首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND AND PURPOSE: This study investigated the alpha(1)beta(2)delta isoform of the GABA(A) receptor that is presumably expressed in the forebrain. The functional and pharmacological properties of this receptor combination are largely unknown. EXPERIMENTAL APPROACH: We expressed alpha(1)beta(2)delta GABA(A) receptors in Xenopus laevis oocytes. GABA-activated currents, in the presence and absence of modulators, were recorded using the two-electrode voltage clamp technique. KEY RESULTS: The alpha(1)beta(2)delta isoform of the GABA(A) receptor exhibited an extremely small GABA-mediated current. Tracazolate increased the current amplitude evoked by a half-maximal concentration (EC(50)) of GABA by 59-fold. The maximum current was increased 23-fold in the presence of a saturating GABA concentration. Concomitant with the increase in the maximum, was a 4-fold decrease in the EC(50). Finally, a mutation in the second transmembrane domain of the delta subunit that increases receptor efficacy (L286S), eliminated the increase in the maximum GABA-activated current. The endogenous neurosteroid, tetrahydrodeoxycorticosterone (THDOC), also decreased the EC(50) and increased the maximum current amplitude, although to a lesser degree than that of tracazolate. CONCLUSIONS AND IMPLICATIONS: Taken all together, these findings indicate that the small GABA-mediated currents in the absence of the modulator are due to a low efficacy for activation. In the absence of modulators, alpha(1)beta(2)delta GABA receptors would be effectively silent and therefore contribute little to inhibition in the CNS. In the presence of tracazolate or endogenous neurosteroids however, this particular receptor isoform could exert a profound inhibitory influence on neuronal activity.  相似文献   

2.
α(2)-Adrenoceptors are important mediators of physiological responses to the endogenous catecholamines noradrenaline and adrenaline. In addition, α(2)-adrenoceptors are pharmacological targets for the treatment of hypertension, sympathetic overactivity and glaucoma. α(2)-Adrenoceptors are also targeted to induce sedation and analgesia in anaesthesia and intensive care. α(2)-Adrenoceptors were first described as presynaptic receptors inhibiting the release of various transmitters from neurons in the central and peripheral nervous systems. In addition to these presynaptic neuronal receptors, α(2)-adrenoceptors were also identified in many non-neuronal cell types of the body. Gene-targeting in mice provided a comprehensive assignment of the physiological and pharmacological functions of these receptors to specific α(2A)-, α(2B) - and α(2C)-adrenoceptor subtypes. However, the specific cell types and signalling pathways involved in these subtype-specific α(2)-adrenoceptor functions were largely unexplored until recently. This review summarizes recent findings from transgenic mouse models, which were generated to define the role of α(2)-adrenoceptors in adrenergic neurons, that is, α(2)-autoreceptors, versus α(2)-adrenoceptors in non-adrenergic neurons, termed α(2)-heteroreceptors. α(2)-Autoreceptors are primarily required to limit release of noradrenaline from sympathetic nerves and adrenaline from adrenal chromaffin cells at rest. These receptors are desensitized upon chronic activation as it may for instance occur due to enhanced sympathetic activity during chronic heart failure. In contrast, pharmacological effects of acutely administered α(2)-adrenoceptor agonist drugs essentially require α(2)-heteroreceptors in non-adrenergic neurons, including analgesia, sedation, hypothermia and anaesthetic-sparing as well as bradycardia and hypotension. Thus a clear picture has emerged of the significance of auto- versus heteroreceptors in mediating the physiological functions of α(2)-adrenoceptors and the pharmacological functions of α(2)-adrenoceptor agonist drugs respectively.  相似文献   

