首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prion (PrP) and amyloid-beta (Abeta) peptides are involved in the neuronal loss that occurs in Prion disorders (PrD) and Alzheimer's disease (AD), respectively, partially due to Ca(2+) dysregulation. Besides, the endoplasmic reticulum (ER) stress has an active role in the neurotoxic mechanisms that lead to these pathologies. Here, we analyzed whether the ER-mediated apoptotic pathway is involved in the toxic effect of synthetic PrP and Abeta peptides. In PrP106-126- and Abeta1-40-treated cortical neurons, the release of Ca(2+) through ER ryanodine (RyR) and inositol 1,4,5-trisphosphate (IP(3)R) receptors induces ER stress and leads to increased cytosolic Ca(2+) and reactive oxygen species (ROS) levels and subsequently to apoptotic death involving mitochondrial cytochrome c release and caspases activation. These results demonstrate that the early PrP- and Abeta-induced perturbation of ER Ca(2+) homeostasis is a death message that leads to neuronal loss, suggesting that the regulation of ER Ca(2+) levels may be a potential therapeutical target for PrD and AD.  相似文献   

2.
Inhibiting Ca(2+) uptake by the sarcoendoplasmic reticular Ca(2+)-ATPase pump (SERCA) causes release of Ca(2+) from the endoplasmic reticulum (ER), increased cytosolic Ca(2+) ([Ca(2+)](cyt)) and depletion of ER Ca(2+) stores. These studies were designed to test the effects of SERCA inhibition on neuronal viability, using as a model the human neuroblastoma cell line, SH-SY5Y. Continuous exposure to the SERCA inhibitor thapsigargin (TG) decreased SH-SY5Y viability to <30% after 48 h exposure, and produced DNA laddering. Two other SERCA inhibitors, BHQ and cyclopiazonic acid CPA, were similarly toxic, although at 1000-fold higher concentrations. BHQ and CPA toxicity was prevented by removing drug within several hours, whereas TG toxicity was essentially irreversible. All three SERCA inhibitors caused an increase in [Ca(2+)](cyt) that was partially blocked by the ryanodine receptor inhibitors, dantrolene and DHBP. Pretreatment with 40 microM dantrolene gave substantial protection against TG- or BHQ-induced cell death but it did not inhibit death from staurosporine, which does not cause release of ER Ca(2+). DHBP (20-100 microM) also gave partial protection against TG toxicity, as did ruthenium red (2 microM), but not ryanodine (10 microM). Inhibition of capacitative Ca(2+) entry with EGTA or LaCl(3) or low extracellular Ca(2+), or chelation of [Ca(2+)](cyt) with BAPTA-AM, failed to inhibit TG toxicity, although they prevented increases in [Ca(2+)](cyt) caused by TG. Taken together, these data suggest that toxicity caused by SERCA inhibition in SH-SY5Y cells is caused by ER Ca(2+) depletion, which triggers an apparent apoptotic pathway.  相似文献   

