首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, the immune‐regulating potential of invariant natural killer T (iNKT) cells has attracted considerable attention. We previously reported that a combination treatment with a liposomal ligand for iNKT cells and an anti‐CD154 antibody in a sublethally irradiated murine bone marrow transplant (BMT) model resulted in the establishment of mixed hematopoietic chimerism through in vivo expansion of regulatory T cells (Tregs). Herein, we show the lack of alloreactivity of CD8+T cells in chimeras and an early expansion of donor‐derived dendritic cells (DCs) in the recipient thymi accompanied by a sequential reduction in the donor‐reactive Vβ‐T cell receptor repertoire, suggesting a contribution of clonal deletion in this model. Since thymic expansion of donor DCs and the reduction in the donor‐reactive T cell repertoire were precluded with Treg depletion, we presumed that Tregs should preform before the establishment of clonal deletion. In contrast, the mice thymectomized before BMT failed to increase the number of Tregs and to establish CD8+T cell tolerance, suggesting the presence of mutual dependence between the thymic donor–DCs and Tregs. These results provide new insights into the regulatory mechanisms that actively promote clonal deletion.  相似文献   

2.
Short‐term outcomes of kidney transplantation have improved dramatically, but chronic rejection and regimen‐related toxicity continue to compromise overall patient outcomes. Development of regulatory T cells (Tregs) as a means to decrease alloresponsiveness and limit the need for pharmacologic immunosuppression is an active area of preclinical and clinical investigation. Nevertheless, the immunomodulatory effects of end‐stage renal disease on the efficacy of various strategies to generate and expand recipient Tregs for kidney transplantation are incompletely characterized. In this study, we show that Tregs can be successfully generated from either freshly isolated or previously cryopreserved uremic recipient (responder) and healthy donor (stimulator) peripheral blood mononuclear cells using the strategy of ex vivo costimulatory blockade with belatacept during mixed lymphocyte culture. Moreover, these Tregs maintain a CD3+CD4+CD25+CD127lo surface phenotype, high levels of intracellular FOXP3 and significant demethylation of the FOXP3 Treg‐specific demethylation region on allorestimulation with donor stimulator cells. These data support evaluation of this simple, brief Treg production strategy in clinical trials of mismatched kidney transplantation.  相似文献   

3.
4.
5.
Complex interactions between positive and negative cosignaling receptors ultimately determine the fate of the immune response. The recently identified coinhibitory receptor, B and T lymphocyte attenuator (BTLA), contributes to regulation of autoimmune and potentially alloimmune responses. We investigated the role of BTLA in a fully major histocompatibility complex-mismatched mouse islet transplant model. We report that anti-BTLA mAb (6F7) alone does not accelerate graft rejection. Rather, while CTLA4Ig alone improved allograft survival, the addition of anti-BTLA mAb to CTLA4Ig led to indefinite (>100 days) allograft survival. Immediately after treatment with anti-BTLA mAb and CTLA4Ig, islet allografts showed intact islets and insulin production despite a host cellular response, with local accumulation of Foxp3+ cells. We clearly demonstrate that combined therapy with anti-BTLA mAb and CTLA4Ig mice induced donor-specific tolerance, since mice accepted a second donor-specific islet graft without further treatment and rejected third party grafts. CTLA4Ig and anti-BTLA mAb limited the initial in vivo proliferation of CFSE-labeled allogeneic lymphocytes, and anti-BTLA mAb enhanced the proportion of PD-1 expressing T cells while depleting pathogenic BTLA+ lymphocytes. We conclude that targeting the BTLA pathway in conjunction with CTLA4Ig costimulatory blockade may be a useful strategy for promoting immunological tolerance in murine islet allografts.  相似文献   

