 and IFN-gamma production was significantly lower in old mice than in young mice. Vitamin E supplementation increased production of IL-2 and IFN-gamma in old mice; higher IFN-gamma production was associated with lower pulmonary viral titre. Old mice fed the control diet showed significantly higher lipopolysaccharide (LPS)-stimulated Mphi PGE2 production than old mice fed the vitamin E diet or young mice fed either diet. There was no significant age difference in IL-6, IL-1beta, or tumour necrosis factor-alpha (TNF-alpha) production by splenocytes. Young mice fed the vitamin E-supplemented diet had significantly lower IL-1beta (day 7) and TNF-alpha production (day 5) compared with those fed the control diet. Old mice fed the vitamin E-supplemented diet had significantly lower TNF-alpha production (day 2) than those fed the control diet. Our results indicate that the vitamin E-induced decrease in influenza viral titre is mediated through enhancement of Th1 cytokines, which may be the result of reduced PGE2 production caused by vitamin E.  相似文献   

9.
Beginning at hatching, male Cornell K strain single comb white leghorn chickens were fed a basal diet, with or without vitamin E (100 IU/kg) and/or selenium (Se, 0.2 ppm). After 3 weeks of treatment, animals fed either the Se-deficient or basal diet had significantly reduced plasma Se-dependent glutathione peroxidase activities when compared to those fed a vitamin E and Se-supplemented diet. Similarly, animals fed the vitamin E-deficient or basal diet had significantly reduced plasma alpha-tocopherol levels. The effect of these treatments on plasma concentrations of thyroid hormones (T(3)/T(4)), growth hormone (GH), and thymic hormone (thymulin) was determined using radioimmunoassay and ELISA. A deficiency in Se, but not in vitamin E, resulted in an increase in plasma T(4) concentrations while plasma T(3) concentrations were decreased. Plasma GH levels showed some fluctuation as a result of the dietary treatments but there was no significant correlation between plasma GH levels and any of the other variables. A significant decrease in plasma thymulin levels was observed in Se-deficient birds compared to those receiving adequate Se in the diet. A vitamin E deficiency had no measurable effect on plasma thymulin levels. From these studies, we conclude that plasma thymulin concentrations directly correlate with plasma T(3) concentrations which are negatively affected by a Se deficiency.  相似文献   

10.
Summary Thin sectioning and freeze-fracturing have revealed the distribution of gap junctions and chemical synapses in the synaptic interface of the large myelinated club endings on the lateral dendrite of the goldfish Mauthner cell. In 12 samples of club endings fractured completely or nearly completely, the apposed synaptic membrane area averaged 39.090 m2, of which 16.6% was occupied by gap junctions and about 4 to 5% by the active zones of chemical synapses. The numerical profile density (number per unit area of the synaptic membrane) of gap junctions varied greatly, from 1.78 to 6.30, and was mostly in inverse proportion to their size. The chemical synapses were located mainly in two places: in the circumferential rim of the synaptic membrane next to the widened extracellular space, and in the margins of intraterminal invaginations of the synaptic cleft. The axoplasm of the preterminal axon, just after losing its myelin sheath, was filled with microtubules, among which neurofilaments gathered into many small bundles. The correlation between the areas of gap junctions and the chemical synapses and the amplitude of the excitatory postsynaptic potentials (EPSP) is discussed.  相似文献   

11.
老年性记忆减退大鼠内侧隔核突触结构的改变   总被引:10,自引:0,他引:10  
取老年记忆减退组 (简称减退组 )、老年记忆正常组 (简称正常组 )和青年组大鼠内侧隔核进行透射电镜观察。证明 :减退组内侧隔核中突触数密度较青年组和正常组分别下降了 45 .2 7%和 44.16% ( P<0 .0 1) ;突触连接带平均面积 :减退组较青年组显著增加 ( P<0 .0 5 ) ;突触连接带面密度 :减退组较青年组和正常组分别下降了 3 5 .2 9和 3 3 .3 3 ( P<0 .0 1) ;突触的体密度 :减退组较青年组和正常组分别下降了 46.98和 49.68 ( P<0 .0 1)。统计结果表明 :受试大鼠的逃避潜伏期与突触数密度、突触连接带面密度、体密度呈明显负相关 ( r=-0 .8943 ,P<0 .0 1;r=-0 .80 0 7,P<0 .0 1;r=-0 .90 17,P<0 .0 1) ;与突触连接带平均面积呈显著正相关 ( r=0 .62 73 ,P<0 .0 5 )。还证明减退组大鼠含线粒体的突触百分比、突触前体内突触小泡数都有大幅度下降 ;正常组的含线粒体突触的百分比、突触小泡数较青年组也有减少。本研究结果提示 :减退组大鼠内侧隔核突触发生退行性变 ,此改变可能是老年性记忆减退的突触学基础  相似文献   