3.
Eosinophils play important roles in limiting parasitic infection and in allergic inflammation in the asthmatic airways. Activation of eosinophils by diverse stimuli, including prostaglandin D(2) (PD(2) ), leads to leukotriene C(4) (LTC(4) ) synthesis that contributes to the expulsion of parasites and to epithelial injury in allergic inflammation. Mesquita-Santos et al. in this issue of the journal describe a collaboration between the two PGD(2) receptors, DP(1) and DP(2) [also known as CRTH2 (chemoattractant receptor-homologous molecule expressed on Th2 lymphocytes)] that is required to trigger LTC(4) synthesis. DP(1) receptors coupled to G(αs) increase adenylate cyclase activity and cAMP/ protein kinase A-dependent formation of lipid bodies, and DP(2) receptors coupled to G(αi) increase calcium. Each of these signals is required for LTC(4) production. These observations lead to consideration of the effects of other stimuli for eosinophil cAMP, such as the β(2) -adrenoceptor agonists, which inhibit rather than enhance LTC(4) production.  相似文献   

4.
BACKGROUND AND PURPOSE: High-affinity, subtype-selective antagonists of the neurosteroid binding sites of GABA(A) receptors are not available. We have characterized an allopregnanolone derivative as an antagonist of cerebellar GABA(A) receptors with nanomolar affinity. EXPERIMENTAL APPROACH: Receptor binding and electrophysiological methods were used for the allosteric modulation of cerebellar GABA(A) receptors by an allopregnanolone derivative, (20R)-17beta-(1-hydroxy-2,3-butadienyl)-5alpha-androstane-3alpha-ol (HBAO). GABA(A) receptors of rat cerebellar membranes were labelled with the chloride channel blocker [(3)H]ethynylbicycloorthobenzoate (EBOB). The ionophore function of GABA(A) receptors was studied by whole-cell patch clamp electrophysiology in cultured rat cerebellar granule and cortical cells. KEY RESULTS: Partial displacement of cerebellar [(3)H]EBOB binding by nanomolar HBAO was attenuated by 0.1 mM furosemide, an antagonist of alpha(6) and beta(2-3) subunit-containing GABA(A) receptors. Displacement curves of HBAO were reshaped by 30 nM GABA and shifted to the right. However, the micromolar potency of full displacement by allopregnanolone was not affected by 0.1 mM furosemide or 30 nM GABA. The nanomolar, but not the micromolar phase of displacement of [(3)H]EBOB binding by GABA was attenuated by 100 nM HBAO. Submicromolar HBAO did not affect [(3)H]EBOB binding to cortical and hippocampal GABA(A) receptors. HBAO up to 1 microM did not affect chloride currents elicited by 0.3-10 microM GABA, while it abolished potentiation by 1 microM allopregnanolone with nanomolar potency in cerebellar but not in cortical cells. Furosemide attenuated cerebellar inhibition by 100 nM HBAO. CONCLUSIONS AND IMPLICATIONS: HBAO is a selective antagonist of allopregnanolone, a major endogenous positive modulator via neurosteroid sites of cerebellar (probably alpha(6)beta(2-3)delta) GABA(A) receptors.  相似文献   

5.
Cannabis sativa is the source of a unique set of compounds known collectively as plant cannabinoids or phytocannabinoids. This review focuses on the manner with which three of these compounds, (-)-trans-delta9-tetrahydrocannabinol (delta9-THC), (-)-cannabidiol (CBD) and (-)-trans-delta9-tetrahydrocannabivarin (delta9-THCV), interact with cannabinoid CB1 and CB2 receptors. Delta9-THC, the main psychotropic constituent of cannabis, is a CB1 and CB2 receptor partial agonist and in line with classical pharmacology, the responses it elicits appear to be strongly influenced both by the expression level and signalling efficiency of cannabinoid receptors and by ongoing endogenous cannabinoid release. CBD displays unexpectedly high potency as an antagonist of CB1/CB2 receptor agonists in CB1- and CB2-expressing cells or tissues, the manner with which it interacts with CB2 receptors providing a possible explanation for its ability to inhibit evoked immune cell migration. Delta9-THCV behaves as a potent CB2 receptor partial agonist in vitro. In contrast, it antagonizes cannabinoid receptor agonists in CB1-expressing tissues. This it does with relatively high potency and in a manner that is both tissue and ligand dependent. Delta9-THCV also interacts with CB1 receptors when administered in vivo, behaving either as a CB1 antagonist or, at higher doses, as a CB1 receptor agonist. Brief mention is also made in this review, first of the production by delta9-THC of pharmacodynamic tolerance, second of current knowledge about the extent to which delta9-THC, CBD and delta9-THCV interact with pharmacological targets other than CB1 or CB2 receptors, and third of actual and potential therapeutic applications for each of these cannabinoids.  相似文献   