3.
Although the amyloid-β(1-42) (Aβ(1-42)) peptide involved in Alzheimer's disease is known to cause a dysregulation of intracellular Ca(2+) homeostasis, its molecular mechanisms still remain unclear. We report that the extracellular-dependent early increase (30 min) in intracellular calcium concentration ([Ca(2+)](i)), following Aβ(1-42) exposure, caused the activation of calpain that in turn elicited a cleavage of the Na(+)/Ca(2+) exchanger isoform NCX3. This cleavage generated a hyperfunctional form of the antiporter and increased NCX currents (I(NCX)) in the reverse mode of operation. Interestingly, this NCX3 calpain-dependent cleavage was essential for the Aβ(1-42)-dependent I(NCX) increase. Indeed, the calpain inhibitor calpeptin and the removal of the calpain-cleavage recognition sequence, via site-directed mutagenesis, abolished this effect. Moreover, the enhanced NCX3 activity was paralleled by an increased Ca(2+) content in the endoplasmic reticulum (ER) stores. Remarkably, the silencing in PC-12 cells or the knocking-out in mice of the ncx3 gene prevented the enhancement of both I(NCX) and Ca(2+) content in ER stores, suggesting that NCX3 was involved in the increase of ER Ca(2+) content stimulated by Aβ(1-42). By contrast, in the late phase (72 h), when the NCX3 proteolytic cleavage abruptly ceased, the occurrence of a parallel reduction in ER Ca(2+) content triggered ER stress, as revealed by caspase-12 activation. Concomitantly, the late increase in [Ca(2+)](i) coincided with neuronal death. Interestingly, NCX3 silencing caused an earlier activation of Aβ(1-42)-induced caspase-12. Indeed, in NCX3-silenced neurons, Aβ(1-42) exposure hastened caspase-dependent apoptosis, thus reinforcing neuronal cell death. These results suggest that Aβ(1-42), through Ca(2+)-dependent calpain activation, generates a hyperfunctional form of NCX3 that, by increasing Ca(2+) content into ER, delays caspase-12 activation and thus neuronal death.  相似文献   

4.
Disturbances in neuronal calcium homeostasis have been implicated in a variety of neuropathological conditions, including cerebral ischemia, hypoglycemia, and epilepsy, and possibly constitute part of the cell death process associated with chronic neurodegenerative disorders. We investigated if endoplasmic reticulum (ER) calcium stores participate in neuronal death triggered by moderate glycolysis inhibition induced by iodoacetate, an inhibitor of glyceraldehyde-3-phosphate dehydrogenase, in cultured hippocampal neurons. Results show that exposure to iodoacetate leads to a slow partial decrease in cell survival, which is significantly prevented in the absence of Ca(2+) or in the presence of the calcium chelator BAPTA-AM. Treatment with caffeine and a low (1 microM) concentration of ryanodine, which activates the ryanodine receptor (RyR), exacerbates neuronal death, whereas dantrolene and 25 microM ryanodine, which antagonizes RyR, prevents damage. Xestospongin C (XeC), an antagonist of the inositol-3-phosphate (IP(3)) receptor (IP(3)R) also prevents neuronal damage. Inhibitors of the ER calcium ATPase (sarcoendoplasmic reticulum Ca(2+) ATPase; SERCA) have no effect. The decrease in ATP levels induced by iodoacetate is potentiated by caffeine and prevented by dantrolene. Although only a slight increase in glutamate extracellular levels is observed 3.5 hr after iodoacetate exposure, the N-methyl-D-aspartate (NMDA) glutamate receptor antagonist, MK-801, efficiently prevents neuronal damage. Taken together, the data suggest that neuronal death induced during moderate glycolysis inhibition involves calcium influx through NMDA receptors and calcium release from intracellular ER stores. These results might be relevant to the understanding the mechanisms involved in neuronal damage related to aging and chronic neurodegenerative diseases, which have been associated with decreased glucose metabolism.  相似文献   

5.
He LM  Chen LY  Lou XL  Qu AL  Zhou Z  Xu T 《Brain research》2002,939(1-2):65-75
Accumulation of beta-amyloid (Abeta) protein in brain is an important characteristic for the etiology of Alzheimer's disease. Of all the possible processes generating the neurotoxic effects by Abeta, disruption of intracellular Ca(2+) homeostasis is the primary event. In this process, various intracellular Ca(2+) regulatory mechanisms are reported to be involved. Using patch-clamp techniques, both low and high voltage activated Ca(2+) channel currents were recorded in the cultured dorsal root ganglion (DRG) neurons. Application of Abeta protein fragment, Abeta(25-35) (2 microM), for 30 s increased the amplitude in both currents. The Abeta-triggered facilitation effect of Ca(2+) channel was found in all the depolarized potentials tested, as shown in the current-voltage relationship. Furthermore, after applying single cell Ca(2+) microfluorometric method, it was found that Abeta(25-35) alone could trigger elevations of intracellular Ca(2+) concentration ([Ca(2+)](i)) level in 90% of the cells tested. The elevation diminished completely by cumulatively adding CdCl(2), NiCl(2), thapsigargin (TG), FCCP and Zn(2+) in the normal bath solution. Combining pharmacological approaches, we found that voltage-dependent Ca(2+) channels, Ca(2+) stores and a putative Zn(2+)-sensitive extracellular Ca(2+) entry, respectively, makes 61.0, 25.1, and 13.9% contribution to the [Ca(2+)](i) increase caused by Abeta. When tested in a Ca(2+)-free buffer, mitochondria was found to contribute 41.3% of Abeta produced [Ca(2+)](i) elevation and the remaining 58.7% was attributed to endoplasmic reticulum (ER) release.  相似文献   