12.
This investigation studied the contribution of antioxidants in delaying healing in excision cutaneous wounds (8 mm) in diabetic, aged and immunocompromised animals. Skin levels of catalase, glutathione (GSH), ascorbic acid (AA) and vitamin E in streptozotocin-induced diabetic rat were lower as compared to nondiabetics. The 7-d wound tissue of diabetic rats showed an increased vitamin E level along with depleted GSH content. In aged rats (18 months old), higher levels of skin superoxide dismutase (SOD), glutathione peroxidase (Gpx) and thiobarbituric acid reactive substances (TBARS) and lower levels of catalase and GSH were found as compared to their values in young rats (3-4 months old). The levels of SOD, GPx, catalase, AA, GSH and vitamin E in 7-d wound tissue of aged rats were significantly lower in comparison to those in young rats. However, TBARS were elevated in these wound tissues. The non-wounded skin of immunocompromised (athymic) mice showed lower levels of SOD, catalase, and TBARS and higher GSH and GPx levels in comparison to those present in normal mouse skin. Surprisingly, the analysis of 7-d wound tissue showed higher levels of SOD, catalase, GPx, and GSH and lower TBARS level in athymic mice compared to the wound tissue of normal mice. Thus low levels of antioxidants accompanied by raised levels of markers of free radical damage play a significant role in delaying wound healing in aged rats. In diabetic rats reduced glutathione levels may have a contributory role in delaying the healing process. However, in immunocompromised mice the antioxidant status following injury showed an adapted response.  相似文献   

13.
In male rats, long-term potentiation was induced unilaterally in the dentate gyrus, either by high frequency (200Hz) or theta rhythm stimulation. Structural synaptic changes were examined 24h after induction using quantitative electron microscopy. A disector technique was employed in order to estimate the density of synapses (using 70-80-nm sections) and of granule cell nuclei (using 2-microm sections) in the middle, and inner molecular layer in both hemispheres. Synaptic height and total lateral areas of synaptic active zones per unit tissue volume were assessed via assumption-free stereological techniques coupled with image analysis. The results obtained indicated that both synaptic density and number (corrected per neuron) of axo-spinous, but not axo-dendritic, synapses were approximately 40% higher in the middle, but not inner molecular layer of the potentiated hemisphere compared to the contralateral (control hemisphere). No significant inter-hemispheric difference was found in the volume densities of lateral areas of active zones.These data suggest that 24h after long-term potentiation induction, active zones of existing axo-spinous synapses either split forming separate contacts, or decrease in size while new synapses are formed.  相似文献   

14.
Maze learning was studied in young and old C57BL/6 mice. One group of old animals was fed lecithin (supplemented with vitamin E). A second group of old mice and the young mice received standard laboratory mouse chow. The mice were tested on a three-choice-point maze. Young mice learned the maze significantly more easily than either group of old mice. Learning in the lecithin-fed old mice was significantly better than in the control group on a standard diet.  相似文献   