6.
Conotoxins (conopeptides) are small disulfide bonded peptides from the venom of marine cone snails. These peptides target a wide variety of membrane receptors, ion channels and transporters, and have enormous potential for a range of pharmaceutical applications. Structurally related ω-conotoxins bind directly to and selectively inhibit neuronal (N)-type voltage-gated calcium channels (VGCCs) of nociceptive primary afferent neurones. Among these, ω-conotoxin MVIIA (Prialt) is approved by the Food and Drug Administration (FDA) as an alternative intrathecal analgesic for the management of chronic intractable pain, particularly in patients refractory to opioids. A series of newly discovered ω-conotoxins from Conus catus, including CVID-F, are potent and selective antagonists of N-type VGCCs. In spinal cord slices, these peptides reversibly inhibit excitatory synaptic transmission between primary afferents and dorsal horn superficial lamina neurones, and in the rat partial sciatic nerve ligation model of neuropathic pain, significantly reduce allodynic behaviour. Another family of conotoxins, the α-conotoxins, are competitive antagonists of mammalian nicotinic acetylcholine receptors (nAChRs). α-Conotoxins Vc1.1 and RgIA possess two disulfide bonds and are currently in development as a treatment for neuropathic pain. It was initially proposed that the primary target of these peptides is the α9α10 neuronal nAChR. Surprisingly, however, α-conotoxins Vc1.1, RgIA and PeIA more potently inhibit N-type VGCC currents via a GABA(B) GPCR mechanism in rat sensory neurones. This inhibition is largely voltage-independent and involves complex intracellular signalling. Understanding the molecular mechanisms of conotoxin action will lead to new ways to regulate VGCC block and modulation in normal and diseased states of the nervous system.  相似文献   

7.

BACKGROUND AND PURPOSE

Extracellular nucleotides are released at high concentrations from damaged cells and function through P2 receptor activation. Intestinal epithelial restitution, which is defined as cell migration independent of cell proliferation, is an important initial step in the process of wound healing. In this study, we investigated the role of extracellular nucleotides in intestinal epithelial migratory responses.

EXPERIMENTAL APPROACH

Wound-healing and trans-well migration assays were performed with a rat intestinal epithelial cell line (IEC-6). The concentrations of extracellular nucleotides released from injured IEC-6 cells were measured by HPLC. TGF-β expression was assessed by RT-PCR and elisa.

KEY RESULTS

Scratching the monolayer of IEC-6 cells induced cell migration. Pretreatment with apyrase or MRS2578, a selective P2Y6 antagonist, inhibited the wound-induced cell migration. Among the cellular nucleotides, only ATP and uridine 5''-diphosphate (UDP) were detected in the culture medium after cell wounding. Exogenously applied UDP dose-dependently enhanced the migration more effectively than ATP but did not induce proliferation. In addition, cell wounding and UDP increased the expression of TGF-β, and both the wound-induced and UDP-enhanced migration were inhibited by MRS2578 or ALK5Inhibitor (ALK5i), a TGF-β receptor blocker. Furthermore, cell wounding and UDP stimulation up-regulated the expression of P2Y6 receptor mRNA, and this effect was suppressed by MRS2578 or ALK5i.

CONCLUSION AND IMPLICATIONS

Wound-induced UDP evokes intestinal epithelial restitution by activation of P2Y6 receptors, which mediates de novo synthesis of TGF-β. In addition, the expression of P2Y6 receptors is increased by cell wounding and UDP, which constitutes a positive-feedback loop for mucosal repair.  相似文献   