6.
Carey MB  Matsumoto SG 《Brain research》2000,862(1-2):201-210
In a previous study we have shown that cultured neural crest cells exhibit spontaneous calcium transients and that these events are required for neurogenesis. In this study, we examine the mechanism that generates these calcium transients. Extracellular Ca(2+) modulates calcium transient activity. Lanthanum (La(3+)), a general calcium channel antagonist and zero extracellular Ca(2+), reduces the percentage of cells exhibiting calcium transients (26.2 and 40. 5%, respectively) and decreases calcium spiking frequency (4.5 to 1. 0 and 2.5 to 1.0 spikes/30 min, respectively). Intracellular calcium stores also contribute to the generation of calcium transients. Depleting the calcium stores of the endoplasmic reticulum (ER) reduces the percentage of active cells (15.7%) and calcium spiking frequency (2.8 to 1.5 spikes/30 min). Ryanodine (100 microM), which blocks calcium release regulated by the ryanodine receptor (RyR), had no effect on calcium transient activity. Blocking inositol 1,4, 5-triphosphate receptor (IP(3)R)-dependent calcium release, with elevated extracellular Mg(2+) (20 mM), abolished calcium transient activity. Mg(2+) did not block caffeine-sensitive calcium release (RyR-dependent) or voltage dependent calcium channels. Mg(2+) also suppressed thimerosal-induced calcium oscillations (IP(3)R-dependent). Small increases in the intracellular calcium concentration ([Ca(2+)](i)), increases the percentage of active cells and the calcium spiking frequency, while larger increases in [Ca(2+)](i) block the transients. Reducing intracellular IP(3) levels reduces the percentage of active cells and the calcium spiking frequency. We conclude that the mechanism for generating spontaneous calcium transients in cultured neural crest cells fits the model for IP(3)R-dependent calcium excitability of the ER.  相似文献   

7.
The pH dependence of store-operated Ca(2+) influx (SOCI) into human platelets, as well as its physiological consequence, aggregation, was studied. In Ca(2+)-free medium, thapsigargin (1 microM) induced a small increase in intracellular free-Ca(2+) ([Ca(2+)](i)), which was not affected by changes in extracellular pH. The addition of Ca(2+) (0.5-3 mM) after Ca(2+) store depletion caused by thapsigargin resulted in concentration-dependent increases in [Ca(2+)](i) (SOCI), which were strongly inhibited by SKF-96365 (100 microM), an inhibitor of receptor-mediated Ca(2+) entry. SOCI was inhibited by acidosis (pH 6.9) and augmented by alkalosis (pH 7.9). The addition of Ca(2+) (0.5-3 mM) to platelets, which were kept in Ca(2+)-free medium, slightly but significantly increased [Ca(2+)](i). This Ca(2+) leak entry was also decreased and increased by extracellular acidosis (pH 6.9) and alkalosis (pH 7.9), respectively, but not affected by SKF-96365. Neither thapsigargin (1 microM) stimulation in Ca(2+)-free solution nor elevation of extracellular Ca(2+) alone was sufficient to induce platelet aggregation. In contrast, the addition of Ca(2+) (1 mM) to platelets activated by thapsigargin resulted in aggregation, which was markedly inhibited by SKF-96365 (100 microM). Platelet aggregation associated with SOCI was also inhibited by extracellular acidosis (pH 6.9) and augmented by extracellular alkalosis (pH 7.9). These results suggest that acidosis-induced inhibition, as well as alkalosis-induced promotion of platelet aggregation, involve pH effects on SOCI.  相似文献   