6.
Both the direct and indirect antigen presentation pathways are important mechanisms for T cell-mediated allograft rejection. Studies using knockout mice and monoclonal antibodies have demonstrated that CD4+ T cells are both necessary and sufficient for the rejection of allogeneic tissues, including skin, heart, and islet. Furthermore, combined blockade of the CD28/B7 and CD154/CD40 costimulatory pathways induces tolerance in multiple CD4+ T-cell dependent allograft models. In this study, we addressed the T-cell requirement for costimulation in direct antigen presentation. We demonstrated that class II-specific alloreactive T-cell receptor transgenic T cells were sufficient to mediate allograft rejection independent of costimulatory blockade. Analysis of the costimulatory capacity of different antigen presenting cell (APC) populations demonstrated that APCs resident within the donor skin, Langerhans cells, are potent stimulators not requiring CD28- or CD154-dependent costimulation for direct major histocompatibility complex (MHC) antigen presentation. These results complement previous work examining the role of costimulation on CD8+ T cells, supporting a model in which the effectiveness of costimulatory blockade in the setting of transplantation may be selective for the indirect pathway of MHC alloantigen presentation.  相似文献   

7.
Memory T cells are a significant barrier to induction of transplant tolerance. However, reliable means to target alloreactive memory T cells have remained elusive. In this study, presensitization of BALB/c mice with C57BL/6 skin grafts generated a large number of OX40+CD44hieffector/memory T cells and resulted in rapid rejection of donor heart allografts. Recognizing that anti‐OX40L monoclonal antibody (mAb) (α‐OX40L) monotherapy prolonged graft survival through inhibition and apoptosis of memory T cells in presensitized recipients, α‐OX40L was added to the combined treatment protocol of LF15–0195 (LF) and anti‐CD45RB (α‐CD45RB) mAb—a protocol that induced heart allograft tolerance in non‐presensitized recipients but failed to induce tolerance in presensitized recipients. Interestingly, this triple therapy restored donor‐specific heart allograft tolerance in our presensitized model that was associated with induction of tolerogenic dendritic cells and CD4+CD25+Foxp3+ T regulatory cells (Tregs). Of note, CD25+ T cell depletion in triple therapy recipients prevented establishment of allograft tolerance. In addition, adoptive transfer of donor‐primed effector/memory T cells into tolerant recipients markedly reduced levels of Tregs and broke tolerance. Our findings indicated that targeting memory T cells, by blocking OX40 costimulation in presensitized recipients was very important to expansion of Tregs, which proved critical to development of tolerance.  相似文献   

8.
9.
10.
Belatacept is an inhibitor of CD28/B7 costimulation that is clinically indicated as a calcineurin inhibitor (CNI) alternative in combination with mycophenolate mofetil and steroids after renal transplantation. We sought to develop a clinically translatable, nonlymphocyte depleting, belatacept‐based regimen that could obviate the need for both CNIs and steroids. Thus, based on murine data showing synergy between costimulation blockade and mTOR inhibition, we studied rhesus monkeys undergoing MHC‐mismatched renal allotransplants treated with belatacept and the mTOR inhibitor, sirolimus. To extend prior work on costimulation blockade‐resistant rejection, some animals also received CD2 blockade with alefacept (LFA3‐Ig). Belatacept and sirolimus therapy successfully prevented rejection in all animals. Tolerance was not induced, as animals rejected after withdrawal of therapy. The regimen did not deplete T cells. Alefecept did not add a survival benefit to the optimized belatacept and sirolimus regimen, despite causing an intended depletion of memory T cells, and caused a marked reduction in regulatory T cells. Furthermore, alefacept‐treated animals had a significantly increased incidence of CMV reactivation, suggesting that this combination overly compromised protective immunity. These data support belatacept and sirolimus as a clinically translatable, nondepleting, CNI‐free, steroid‐sparing immunomodulatory regimen that promotes sustained rejection‐free allograft survival after renal transplantation.  相似文献   