8.
BACKGROUND AND PURPOSE: The P2X(7) receptor exhibits a high degree of plasticity with agonist potency increasing after prolonged receptor activation. In this study we investigated the ability of lipids to modulate agonist potency at P2X(7) receptors. EXPERIMENTAL APPROACH: A variety of lipids, including lysophosphatidylcholine, sphingosylphosphorylcholine and hexadecylphosphorylcholine were studied for their effect on P2X(7) receptor-stimulated ethidium bromide accumulation in cells expressing human recombinant P2X(7) receptors and on P2X(7) receptor-stimulated interleukin-1 beta (IL1 beta) release from THP-1 cells. The effects of the lipids were also assessed in radioligand binding studies on human P2X(7) receptors. KEY RESULTS: At concentrations (3-30 microM) below the threshold to cause cell lysis, the lipids increased agonist potency and/or maximal effects at P2X(7) receptors in both ethidium accumulation and IL1 beta release studies. There was little structure activity relationship (SAR) for this effect and sub-lytic concentrations of Triton X-100 partially mimicked the effects of the lipids. The lipids caused cell lysis and increased intracellular calcium at higher concentrations (30-100 microM) which complicated interpretation of their effects in functional studies. However, the lipids (3-100 microM) also increased agonist potency 30-100 fold in radioligand binding studies. CONCLUSIONS AND IMPLICATIONS: This study demonstrates that a diverse range of lipids increase agonist potency at the P2X(7) receptor in functional and binding studies. The broad SAR, including the effect of Triton X-100, suggests this may reflect changes in membrane properties rather than a direct effect on the P2X(7) receptor. Since many of the lipids studied accumulate in disease states they may enhance P2X(7) receptor function under pathophysiological conditions.  相似文献   

9.
BACKGROUND AND PURPOSE: Central application of nicotine causes the release of vasopressin and affects blood pressure. Involvement of the 5 neuronal nicotinic receptor groups, alpha2(*)-alpha7(*) in these effects is unknown. The availability of selective agonists for alpha7 (PSAB-OFP) and alpha4beta2 (TC-2559) nACh receptors allowed their role to be investigated. EXPERIMENTAL APPROACH: Recordings were made of arterial blood pressure, heart rate and renal sympathetic nerve activity in anaesthetized male rats with neuromuscular blockade and artificial respiration. Effects of the agonists, PSAB-OFP (1-10 micromol kg(-1)) and TC-2559 (1-10 micromol kg(-1)) on these variables given intracerebroventricularly (i.c.v.) and intracisternally (i.c.) in the presence or absence of the antagonists, DhbetaE (10 micromol kg(-1)) and MLA (0.5 micromol kg(-1)), for the appropriate nicotinic receptor subtypes, respectively, and a V(1) receptor antagonist, given i.v. or centrally, were investigated. KEY RESULTS: Both agonists given i.c.v. caused a delayed rise in blood pressure and renal nerve activity which could be blocked only with the appropriate antagonist. The agonists had an earlier onset of action when given i.c., favouring the brainstem as the major site of action. The effects of these agonists were also attenuated by the V(1) receptor antagonist given i.v. and blocked when this antagonist was given centrally. Antagonists had no effect on baseline variables.CONCLUSIONS AND IMPLICATIONS: Activation of alpha4beta2 and alpha7 receptors in the brainstem is mainly responsible for the cardiovascular effects of activating these receptors, which have a similar profile of action. These actions, although independent, are mediated by the central release of vasopressin.  相似文献   

10.

Background and purpose:

The CB1 cannabinoid receptor and the β2-adrenoceptor are G protein-coupled receptors (GPCRs) co-expressed in many tissues. The present study examined physical and functional interactions between these receptors in a heterologous expression system and in primary human ocular cells.

Experimental approach:

Physical interactions between CB1 receptors and β2-adrenoceptors were assessed using bioluminescence resonance energy transfer (BRET). Functional interactions between these receptors were evaluated by examining receptor trafficking, as well as extracellular signal-regulated kinase (ERK) and cyclic AMP response element binding protein (CREB) signalling.

