首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Recently, a new mechanism for activation of B-RAF was identified resulting from a tandem duplication, generating a fusion protein with constitutive BRAF activity and thereby activating the MAPK pathway. Different fusion variants involving BRAF and KIAA1549 were demonstrated, present in 80% of pilocytic astrocytomas in children. As the KIAA1549-BRAF fusion gene is detected at a much lower frequency in diffuse low-grade astrocytomas and survival was much longer than expected in the patients with a 'non-pilocytic' astrocytoma carrying the fusion gene, identification of this fusion gene can be of diagnostic and prognostic value. In the near future, interference with the (fusion gene causing) activation of the MAPK signalling cascade may open new therapeutic avenues for children with pilocytic astrocytomas, as a first line of defence against tumour growth or in situations where the tumour has become refractory to other therapeutic modalities.  相似文献   

2.
Chromosomal 7q34 duplication and BRAF‐KIAA1549 fusion is a characteristic genetic alteration in pilocytic astrocytomas. 7q34 gain appears to be common in diffuse astrocytomas, but its significance is unclear. We assessed BRAF gain and BRAF mutations in 123 low‐grade diffuse gliomas, including 55 diffuse astrocytomas, 18 oligoastrocytomas and 50 oligodendrogliomas. Quantitative polymerase chain reaction (PCR) revealed BRAF gain in 17/50 (34%) oligodendrogliomas, a significantly higher frequency than in diffuse astrocytomas (7/55; 13%; P = 0.0112). BRAF gain was common in low‐grade diffuse gliomas with 1p/19q loss (39%) and those lacking any of the genetic alterations analyzed (31%), but was rare in those with TP53 mutations (2%). Logistic regression analysis showed a significant positive association between 1p/19q loss and BRAF gain (P = 0.0032) and a significant negative association between TP53 mutations and BRAF gain (P = 0.0042). Fluorescence in situ hybridization (FISH) analysis of 26 low‐grade diffuse gliomas with BRAF gain additionally revealed BRAF‐KIAA1549 fusion in one oligodendroglioma. Sequencing of cDNA in 17 low‐grade diffuse gliomas showed BRAF‐KIAA1549 fusion in another oligodendroglioma. A BRAFV600E mutation was also detected in one oligodendroglioma, and a BRAFA598V in one diffuse astrocytoma. These results suggest that low‐grade diffuse gliomas with 1p/19q loss have frequent BRAF gains, and a small fraction of oligodendrogliomas may show BRAF‐KIAA1549 fusion.  相似文献   

3.
Pilocytic astrocytomas occur rarely in adults and show aggressive tumor behavior. However, their underlying molecular‐genetic events are largely uncharacterized. Hence, 59 adult pilocytic astrocytoma (APA) cases of classical histology were studied (MIB‐1 LI: 1%–5%). Analysis of BRAF alterations using qRT‐PCR, confirmed KIAA1549‐BRAF fusion in 11 (19%) and BRAF‐gain in 2 (3.4%) cases. BRAF‐V600E mutation was noted in 1 (1.7%) case by sequencing. FGFR1‐mutation and FGFR‐TKD duplication were seen in 7/59 (11.9%) and 3/59 (5%) cases, respectively. Overall 36% of APAs harbored BRAF and/or FGFR genetic alterations. Notably, FGFR related genetic alterations were enriched in tumors of supratentorial region (8/25, 32%) as compared with other locations (P = 0.01). The difference in age of cases with FGFR1‐mutation (Mean age ± SD: 37.2 ± 15 years) vs. KIAA1549‐BRAF fusion (Mean age ± SD: 25.1 ± 4.1 years) was statistically significant (P = 0.03). Combined BRAF and FGFR alterations were identified in 3 (5%) cases. Notably, the cases with more than one genetic alteration were in higher age group (Mean age ± SD: 50 ± 12 years) as compared with cases with single genetic alteration (Mean age ± SD: 29 ± 10; P = 0.003). Immunopositivity of p‐MAPK/p‐MEK1 was found in all the cases examined. The pS6‐immunoreactivity, a marker of mTOR activation was observed in 34/39 (87%) cases. Interestingly, cases with BRAF and/or FGFR related alteration showed significantly lower pS6‐immunostatining (3/12; 25%) as compared with those with wild‐type BRAF and/or FGFR (16/27; 59%) (P = 0.04). Further, analysis of seven IDH wild‐type adult diffuse astrocytomas (DA) showed FGFR related genetic alterations in 43% cases. These and previous results suggest that APAs are genetically similar to IDH wild‐type adult DAs. APAs harbor infrequent BRAF alterations but more frequent FGFR alterations as compared with pediatric cases. KIAA1549‐BRAF fusion inversely correlates with increasing age whereas FGFR1‐mutation associates with older age. Activation of MAPK/ERK/mTOR signaling appears to be an important oncogenic event in APAs and may be underlying event of aggressive tumor behavior. The findings provided a rationale for potential therapeutic advantage of targeting MAPK/ERK/mTOR pathway in APAs.  相似文献   