8.
It is usually accepted that prion and amyloid-beta (A beta) peptides induce apoptotic cell death. However, the mechanisms that trigger neuronal death, induced by these amyloidogenic peptides, remain to be clarified. In the present study we analysed the neurotoxic effects of the synthetic prion and A beta peptides, PrP106-126 and A beta 25-35, in primary cultures of rat brain cortical cells. PrP106-126 and A beta 25-35 incubated at a concentration of 25 micro m for 24 h, did not affect cell membrane integrity, but decreased the metabolic capacity of the cells. The intracellular free Ca2+ concentration and reactive oxygen species levels increased significantly after 24 h treatment with PrP106-126 and A beta 25-35. Furthermore, these peptides (after 24 h exposure) also induced cytochrome c release from mitochondria and increased caspase-3-like activity. FK506, an inhibitor of the Ca2+/calmodulin-dependent phosphatase, calcineurin, was able to prevent cytochrome c release, caspase-3 activation and cell death induced by A beta 25-35 or PrP106-126 peptides. Taken together these data suggest that calcineurin is involved in A beta 25-35 and PrP106-126 neurotoxicity.  相似文献   

9.
In Alzheimer disease (AD), the perturbation of the endoplasmic reticulum (ER) calcium (Ca(2+)) homeostasis has been linked to presenilins, the catalytic core in γ-secretase complexes cleaving the amyloid precursor protein (APP), thereby generating amyloid-β (Aβ) peptides. Here we investigate whether APP contributes to ER Ca(2+) homeostasis and whether ER Ca(2+) could in turn influence Aβ production. We show that overexpression of wild-type human APP (APP(695)), or APP harboring the Swedish double mutation (APP(swe)) triggers increased ryanodine receptor (RyR) expression and enhances RyR-mediated ER Ca(2+) release in SH-SY5Y neuroblastoma cells and in APP(swe)-expressing (Tg2576) mice. Interestingly, dantrolene-induced lowering of RyR-mediated Ca(2+) release leads to the reduction of both intracellular and extracellular Aβ load in neuroblastoma cells as well as in primary cultured neurons derived from Tg2576 mice. This Aβ reduction can be accounted for by decreased Thr-668-dependent APP phosphorylation and β- and γ-secretases activities. Importantly, dantrolene diminishes Aβ load, reduces Aβ-related histological lesions, and slows down learning and memory deficits in Tg2576 mice. Overall, our data document a key role of RyR in Aβ production and learning and memory performances, and delineate RyR-mediated control of Ca(2+) homeostasis as a physiological paradigm that could be targeted for innovative therapeutic approaches.  相似文献   