Key results:

Physical interactions between CB1 receptors and β2-adrenoceptors were demonstrated using BRET. In human embryonic kidney (HEK) 293H cells, co-expression of β2-adrenoceptors tempered the constitutive activity and increased cell surface expression of CB1 receptors. Co-expression altered the signalling properties of CB1receptors, resulting in increased Gαi-dependent ERK phosphorylation, but decreased non-Gαi-mediated CREB phosphorylation. The CB1 receptor inverse agonist AM251 (N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide) attenuated β2-adrenoceptor-pERK signalling in cells expressing both receptors, while the CB1 receptor neutral antagonist O-2050 ((6aR,10aR)-3-(1-methanesulfonylamino-4-hexyn-6-yl)-6a,7,10,10a-tetrahydro-6,6,9-trimethyl-6H-dibenzo[b,d]pyran) did not. The actions of AM251 and O-2050 were further examined in primary human trabecular meshwork (HTM) cells, which are ocular cells endogenously co-expressing CB1 receptors and β2-adrenoceptors. In HTM cells, as in HEK 293H cells, AM251 but not O-2050, altered the β2-adrenoceptor–pERK response.

Conclusion and implications:

A complex interaction was demonstrated between CB1 receptors and β2-adrenoceptors in HEK 293H cells. As similar functional interactions were also observed in HTM cells, such interactions may affect the pharmacology of these receptors in tissues where they are endogenously co-expressed.This article is part of a themed issue on Cannabinoids. To view the editorial for this themed issue visit http://dx.doi.org/10.1111/j.1476-5381.2010.00831.x  相似文献   

11.

BACKGROUND AND PURPOSE

Flavonoids are known to have anxiolytic and sedative effects mediated via actions on ionotropic GABA receptors. We sought to investigate this further.

EXPERIMENTAL APPROACH

We evaluated the effects of 2′-methoxy-6-methylflavone (2′MeO6MF) on native GABAA receptors in new-born rat hippocampal neurons and determined specificity from 18 human recombinant GABAA receptor subtypes expressed in Xenopus oocytes. We used ligand binding, two-electrode voltage clamp and patch clamp studies together with behavioural studies.

KEY RESULTS

2′MeO6MF potentiated GABA at α2β1γ2L and all α1-containing GABAA receptor subtypes. At α2β2/3γ2L GABAA receptors, however, 2′MeO6MF directly activated the receptors without potentiating GABA. This activation was attenuated by bicuculline and gabazine but not flumazenil indicating a novel site. Mutation studies showed position 265 in the β1/2 subunit was key to whether 2′MeO6MF was an activator or a potentiator. In hippocampal neurons, 2′MeO6MF directly activated single-channel currents that showed the hallmarks of GABAA Cl- currents. In the continued presence of 2′MeO6MF the single-channel conductance increased and these high conductance channels were disrupted by the γ2(381–403) MA peptide, indicating that such currents are mediated by α2/γ2-containing GABAA receptors. In mice, 2′MeO6MF (1–100 mg·kg−1; i.p.) displayed anxiolytic-like effects in two unconditioned models of anxiety: the elevated plus maze and light/dark tests. 2′MeO6MF induced sedative effects at higher doses in the holeboard, actimeter and barbiturate-induced sleep time tests. No myorelaxant effects were observed in the horizontal wire test.

CONCLUSIONS AND IMPLICATIONS

2′MeO6MF will serve as a tool to study the complex nature of the activation and modulation of GABAA receptor subtypes.  相似文献   

12.

Aim:

To investigate the molecular mechanism and signaling pathway by which fenoterol, a β2-adrenergic receptor (β2-AR) agonist, produces anti-inflammatory effects.

Methods:

THP-1, a monocytic cell line, was used to explore the mechanism of β2-AR stimulation in LPS-induced secretion of inflammatory cytokines and changes of toll-like receptors (TLRs). We labeled TLR4 and CD14 using monoclonal anti-TLR4 PE-conjugated and anti-CD14 FITC-conjugated antibodies in THP-1 cells stimulated by β2-AR in the presence or absence of lipopolysaccharide (LPS) and small, interfering RNA (siRNA)-mediated knockdown of β-arrestin-2, and then analyzed their changes in distribution by flow cytometry, Western blotting and confocal analysis.

Results:

LPS-induced membrane-bound CD14, TLR4/CD14 complex levels and elevation of inflammatory cytokines were all significantly reduced by pre-incubation of fenoterol (P<0.05). However, the total level of CD14 and TLR4 was not significantly changed. Interestingly, confocal microscopy revealed redistribution of CD14 and TLR4/CD14 complex under β2-AR stimulation. Furthermore, siRNA-mediated knockdown of β-arrestin-2 eliminated the anti-inflammatory effects and redistribution of CD14 and TLR4/CD14 complex stimulated by β2-AR.