4.
As our understanding of pediatric brain neoplasia flourishes, so does the development of diagnostic, prognostic, and predictive biomarkers. The neuropathologist uniquely stands at the crossroads between pathology and molecular genetics, often overseeing the creation, development, implementation, delivery, and reporting of the newest bioassays. This review serves to highlight the key microscopic and genetic features of the most common pediatric brain tumors. For example, INI-1 immunohistochemistry has assisted in identifying several previously unrecognized cases of rhabdoid cell-poor atypical teratoid rhabdoid tumor (ATRT). The latest discovery involving the tandem duplication and fusion BRAF-KIAA1549 on chromosome 7q34 in pilocytic astrocytoma has drawn attention to the MAPK-ERK pathway and its potential chemotherapeutic manipulation. The newly identified IDH1 mutation, which appears characteristic of "secondary astrocytomas," has yet to be studied in the pediatric population, but some researchers have extolled concomitant BRAF-KIAA1549/IDH1 analysis in the neuropathologic workup of many astrocytomas. Through these and other advances, our understanding of pediatric brain tumors will continue to expand exponentially, and as such will set the stage for truly effectual future treatments.  相似文献   

5.
BRAF belongs to the RAF family of protein kinases that are important components of the MAPK signaling pathway mediating cell growth, differentiation and survival. Activating point mutation of the BRAF gene resulting in V600E (previously designated as V599E) is a common event in thyroid papillary carcinoma, being found in approx 40% of this tumor. It has strong association with classical papillary carcinoma and tall cell and possibly Warthin-like variants. This mutation also occurs in thyroid poorly differentiated and anaplastic carcinomas, usually those containing areas of papillary carcinoma. Alterations in the BRAF gene do not overlap with RAS mutations and RET/PTC rearrangement, indicating that activation of one of the effectors of the MAPK pathway is sufficient for papillary thyroid carcinogenesis. Recently, another mechanism of BRAF activation has been identified, which involves chromosome 7q inversion that results in the AKAP9-BRAF fusion. It is rare in sporadic papillary carcinomas and is more common in tumors associated with radiation exposure. Yet another mechanism of BRAF activation may involve copy number gain, which is seen in a significant portion of thyroid follicular tumors of both conventional and oncocytic (Hürthle cell) types.  相似文献   

6.
7.
In adults, the TP53 tumor suppressor gene is frequently mutated in astrocytic brain tumors which is supposed to represent an early event in their development. In juvenile pilocytic and low-grade astrocytomas, however, TP53 mutations have until now been reported as rare, which has led to the suggestion that these tumors may follow a different molecular pathogenesis with an involvement of genes other than TP53. Our analysis of 20 pilocytic and two low-grade astrocytomas of childhood, based on a comprehensive denaturing gradient gel electrophoresis (DGGE) mutation detection assay of the entire coding region, including all splice site junctions of TP53, showed mutations considered as causative in 7 of the 20 (35%) pilocytic astrocytomas and in one of the two low-grade astrocytomas. Our finding is significantly different from the mutation frequency of 1.3% (2/155) previously reported for these tumor types. This may be attributed to the mutation detection system used, which also detects mutations occurring outside the evolutionary conserved region of TP53. Our results suggest that, contrary to the present notion, TP53 mutations may well play a role in the development of juvenile astrocytomas. Furthermore, no mutations were found in tumors of patients with progression of residual tumor after postoperative follow-up. This suggests that TP53 mutations may be associated with less aggressive forms of juvenile astrocytomas, analogous to the situation in adult astrocytomas.  相似文献   