15.
The present study was designed to assess the impact of moderate caloric restriction (60% of ad libitum fed animals) on cerebral vascular density and local cerebral blood flow. Vascular density was assessed in male Brown-Norway rats from 7-35 months of age using a cranial window technique. Arteriolar density, arteriole-arteriole anastomoses, and venular density decreased with age and these effects were attenuated by moderate caloric restriction. Analysis of local cerebral blood using [14C]iodoantipyrine indicated that basal blood flow decreased with age in CA1, CA3 and dentate gyrus of hippocampus; similar trends were evident in cingulate, retrosplenal, and motor cortex. Basal blood flow was increased in all brain regions of moderate caloric restricted old animals (compared to old ad libitum fed animals) and no differences were observed between ad libitum fed young and caloric restricted older animals. In response to a CO2 challenge to maximally dilate vessels, blood flow increased in young and old ad libitum fed animals, but a similar increase was not observed in caloric restricted old animals. We conclude that a decrease in cerebral vasculature is an important contributing factor in the reduction in blood flow with age. Nevertheless, vessels from young and old animals have the capacity to dilate in response to a CO2 challenge and, after CO2, no differences are observed between the two age-groups. These results are consistent with the hypothesis that aged animals fail to adequately regulate local cerebral blood flow in response to physiological stimuli. Moderate caloric restriction increases microvascular density and cerebral blood flow in aged animals but tissues exhibit little or no increase in blood flow in response to CO2 challenge. The cause of this deficient response may indicate that vessels are maximally dilated in aged calorically restricted animals or that they fail to exhibit normal regulatory control.  相似文献   

16.
Summary Previous physiological and morphological studies suggested that sodium bromide promotes synaptogenesis of implanted cholinergic nerves in the superior cervical ganglion of adult rats. To check whether sodium bromide also modifies synaptic numbers in the intact ganglion, quantitative electron microscopy was used to determine the total number of synaptic junctions in the superior cervical ganglion of adult rats. Untreated controls were compared with animals which drank water containing 280 mg ml–1 sodium bromide for 7 days. The disector method, an unbiased estimator of volume density of certain particles, has been adapted to this particular case. To accomplish the task, an on-line counting procedure was developed, which permitted the efficient adaptation of the disector method for the superior cervical ganglion, in which the synapses are known to be distributed sparsely. Three pairs of (control and treated) ganglia have been completely processed by three independent examiners. The estimated number of synapses in the ganglia ranged from 4 to 8 million while the volumes of the ganglia varied from 0.65 to 0.90 mm3. Evaluation of the results showed that variations in the total number of synapses were in each case proportional to differences in ganglionic volumes. This suggests that: (1) sodium bromide does not lead to changes in density of intrinsic synapses; and (2) the morphogenetic action of sodium bromide on principal ganglion cells previously described is essentially postsynaptic and requires additional presynaptic elements to increase the number of synapses.  相似文献   

17.
The ultrastructure of the ‘giant synapse’ of the stellate ganglion of the squid was studied with freeze-fracture and thin-sectioning techniques. A sheath of glial cells separates the pre- and post-synaptic axons. At intervals, round-topped processes of the postsynaptic axon pierce the sheath to contact the presynaptic axon. This area of synaptic contact is marked by a widened intercellular cleft containing electron-dense material and by a cluster of synaptic vesicles within the presynaptic cytoplasm. The number of synaptic vesicles in such clusters was greatly reduced by electrical stimulation of the synapse during fixation. Freeze-fracture reveals a roughly circular patch (0.3 μm diameter) of 10 nm particles on the cytoplasmic leaflet of the presynaptic membrane. A similar patch of particles lies on the external leaflet of the apposed postsynaptic membrane.The squid giant synapse thus consists of multiple small pre- and postsynaptic active zones where neurotransmitter is released from the presynaptic terminal and sensed by postsynaptic receptors. Comparison of the structure of these postsynaptic active zones with those at synapses where the transmitter or transmitter action is known suggests that the excitatory transmitter at this synapse is an amino acid.Presumptive gap junctions, marked by particles in the cytoplasmic leaflet, are found between small-diameter axons in the stellate ganglion but not at the giant synapse. Glial-cell membranes contain aggregates of particles and pits suggestive of gap junctions. The aggregates of pits are embedded within linear arrays of particles which somewhat resemble tight junctions.  相似文献   