Conclusion:

β2-AR agonist exerts its anti-inflammatory effects by down-regulating TLR signaling in THP-1 cells, potentially resulting from β-arrestin-2 mediated redistribution of CD14 and TLR14/CD14 complex.  相似文献   

13.
14.
BACKGROUND AND PURPOSE: We have investigated the ability of alpha(1)-adrenoceptor antagonists to affect the hyperthermia produced by methylenedioxy methamphetamine (MDMA) in conscious mice. EXPERIMENTAL APPROACH: Mice were implanted with temperature probes under ether anaesthesia and allowed 2 weeks recovery. MDMA (20 mg kg(-1)) was administered subcutaneously 30 min after vehicle or test antagonist or combination of antagonists and effects on body temperature monitored. KEY RESULTS: Following vehicle, MDMA produced a hyperthermia, reaching a maximum increase of 1.8 degrees C at 140 min. Prazosin (0.1 mg kg(-1)) revealed an early significant hypothermia to MDMA of -1.94 degrees C. The alpha(1A)-adrenoceptor antagonist RS 100329 (0.1 mg kg(-1)), or the alpha(1D)-adrenoceptor antagonist BMY 7378 (0.5 mg kg(-1)) given alone, did not reveal a hypothermia to MDMA, but the combination of the two antagonists revealed a significant hypothermia to MDMA. The putative alpha(1B)-adrenoceptor antagonist cyclazosin (1 mg kg(-1)) also revealed a significant hypothermia to MDMA, but actions of cyclazosin at the other alpha(1)-adrenoceptor subtypes cannot be excluded. CONCLUSIONS AND IMPLICATIONS: More than one subtype of alpha(1)-adrenoceptor is involved in a component of the hyperthermic response to MDMA in mouse, probably both alpha(1A)- and alpha(1D)-adrenoceptors, and removal of this alpha(1)-adrenoceptor-mediated component reveals an initial hypothermia.  相似文献   

15.
Despite the passionate debate over the use of β(2) -adrenoceptor agonists in the treatment of airway disorders, these agents are still central in the symptomatic management of asthma and COPD. A variety of β(2) -adrenoceptor agonists with long half-lives, also called ultra long-acting β(2) -adrenoceptor agonists (ultra-LABAs; indacaterol, olodaterol, vilanterol, carmoterol, LAS100977 and PF-610355) are currently under development with the hopes of achieving once-daily dosing. It is likely that the once-daily dosing of a bronchodilator would be a significant convenience and probably a compliance-enhancing advantage, leading to improved overall clinical outcomes. As combination therapy with an inhaled corticosteroid (ICS) and a LABA is important for treating patients suffering from asthma, and a combination with an inhaled long-acting antimuscarinic agent (LAMA) is important for treating COPD patients whose conditions are not sufficiently controlled by monotherapy with a β(2) -adrenoceptor agonist, some novel once-daily combinations of LABAs and ICSs or LAMAs are under development.  相似文献   