10.
Easton AS  Abbott NJ 《Brain research》2002,953(1-2):157-169
The blood-brain barrier (BBB) was modelled in this study using ECV304 cells in co-culture with rat C6 glioma cells, which resulted in elevated transendothelial electrical resistance (TEER). The inflammatory mediator bradykinin (1 microM) was studied and found to induce a fall in TEER; the link between this change and intracellular free calcium concentration ([Ca(2+)](i)) was then examined. 1 microM bradykinin produced a peak-plateau increase in [Ca(2+)](i). The peak showed desensitization and was dose dependent (over 0.1 nM to 1 microM). The [Ca(2+)](i) increase was blocked by the B(2) antagonist HOE 140 (1 microM) without effect from a B(1) agonist and antagonist. The plateau response was abolished in Ca(2+)-free solution containing 2 mM EDTA, and also by the Ca(2+) channel blockers lanthanum, La(3+) (10 microM), and SKF 96365 (100 microM). The store Ca(2+)ATPase inhibitor thapsigargin (1 microM) abolished the peak response. The putative phospholipase C inhibitors, U73122 (20 microM) and ETH-18-OCH(3) (100 microM), unexpectedly increased [Ca(2+)](i); after their application, bradykinin was ineffective. Agents without effect on Ca(2+) responses to bradykinin included the phospholipase A(2) (PLA(2)) inhibitor aristolochic acid (0.5 mM), cyclooxygenase inhibitor indomethacin (100 microM), 5-lipoxygenase inhibitor nordihydroguaiaretic acid, NDGA (100 microM), calphostin C (0.5 microM), L-NAME (1 mM) and nifedipine (10 microM). The fall in TEER from bradykinin was blocked by HOE 140, U73122 and thapsigargin combined with La(3+), and also by aristolochic acid and NDGA, but not indomethacin, calphostin C or L-NAME. U73122 increased TEER while ETH-18-OCH(3) reduced it. Thus bradykinin reduced TEER through B(2) receptor-linked release of Ca(2+) from thapsigargin-sensitive stores, leading to activation of PLA(2) and metabolism of arachidonic acid by 5-lipoxygenase.  相似文献   

11.
Calcium dysregulation, IP3 signaling, and Alzheimer's disease.   总被引:5,自引:0,他引:5  
  相似文献   

12.
Ryanodine receptors (RyRs) are intracellular Ca(2+) channels that mediate the release of calcium from internal stores and therefore play an important role in Ca(2+) signaling and homeostasis. Three RyR isoforms have been described thus far, and various areas of brain are known to express each of them. It is well established that neurons can express different RyR isoforms, but it is not known whether microglial cells do so. In the present study we showed that cultured human microglia from both fetal and adult brain specimens express mRNA for RyR1 and RyR2, whereas RyR3 mRNA can be detected only in fetal microglial cells. Calcium spectrofluorometry showed that high levels of the RyR agonist 4-chloro-m-cresol (4-CmC, 1-5 mM) induced elevation of intracellular Ca(2+) concentration ([Ca(2+)](i)) in both types of cultured human microglial cells. This effect was attenuated by the RyR antagonist 1,1'-diheptyl-4,4'-bipyridinium dibromide (DHBP, 10 microM). Neurotoxicity of conditioned medium from human microglia and THP-1 monocytic cells stimulated with a combination of interferon-gamma (IFN-gamma) with either lipopolysaccharide (LPS) or alpha-synuclein was diminished by DHBP. It was also diminished by 4-CmC at concentrations approximately 100-fold lower than those used to stimulate intracellular Ca(2+) release. These data indicate that human microglial cells express functional RyRs and that selective RyR ligands exert antineurotoxic action on this cell type. Therefore, RyR ligands may represent a novel class of compounds that have utility in reducing microglial-mediated inflammation, which is believed to contribute to the pathogenesis of a number of neurodegenerative disorders including Alzheimer's disease and Parkinson's disease.  相似文献   