8.
BRAF belongs to the RAF family of protein kinases that are important components of the MAPK signaling pathway mediating cell growth, differentiation and survival. Activating point mutation of the BRAF gene resulting in V600E (previously designated as V599E) is a common event in thyroid papillary carcinoma, being found in approx 40% of this tumor. It has strong association with classical papillary carcinoma and tall cell and possibly Warthin-like variants. This mutation also occurs in thyroid poorly differentiated and anaplastic carcinomas, usually those containing areas of papillary carcinoma. Alterations in the BRAF gene do not overlap with RAS mutations and RET/PTC rearrangement, indicating that activation of one of the effectors of the MAPK pathway is sufficient for papillary thyroid carcinogenesis. Recently, another mechanism of BRAF activation has been identified, which involves chromosome 7q inversion that results in the AKAP9-BRAF fusion. It is rare in sporadic papillary carcinomas and is more common in tumors associated with radiation exposure. Yet another mechanism of BRAF activation may involve copy number gain, which is seen in a significant portion of thyroid follicular tumors of both conventional and oncocytic (Hürthle cell) types.  相似文献   

9.
10.
BRAF (7q24) encodes a serine/threonine protein kinase, and its expression level varies in different tissues. Although a high prevalence of BRAF mutation has been suggested as an important event in thyroid tumorigenesis, little is known about the expression pattern of B-Raf in the thyroid. Thus, we examined the expression of B-Raf in various neoplastic and nonneoplastic thyroid tissues and compared it with BRAF mutational status. Normal and hyperplastic thyroid tissues showed focal and faint immunoreactivity for B-Raf, especially in cuboidal follicular cells of small follicles. In contrast, diffuse expression of B-Raf was observed in follicular adenomas and well-differentiated carcinomas. The missense point mutation BRAF(V600E) was identified in 42% (13/31 cases) of papillary carcinomas and 33% (5/15 cases) of undifferentiated carcinomas but not in normal thyroid tissues, nodular hyperplasia, follicular adenomas, or follicular carcinomas. The immunohistochemical expression of B-Raf did not correlate with BRAF mutational status. Moreover, Western blotting revealed that B-Raf expression in thyroid carcinoma cell lines was also independent of BRAF mutation. Serum or fibroblast growth factor-1 stimulation further activates ERK1/2 in heterozygous BRAF(V600E)-positive carcinoma cells as well as BRAF(V600E) mutation-negative carcinoma cells. In conclusion, heterogeneous focal expression of wild-type B-Raf in nonneoplastic tissues may play a role in the growth or functional activity of thyroid follicular cells. In contrast, diffuse expression of wild-type and/or mutant B-Raf may be involved in the tumorigenic process resulting in activation of the mitogen-activated protein kinase signaling pathway in cooperation with other genetic abnormalities and activation of ligand-receptor signaling pathways.  相似文献   

11.
The BRAF gene, one of the human isoforms of RAF, is activated by ras, leading to cooperative effects in cells responsive to growth factor signals. We studied the frequency of BRAF and k-ras-2 mutations in primary neuroendocrine gastroenteropancreatic (GEP) tumors. Mutation analysis of the BRAF and k-ras-2 genes was performed in 40 primary neuroendocrine tumors of the GEP system. The expression of extracellular signaling-related kinase (ERK) 1/2, an important downstream point of convergence in the ras-RAF-mitogen-activated protein-ERK pathway was analyzed immunohistochemically. We detected one 1796 T-->A BRAF mutation that led to a substitution of valine by glutamic acid at position 599 (V599E) in 40 primary neuroendocrine GEP tumors (3%). We failed to detect specific mutation of the k-ras-2 gene. We identified constitutively activated ERK in almost all neuroendocrine tumor tissues tested irrespective of BRAF mutation or localization or functional activity. These results suggest that BRAF mutations do not have a role in tumorigenesis of neuroendocrine tumors. Nevertheless, activation of the RAF/mitogen-activated protein kinase pathway might have a causative role in the development of neuroendocrine tumors, independent of BRAF or k-ras-2 mutation.  相似文献   