16.
BACKGROUND AND PURPOSE: Neuroactive steroids are potent modulators of GABA(A) receptors and are thus of interest for their sedative, anxiolytic, anticonvulsant and anaesthetic properties. Cyclodextrins may be useful tools to manipulate neuroactive effects of steroids on GABA(A) receptors because cyclodextrins form inclusion complexes with at least some steroids that are active at the GABA(A) receptor, such as (3alpha,5alpha)-3-hydroxypregnan-20-one (3alpha5alphaP, allopregnanolone). EXPERIMENTAL APPROACH: To assess the versatility of cyclodextrins as steroid modulators, we investigated interactions between gamma-cyclodextrin and neuroactive steroids of different structural classes. KEY RESULTS: Both a bioassay based on electrophysiological assessment of GABA(A) receptor function and optical measurements of cellular accumulation of a fluorescent steroid analogue suggest that gamma-cyclodextrin sequesters steroids rather than directly influencing GABA(A) receptor function. Neither a 5beta-reduced A/B ring fusion nor a sulphate group at carbon 3 affected the presumed inclusion complex formation between steroid and gamma-cyclodextrin. Apparent dissociation constants for interactions between natural steroids and gamma-cyclodexrin ranged from 10-60 microM. Although gamma-cyclodextrin accommodates a range of natural and synthetic steroids, C(11) substitutions reduced inclusion complex formation. Using gamma-cyclodextrin to remove steroid not directly bound to GABA(A) receptors, we found that cellular retention of receptor-unbound steroid rate limits potentiation by 3alpha- hydroxysteroids but not inhibition by sulphated steroids. CONCLUSIONS AND IMPLICATIONS: We conclude that gamma-cyclodextrins can be useful, albeit non-specific, tools for terminating the actions of multiple classes of naturally occurring neuroactive steroids.  相似文献   

17.

BACKGROUND AND PURPOSE

Enhancement of GABAergic function is the primary mechanism of important therapeutic agents such as benzodiazepines, barbiturates, neurosteroids, general anaesthetics and some anticonvulsants. Despite their chemical diversity, many studies have postulated that these agents may bind at a common or overlapping binding site, or share an activation domain. Similarly, we found that flavan-3-ol esters act as positive modulators of GABAA receptors, and noted that this action resembled the in vitro profile of general anaesthetics. In this study we further investigated the interactions between these agents.

EXPERIMENTAL APPROACH

Using two-electrode voltage clamp electrophysiological recordings on receptors of known subunit composition expressed in Xenopus oocytes, we evaluated positive modulation by etomidate, loreclezole, diazepam, thiopentone, 5α-pregnan-3α-ol-20-one (THP) and the flavan-3-ol ester 2S,3R-trans 3-acetoxy-4′-methoxyflavan (Fa131) on wild-type and mutated GABAA receptors.

KEY RESULTS

The newly identified flavan, 2S,3S-cis 3-acetoxy-3′,4′-dimethoxyflavan (Fa173), antagonized the potentiating actions of Fa131, etomidate and loreclezole at α1β2 and α1β2γ2L GABAA receptors. Furthermore, Fa173 blocked the potentiation of GABA responses by high, but not low, concentrations of diazepam, but did not block the potentiation induced by propofol, the neurosteroid THP or the barbiturate thiopental. Mutational studies on ‘anaesthetic-influencing’ residues showed that, compared with wild-type GABAA receptors, α1M236Wβ2γ2L and α1β2N265Sγ2L receptors are resistant to potentiation by etomidate, loreclezole and Fa131.

CONCLUSIONS AND IMPLICATIONS

Fa173 is a selective antagonist that can be used for allosteric modulation of GABAA receptors. Flavan-3-ol derivatives are potential ligands for etomidate/loreclezole-related binding sites at GABAA receptors and the low-affinity effects of diazepam are mediated via the same site.  相似文献   

18.

Background and purpose:

Although trace amines (TAs) are historically considered ‘false neurotransmitters’ on the basis of their ability to induce catecholamine release, there is evidence that they directly affect neuronal activity via TA receptors, ligand-gated receptor channels and/or σ receptors. Here, we have investigated the effects of two TAs, tyramine (TYR) and β-phenylethylamine (β-PEA), on electrophysiological responses of substantia nigra pars compacta (SNpc) dopaminergic cells to the D2 receptor agonist, quinpirole.

Experimental approach:

Electrophysiological recordings of D2 receptor-activated G-protein-gated inward rectifier K+ channel (GIRK) currents were performed on dopaminergic cells from midbrain slices of mice and on Xenopus oocytes expressing D2 receptors and GIRK channels.

Key results:

TYR and β-PEA reversibly reduced D2 receptor-activated GIRK currents in a concentration-dependent manner on SNpc neurones. The inhibitory effect of TAs was still present in transgenic mice with genetically deleted TA1 receptors and they could not be reproduced by the selective TA1 agonist, o-phenyl-3-iodotyramine (O-PIT). Pretreatment with antagonists of σ1 and σ2 receptors did not block TA-induced effects. In GTPγS-loaded neurones, the irreversibly-activated GIRK-current was still reversibly reduced by β-PEA. Moreover, β-PEA did not affect basal or dopamine-evoked GIRK-currents in Xenopus oocytes.