13.
Golovina VA  Blaustein MP 《Glia》2000,31(1):15-28
Signaling by two classes of endoplasmic reticulum (ER) Ca(2+) stores was studied in primary cultured rat astrocytes. Cytosolic and intra-ER Ca(2+) concentrations ([Ca(2+)](CYT) and [Ca(2+)](ER)) were measured with, respectively, Fura-2 and Furaptra, in separate experiments. The agonists, glutamate and ATP, released Ca(2+) primarily from cyclopiazonic acid (CPA)-sensitive ER Ca(2+) stores (CPA inhibits ER Ca(2+) pumps). Agonist-evoked release was abolished by prior treatment with CPA but was unaffected by prior depletion of caffeine/ryanodine (CAF/RY)-sensitive ER Ca(2+) stores. Conversely, prior depletion of the CPA-sensitive stores did not interfere with Ca(2+) release or reuptake in the CAF/RY-sensitive stores. Unloading of the CPA-sensitive stores, but not the CAF/RY-sensitive stores, promoted Ca(2+) entry through "store-operated channels." Resting [Ca(2+)](ER) averaged 153 microM (based on in situ calibration of Furaptra: K(D) = 76 microM, vs 53 microM in solution). The releasable Ca(2+) in both types of ER Ca(2+) stores was increased by Na(+) pump inhibition with 1 mM ouabain or K(+)-free medium. Using high spatial resolution imaging and image subtraction methods, we observed that some regions of the ER (45-58% of the total ER) unloaded and refilled when CPA was added and removed. Other regions of the ER (24-38%) unloaded and refilled when CAF was added and removed. The overlap between these two classes of ER was only 10-18%. These data indicate that there are two structurally separate, independent components of the ER and that they are responsible for the functional independence of the CPA-sensitive and CAF/RY-sensitive ER Ca(2+) stores.  相似文献   

14.
The effects of the environmental contaminants methylmercury (MeHg) and inorganic mercury (HgCl(2)) on cell viability, intracellular calcium concentration ([Ca(2+)](i)), and reactive oxygen species (ROS) generation were studied in rat cerebellar granule neuron cultures using fluorescent methods. MeHg exhibited an LC(50) (2.47 microM) tenfold lower than that of HgCl(2) (26.40 microM). To study the involvement of oxidative stress and Ca(2+) homeostasis disruption in mercury-induced cytotoxicity, we tested the neuroprotective effects of several agents that selectively interfere with these mechanisms. After a 24 hr exposure, the cytotoxic effect of both mercury compounds was reduced by thapsigargin, an inhibitor of endoplasmic reticulum Ca(2+)-ATPase; the Ca(2+) channel blocker flunarizine; and the Na(+)/Ca(2+) exchanger blocker benzamil. All these compounds decreased the mercury-mediated [Ca(2+)](i) rise. These results indicate that Ca(2+) influx through Ca(2+) channels and the Na(+)/Ca(2+) exchanger and Ca(2+) mobilization from the endoplasmic reticulum are involved in mercury-mediated cytotoxicity. The antioxidants probucol and propyl gallate reduced the HgCl(2) toxicity. Probucol and vitamin E partially inhibited the MeHg toxicity after a 24 hr period, whereas propyl gallate completely prevented this effect. Probucol slightly reduced ROS generation in methylmercury-exposed cultures and decreased mercury-mediated rise of [Ca(2+)](i). Propyl gallate abolished ROS generation and partially inhibited the increase of [Ca(2+)](i) induced by both mercury compounds. Propyl gallate also protected human cerebral cortical neuron cultures from the MeHg effect even after 72 hr of MeHg exposure, thus showing a long-lasting effect. Our data suggest that disruption of redox equilibrium and Ca(2+) homeostasis contribute equally to HgCl(2)-mediated toxicity, whereas oxidative stress is the main cause of MeHg neurotoxicity.  相似文献   

15.
Suh EC  Jung YJ  Kim YA  Park EM  Lee KE 《Neurotoxicology》2008,29(4):691-699
Memory loss in Alzheimer's disease (AD) may be related to synaptic defects in damaged hippocampal neurons. We investigated the relationship between amyloid peptide A beta 25-35-induced neuronal death pattern and presynaptic changes in organotypic hippocampal slice cultures. In propidium iodide (PI) uptake and annexin V labeling, A beta 25-35-induced neuronal damage dramatically increased in a concentration dependent manner, indicating both types of cell death. In ultrastructural analysis, apoptotic features in CA1 and CA3 area and synaptic disruption in stratum lucidum were detected in A beta 25-35-treated slices. Immunofluorescence and Western blot analysis for caspase-3 showed A beta 25-35 concentration dependently induced caspase-3 activation. Immunofluorescence and Western blot analysis to determine changes in presynaptic marker proteins demonstrated that expression of synaptosomal-associated protein-25 (SNAP-25) and synaptophysin were reduced by A beta 25-35 in CA1, CA3 and DG area at concentrations >2.5 microM. In conclusion, A beta 25-35-induced apoptotic cell death and caspase-3 activation at relatively low concentration, and induced synaptic disruption and loss of synaptic marker protein at concentrations >2.5 microM in organotypic hippocampal slice cultures. These suggest that A beta 25-35-induced apoptosis via triggering caspase-3 activation and lead to synaptic dysfunction in organotypic hippocampal slice cultures.  相似文献   