12.
13.
The BRAF p.V600E mutation is the most common genetic alteration in ganglioglioma (GG). Herein, we collected a consecutive series of 30 GG specimens from Xuanwu Hospital in order to corroborate the genetic landscape and genotype–phenotype correlation of this enigmatic and often difficult-to-classify epilepsy-associated brain tumor entity. All specimens with histopathologically confirmed lesions were submitted to targeted next-generation sequencing using a panel of 131 genes. Genetic alterations in three cases with histologically distinct tumor components, that is, GG plus pleomorphic xanthoastrocytoma (PXA), dysembryoplastic neuroepithelial tumor (DNT), or an oligodendroglioma (ODG)-like tumor component, were separately studied. A mean post-surgical follow-up time-period of 23 months was available in 24 patients. Seventy seven percent of GG in our series can be explained by genetic alterations, with BRAF p.V600E mutations being most prevalent (n = 20). Three additional cases showed KRAS p.Q22R and KRAS p.G13R, IRS2 copy number gain (CNG) and a KIAA1549-BRAF fusion. When genetically studying different histopathology patterns from the same tumor we identified composite features with BRAF p.V600E plus CDKN2A/B homozygous deletion in a GG with PXA features, IRS2 CNG in a GG with DNT features, and a BRAF p.V600E plus CNG of chromosome 7 in a GG with ODG-like features. Follow-up revealed no malignant tumor progression but nine patients had seizure recurrence. Eight of these nine GG were immunoreactive for CD34, six patients were male, five were BRAF wildtype, and atypical histopathology features were encountered in four patients, that is, ki-67 proliferation index above 5% or with PXA component. Our results strongly point to activation of the MAP kinase pathway in the vast majority of GG and their molecular-genetic differentiation from the cohort of low-grade pediatric type diffuse glioma remains, however, to be further clarified. In addition, histopathologically distinct tumor components accumulated different genetic alterations suggesting collision or composite glio-neuronal GG variants.  相似文献   

14.
We report genetic aberrations that activate the ERK/MAP kinase pathway in 100% of posterior fossa pilocytic astrocytomas, with a high frequency of gene fusions between KIAA1549 and BRAF among these tumours. These fusions were identified from analysis of focal copy number gains at 7q34, detected using Affymetrix 250K and 6.0 SNP arrays. PCR and sequencing confirmed the presence of five KIAA1549–BRAF fusion variants, along with a single fusion between SRGAP3 and RAF1. The resulting fusion genes lack the auto‐inhibitory domains of BRAF and RAF1, which are replaced in‐frame by the beginning of KIAA1549 and SRGAP3, respectively, conferring constitutive kinase activity. An activating mutation of KRAS was identified in the single pilocytic astrocytoma without a BRAF or RAF1 fusion. Further fusions and activating mutations in BRAF were identified in 28% of grade II astrocytomas, highlighting the importance of the ERK/MAP kinase pathway in the development of paediatric low‐grade gliomas. Copyright © 2009 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

15.
Tandem duplications involving the BRAF kinase gene have recently been identified as the most frequent genetic alteration in sporadic pediatric glioma, creating a novel fusion protein (f-BRAF) with increased BRAF activity. To define the role of f-BRAF in gliomagenesis, we demonstrate that f-BRAF regulates neural stem cell (NSC), but not astrocyte, proliferation and is sufficient to induce glioma-like lesions in mice. Moreover, f-BRAF-driven NSC proliferation results from tuberin/Rheb-mediated mammalian target of rapamycin (mTOR) hyperactivation, leading to S6-kinase-dependent degradation of p27. Collectively, these results establish mTOR pathway activation as a key growth regulatory mechanism common to both sporadic and familial low-grade gliomas in children.  相似文献   

16.
The protein kinase gene family is the most frequently mutated in human cancer. Previous work has documented activating mutations in the KIT receptor tyrosine kinase in testicular germ-cell tumors (TGCT). To investigate further the potential role of mutated protein kinases in the development of TGCT and to characterize the prevalence and patterns of point mutations in these tumors, we have sequenced the coding exons and splice junctions of the annotated protein kinase family of 518 genes in a series of seven seminomas and six nonseminomas. Our results show a remarkably low mutation frequency, with only a single somatic point mutation, a K277E mutation in the STK10 gene, being identified in a total of more than 15 megabases of sequence analyzed. Sequencing of STK10 in an additional 40 TGCTs revealed no further mutations. Comparative genomic hybridization and LOH analysis using SNP arrays demonstrated that the 13 TGCTs mutationally screened through the 518 protein kinase genes were uniformly aneuploid with consistent chromosomal gains on 12p, 8q, 7, and X and losses on 13q, 18q, 11q, and 4q. Our results do not provide evidence for a mutated protein kinase implicated in the development of TGCT other than KIT. Moreover, they demonstrate that the general prevalence of point mutations in TGCT is low, in contrast to the high frequency of copy number changes.  相似文献   