18.
Membrane structure at synaptic junctions in area CA1 of the rat hippocampus   总被引:4,自引:0,他引:4  
In tissue from area CA1 of the rat hippocampus prepared for electron microscopic study by thin-sectioning, asymmetric synaptic junctions were found on dendritic spines, spiny dendritic shafts, and non-spiny dendritic shafts. In freeze-fractured preparations, aggregates of large particles were found on the extracellular half of the postsynaptic membrane at each of these synaptic junctions. Particle aggregate areas were measured and particle packing densities were computed at dendritic spine synapses and dendritic shaft synapses in area CA1, and compared to similar measures of particle aggregates on dendritic spines of cerebellar Purkinje cells. All of these CA1 and cerebellar synapses are excitatory and are thought to use glutamate as a neurotransmitter. There was a tendency for the dispersion of particles within individual aggregates to be less uniform in larger aggregates in both area CA1 and cerebellar cortex. Distinct particle-free zones could be distinguished in the center of particle aggregates on large "mushroom-shaped" spines in area CA1. There was no statistically significant difference between the particle densities at CA1 dendritic spines (2848 +/- 863 particles/micron2) and CA1 dendritic shafts (2707 +/- 718 particles/micron2). However, the average density of particles at cerebellar dendritic spine synapses (3614 +/- 1081 particles/micron2) was significantly greater than at dendritic spine or shaft synapses found in area CA1. Symmetric synaptic junctions were observed on the CA1 pyramidal cell somas and dendritic shafts in thin-sectioned preparations. These synapses typically exert an inhibitory action mediated by gamma-aminobutyric acid. In freeze-fracture preparations, large varicosities were found apposed to the pyramidal somal and dendritic membranes, but there were no specializations of particle distribution on either the extracellular or the cytoplasmic half of the fractured postsynaptic membranes. This finding parallels observations from freeze-fracture preparations of other GABAergic synapses in the central nervous system.  相似文献   

19.
Summary The quantitative effects of dark-rearing and light exposure on the ultrastructural characteristics of synapses and synaptic boutons in layer 4 of the rat visual cortex (area 17) have been investigated using stereological techniques. Two experimental groups (each containing 5 animals) were investigated i) animals dark-reared upto weaning at 21 days post natum (21DPN) and then light exposed until 52DPN (Group 21/31), and ii) littermate animals totally dark-reared until 52DPN (Group 52dD). The results indicate a significantly higher mean density of synapses in the neuropil of layer 4 in group 21/31 (3.58×108 · mm-3) compared with group 52dD (2.68×108 · mm-3). Although the density per unit volume of synapses with identified asymmetrical synaptic membrane specialisations was not significantly different in group 21/31 than in group 52dD (but was significantly lower than animals reared normally), the density of synapses with identified symmetrical synaptic membrane specialisations was about 200% higher in group 21/31 versus group 52dD. However, significant differences were detected in the number of asymmetrical synapses established by single synaptic boutons in group 21/31 (1.21 ± 0.11) compared with group 52dD (1.10 ± 0.09). On the basis of the numbers of post-synaptic targets contacted by an individual synaptic bouton, a significantly higher density of synaptic boutons was found in group 21/31 (2.32×108 · mm-3) compared with group 52dD (1.82×108 · mm-3). Furthermore, planar quantitative data indicated significant inter-group differences in the ultrastructure of asymmetrical and symmetrical synaptic boutons. The results of this study provide evidence indicating marked structural alterations in the synaptic connectivity of layer 4 of the rat visual cortex following the light exposure of rats dark-reared upto weaning. Indeed visual deprivation severely affected the inhibitory circuitry in the major thalamorecipient territory of the visual cortex.  相似文献   

20.
Caloric restriction (CR) is a reduction of total caloric intake without a decrease in micronutrients or a disproportionate reduction of any one dietary component. While CR attenuates age-related cognitive deficits in tasks of hippocampal-dependent memory, the cellular mechanisms by which CR improves this cognitive decline are poorly understood. Previously, we have reported age-related decreases in key synaptic proteins in the CA3 region of the hippocampus that are stabilized by lifelong CR. In the present study, we examined possible age-related changes in the functional microcircuitry of the synapses in the stratum lacunosum-moleculare (SL-M) of the CA3 region of the hippocampus, and whether lifelong CR might prevent these age-related alterations. We used serial electron microscopy to reconstruct and classify SL-M synapses and their postsynaptic spines. We analyzed synapse number and size as well as spine surface area and volume in young (10 months) and old (29 months) ad libitum fed rats and in old rats that were calorically restricted from 4 months of age. We limited our analysis to SL-M because previous work demonstrated age-related decreases in synaptophysin confined to this specific layer and region of the hippocampus. The results revealed an age-related decrease in macular axo-spinous synapses that was not reversed by CR that occurred in the absence of changes in the size of synapses or spines. Thus, the benefits of CR for CA3 function and synaptic plasticity may involve other biological effects including the stabilization of synaptic proteins levels in the face of age-related synapse loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号