16.
Transient global ischemia induces CA1 hippocampal neuronal death without astrocyte death, perhaps mediated in part by the toxic translocation of zinc from presynaptic terminals to postsynaptic neurons. We tested the hypothesis that cellular depolarization, which occurs in the ischemic brain due to increased extracellular potassium and energy failure, might contribute to astrocyte resistance to zinc-induced death. We previously reported that neurons in mixed cortical neuronal-astrocyte cultures were more vulnerable to a 5-15-min exposure to Zn(2+) than astrocytes in the same cultures. In the present report, we show that (1) neurons in isolation or in conjunction with astrocytes were 2-3-fold more sensitive to a 15-min nondepolarizing Zn(2+) exposure than are glia; (2) KCl-induced depolarization attenuated glial vulnerability to zinc toxicity but potentiated neuronal vulnerability to zinc toxicity; (3) Zn(2+)-induced glial death was attenuated by T-type Ca(2+) channel blockade, as well as compounds that increase NAD(+) levels; and (4) both astrocytic (65)Zn(2+) accumulation and the increase in astrocytic [Zn(2+)](i) induced by Zn(2+) exposure were also attenuated by depolarization or T-type Ca(2+) channel blockers. Zn(2+)-induced cell death in astrocytes was at least in part apoptotic, as caspase-3 was activated, and the caspase inhibitor Z-Val-Ala-Asp-fluoromethylketone partially attenuated Zn(2+)-induced death. The levels of peak [Zn(2+)](i) achieved in astrocytes during this toxic nondepolarizing Zn(2+) exposure (250 nM) were substantially greater than those achieved in neurons (40 nM). In glia, exposure to 400 microM Zn(2+) induced a 13-mV depolarization, which can activate T-type Ca(2+) channels. This Zn(2+)-induced astrocyte death, like neuronal death, was attenuated by the addition of pyruvate or niacinamide to the exposure medium.  相似文献   

17.
Methylmercury is an environmental contaminant which causes relatively specific degeneration of the granular layer of the cerebellum, despite its ability to bind thiol groups in proteins of all cell types. The mechanisms underlying the specific targeting of cells during MeHg poisoning may depend on specific receptors and other targets related to divalent cation homeostasis, particularly intracellular calcium (Ca(2+)(i) signaling. MeHg disrupts Ca(2+)(i) homeostasis in a number of neuronal models, including cerebellar granule cells in primary culture, and contributes to MeHg-induced cell death, impaired synaptic function and disruption of neuronal development. Interestingly, the disruption of [Ca(2+)](i) regulation occurs through specific pathways which affect Ca(2+) regulation by organelles, particularly mitochondria and the smooth endoplasmic reticulum (SER). Cholinergic pathways which affect [Ca(2+)](i) signaling also appear to be critical targets, particularly muscarinic acetylcholine (ACh) receptors which are linked to Ca(2+) release through inositol-1,4,5-triphosphate (IP(3)) receptors. [Ca(2+)](i) dysregulation may also underlie observed alterations in cerebellar neuron development through interaction with specific target(s) in the developing axon. In this review, we examine the hypothesis that MeHg affects specific targets to cause disruption of neuronal development and cell death.  相似文献   