17.
We have studied gene amplification of genes located in 1q32 (GAC1, ELF3, MDM4, and ren1), 4q11 (PDGFR-alpha), and in 12q13-14 (MDM2 and CDK4) using quantitative real-time PCR in a group of 86 tumors consisting of 44 WHO grade IV glioblastomas (GBM) (34 primary and 10 secondary tumors), 21 WHO grade III anaplastic astrocytomas (AA), and 21 WHO grade II astrocytomas (AII). Gene amplification was present in 56 of the 86 samples (65%) in at least 1 gene in our series. GAC1 (51%) and MDM4 (27%) were the most frequently amplified genes within the 1q32 amplicon, and their higher amplification frequency was statistically significant (P<0.05, chi) in the low-grade astrocytomas. Concordant co-amplification was determined for ELF3 and ren1 or ren1 and MDM4 in the grade III-IV tumors. MDM2 amplification was significantly more frequent in primary GBM (16%) than was in secondary GBM (0%). The present study shows that gene amplification in the studied regions is already present in low-grade astrocytic tumors and that amplification of some genes may represent another molecular marker to differentiate primary from secondary GBM.  相似文献   

18.
The current classification of diffuse low-grade gliomas is based mainly on histopathological criteria, which cannot accurately predict the highly variable clinical course observed in patients with such tumors. In an attempt to increase pathogenetic understanding of these tumors, we investigated 38 WHO Grade II astrocytomas, oligodendrogliomas, and oligoastrocytomas using a combination of G-band chromosome analysis and high-resolution comparative genomic hybridization (HR-CGH). Abnormal karyotypes were found in 41% of tumors. Karyotypes of astrocytomas and oligodendrogliomas were near-diploid whereas oligoastrocytomas also displayed near-tetraploid clones. The most common aberrations were losses of chromosomes X, Y, 3, 4, 6, and 11 and gains of chromosomes 8 and 12. The only recurrent structural rearrangement was del(6)(q21). HR-CGH analysis verified karyotyping findings but also revealed frequent losses at 1p, 17q, and 19q and gains of 7q, 10p, 11q, and 20p. Among the tumors were two gemistocytic astrocytomas, a subgroup of diffuse astrocytomas with a particular predisposition for progression but not studied cytogenetically before; one showed a near-diploid, complex karyotype with structural aberrations of chromosomes 1, 3, and 11 whereas both displayed simple aberrations including loss of 11p by HR-CGH. Our findings suggest that within diffuse low-grade gliomas are genetically distinct entities that do not fit the currently used classification. In addition, tumors with complex chromosomal aberrations had a higher tendency for aggressive tumor behavior (shorter progression-free survival) than tumors displaying simple aberrations only (P = 0.07). This could help identify genetic subsets of patients with low-grade glioma who might benefit from early antineoplastic therapy.  相似文献   

19.
20.
During a clinical trial of the tyrosine kinase inhibitor dasatinib for advanced non-small cell lung cancer (NSCLC), one patient responded dramatically and remains cancer-free 4 years later. A comprehensive analysis of his tumor revealed a previously undescribed, kinase-inactivating BRAF mutation ((Y472C)BRAF); no inactivating BRAF mutations were found in the nonresponding tumors taken from other patients. Cells transfected with (Y472C)BRAF exhibited CRAF, MEK (mitogen-activated or extracellular signal-regulated protein kinase kinase), and ERK (extracellular signal-regulated kinase) activation-characteristics identical to signaling changes that occur with previously known kinase-inactivating BRAF mutants. Dasatinib selectively induced senescence in NSCLC cells with inactivating BRAF mutations. Transfection of other NSCLC cells with these BRAF mutations also increased these cells' dasatinib sensitivity, whereas transfection with an activating BRAF mutation led to their increased dasatinib resistance. The sensitivity induced by (Y472C)BRAF was reversed by the introduction of a BRAF mutation that impairs RAF dimerization. Dasatinib inhibited CRAF modestly, but concurrently induced RAF dimerization, resulting in ERK activation in NSCLC cells with kinase-inactivating BRAF mutations. The sensitivity of NSCLC with kinase-impaired BRAF to dasatinib suggested synthetic lethality of BRAF and an unknown dasatinib target. Inhibiting BRAF in NSCLC cells expressing wild-type BRAF likewise enhanced these cells' dasatinib sensitivity. Thus, the patient's BRAF mutation was likely responsible for his tumor's marked response to dasatinib, suggesting that tumors bearing kinase-impaired BRAF mutations may be exquisitely sensitive to dasatinib. Moreover, the potential synthetic lethality of combination therapy including dasatinib and BRAF inhibitors may lead to additional therapeutic options against cancers with wild-type BRAF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号