Conclusions and implications:

TAs reduced dopamine-induced responses on SNpc neurones by acting at sites different from TA1, σ-receptors, D2 receptors or GIRK channels. Although their precise mechanism of action remains to be identified, TAs, by antagonizing the inhibitory effects of dopamine, may render dopaminergic neurones less sensitive to autoreceptor feedback inhibition and hence enhance their sensitivity to stimulation.  相似文献   

19.

BACKGROUND AND PURPOSE

Myocardial automatism and arrhythmias may ensue during strong sympathetic stimulation. We sought to investigate the relevant types of adrenoceptor, as well as the role of phosphodiesterase (PDE) activity, in the production of catecholaminergic automatism in atrial and ventricular rat myocardium.

EXPERIMENTAL APPROACH

The effects of adrenoceptor agonists on the rate of spontaneous contractions (automatic response) and the amplitude of electrically evoked contractions (inotropic response) were determined in left atria and ventricular myocytes isolated from Wistar rats.

KEY RESULTS

Catecholaminergic automatism was Ca2+-dependent, as it required a functional sarcoplasmic reticulum to be exhibited. Although both α- and β-adrenoceptor activation caused inotropic stimulation, only β1-adrenoceptors seemed to mediate the induction of spontaneous activity. Catecholaminergic automatism was enhanced and suppressed by β2-adrenoceptor blockade and stimulation respectively. Inhibition of either PDE3 or PDE4 (by milrinone and rolipram, respectively) potentiated the automatic response of myocytes to catecholamines. However, only rolipram abolished the attenuation of automatism produced by β2-adrenoceptor stimulation.

CONCLUSIONS AND IMPLICATIONS

α- and β2-adrenoceptors do not seem to be involved in the mediation of catecholaminergic stimulation of spontaneous activity in atrial and ventricular myocardium. However, a functional antagonism of β1- and β2-adrenoceptor activation was identified, the former mediating catecholaminergic myocardial automatism and the latter attenuating this effect. Results suggest that hydrolysis of cAMP by PDE4 is involved in the protective effect mediated by β2-adrenoceptor stimulation.  相似文献   

20.
BACKGROUND AND PURPOSE 3-Hydroxy-octanoate, recently identified as a ligand for, the orphan GPCR, HCA(3), is of particular interest given its ability to treat lipid disorders and atherosclerosis. Here we demonstrate the pathway of HCA(3)-mediated activation of ERK1/2. EXPERIMENTAL APPROACH Using CHO-K1 cells stably expressing HCA(3) receptors and A431 cells, a human epidermoid cell line with high levels of endogenous expression of functional HCA(3) receptors, HCA(3)-mediated activation of ERK1/2 was measured by Western blot. KEY RESULTS HCA(3)-mediated activation of ERK1/2 was rapid, peaking at 5 min, and was Pertussis toxin sensitive. Our data, obtained by time course analyses in combination with different kinase inhibitors, demonstrated that on agonist stimulation, HCA(3) receptors evoked ERK1/2 activation via two distinct pathways, the PLC/PKC pathway at early time points (≤ 2 min) and the MMP/ epidermal growth factor receptor (EGFR) transactivation pathway with a maximum response at 5 min. Furthermore, our present results also indicated that the βγ-subunits of the G(i) protein play a critical role in HCA(3)-activated ERK1/2 phosphorylation, whereas β-arrestins and Src were not required for ERK1/2 activation. CONCLUSIONS AND IMPLICATIONS We have described the molecular mechanisms underlying the coupling of human HCA(3) receptors to the ERK1/2 MAP kinase pathway in CHO-K1 and A431 cells, which implicate the G(i) protein-initiated, PLC/PKC -and platelet-derived growth factor receptor/EGFR transactivation-dependent pathways. These observations may provide new insights into the pharmacological effects and the physiological functions modulated by the HCA(3)-mediated activation of ERK1/2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号