18.
In this study, we analyzed whether ER Ca2+ release, induced by amyloid-β (Aβ) and prion (PrP) peptides activates the mitochondrial-mediated apoptotic pathway. In cortical neurons, addition of the synthetic Aβ1–40 or PrP106–126 peptides depletes ER Ca2+ content, leading to cytosolic Ca2+ overload. The Ca2+ released through ryanodine (RyR) and inositol 1,4,5-trisphosphate (IP3R) receptors was shown to be involved in the loss of mitochondrial membrane potential, Bax translocation to mitochondria and apoptotic death. Our data further demonstrate that Ca2+ released from the ER leads to the depletion of endogenous GSH levels and accumulation of reactive oxygen species, which were also involved in the depolarization of the mitochondrial membrane. These results illustrate that the early Aβ- and PrP -induced perturbation of ER Ca2+ homeostasis affects mitochondrial function, activating the mitochondrial-mediated apoptotic pathway and help to clarify the mechanism implicated in neuronal death that occurs in AD and PrD.  相似文献   

19.
The Alzheimer's disease peptide amyloid beta protein (Abeta) can exist in soluble and fibrillar, aggregated forms. Abeta in the aggregated form is thought to be pro-apoptotic, causing cell death when applied to cultured neurones by disrupting Ca(2+) homeostasis. This process may involve changes in Ca(2+) influx across the plasma membrane. The aim of this study was to quantify this effect by applying both the aggregated and unaggregated forms of Abeta to cultured rat cortical neurones. Unaggregated Abeta(1-40) (24-h pretreatment, 1 microM) stimulated an increase in voltage-dependent Ca(2+) channel current activity, which was found to comprise of N- and P-type current. In the aggregated form, Abeta(1-40) pre-treatment reduced Ca(2+) channel current density in cortical neurones via an action on N-type Ca(2+) current. This failure of aggregated Abeta(1-40) to increase the Ca(2+) channel current was confirmed on cerebellar granule neurone Ca(2+) currents which normally undergo an increase in activity following soluble Abeta application. Using the MTT and TUNEL assays, aggregated Abeta(1-40) was found to promote apoptotic cell death in cortical neurones confirming that Abeta exhibited the expected biological activity. Unaggregated Abeta had no neurotoxic effect. These data indicate that the unaggregated, non-pathological form of Abeta(1-40), and not the aggregated form, cause changes in neuronal Ca(2+) channel activity. This may reflect a normal functional role for amyloid peptides in the central nervous system.  相似文献   

20.
The Alzheimer's disease peptide amyloid beta protein (Abeta) can exist in soluble and fibrillar, aggregated forms. Abeta in the aggregated form is thought to be pro-apoptotic, causing cell death when applied to cultured neurones by disrupting Ca(2+) homeostasis. This process may involve changes in Ca(2+) influx across the plasma membrane. The aim of this study was to quantify this effect by applying both the aggregated and unaggregated forms of Abeta to cultured rat cortical neurones. Unaggregated Abeta(1-40) (24-h pretreatment, 1 microM) stimulated an increase in voltage-dependent Ca(2+) channel current activity, which was found to comprise of N- and P-type current. In the aggregated form, Abeta(1-40) pre-treatment reduced Ca(2+) channel current density in cortical neurones via an action on N-type Ca(2+) current. This failure of aggregated Abeta(1-40) to increase the Ca(2+) channel current was confirmed on cerebellar granule neurone Ca(2+) currents which normally undergo an increase in activity following soluble Abeta application. Using the MTT and TUNEL assays, aggregated Abeta(1-40) was found to promote apoptotic cell death in cortical neurones confirming that Abeta exhibited the expected biological activity. Unaggregated Abeta had no neurotoxic effect. These data indicate that the unaggregated, non-pathological form of Abeta(1-40), and not the aggregated form, cause changes in neuronal Ca(2+) channel activity. This may reflect a normal functional role for amyloid peptides in the central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号