11.
12.
Solid organ transplantation tolerance can be achieved following select transient immunosuppressive regimens that result in long‐lasting restraint of alloimmunity without affecting responses to other antigens. Transplantation tolerance has been observed in animal models following costimulation or coreceptor blockade therapies, and in a subset of patients through induction protocols that include donor bone marrow transplantation, or following withdrawal of immunosuppression. Previous data from our lab and others have shown that proinflammatory interventions that successfully prevent the induction of transplantation tolerance in mice often fail to break tolerance once it has been stably established. This suggests that established tolerance acquires resilience to proinflammatory insults, and prompted us to investigate the mechanisms that maintain a stable state of robust tolerance. Our results demonstrate that only a triple intervention of depleting CD25+ regulatory T cells (Tregs), blocking programmed death ligand‐1 (PD‐L1) signals, and transferring low numbers of alloreactive T cells was sufficient to break established tolerance. We infer from these observations that Tregs and PD‐1/PD‐L1 signals cooperate to preserve a low alloreactive T cell frequency to maintain tolerance. Thus, therapeutic protocols designed to induce multiple parallel mechanisms of peripheral tolerance may be necessary to achieve robust transplantation tolerance capable of maintaining one allograft for life in the clinic.  相似文献   

13.
14.
The mixed chimerism approach achieves donor‐specific tolerance in organ transplantation, but clinical use is inhibited by the toxicities of current bone marrow (BM) transplantation (BMT) protocols. Blocking the CD40:CD154 pathway with anti‐CD154 monoclonal antibodies (mAbs) is exceptionally potent in inducing mixed chimerism, but these mAbs are clinically not available. Defining the roles of donor and recipient CD40 in a murine allogeneic BMT model, we show that CD4 or CD8 activation through an intact direct or CD4 T cell activation through the indirect pathway is sufficient to trigger BM rejection despite CTLA4Ig treatment. In the absence of CD4 T cells, CD8 T cell activation via the direct pathway, in contrast, leads to a state of split tolerance. Interruption of the CD40 signals in both the direct and indirect pathway of allorecognition or lack of recipient CD154 is required for the induction of chimerism and tolerance. We developed a novel BMT protocol that induces mixed chimerism and donor‐specific tolerance to fully mismatched cardiac allografts relying on CD28 costimulation blockade and mTOR inhibition without targeting the CD40 pathway. Notably, MHC‐mismatched/minor antigen‐matched skin grafts survive indefinitely whereas fully mismatched grafts are rejected, suggesting that non‐MHC antigens cause graft rejection and split tolerance.  相似文献   

15.
Several approaches successfully achieve allograft tolerance in preclinical models but are challenging to translate into clinical practice. Many clinically relevant factors can attenuate allograft tolerance induction, including intrinsic genetic resistance, peritransplant infection, inflammation, and preexisting antidonor immunity. The prevailing view for immune memory as a tolerance barrier is that the host harbors memory cells that spontaneously cross‐react to donor MHC antigens. Such preexisting “heterologous” memory cells have direct reactivity to donor cells and resist most tolerance regimens. In this study, we developed a model system to determine if an alternative form of immune memory could also block tolerance. We posited that host memory T cells could potentially respond to donor‐derived non‐MHC antigens, such as latent viral antigens or autoantigens, to which the host is immune. Results show that immunity to a model nonself antigen, ovalbumin (OVA), can dramatically disrupt tolerance despite undetectable initial reactivity to donor MHC antigens. Importantly, this blockade of tolerance was CD8+ T cell–dependent and required linked antigen presentation of alloantigens with the test OVA antigen. As such, this pathway represents an unapparent, or “incognito,” form of immunity that is sufficient to prevent tolerance and that can be an unforeseen additional immune barrier to clinical transplant tolerance.  相似文献   

16.
Recent clinical studies suggest that operational allograft tolerance can be persistent, but long‐term surviving allografts can be rejected in a subset of patients, sometimes after episodes of infection. In this study, we examined the impact of Listeria monocytogenes (Lm) infection on the quality of tolerance in a mouse model of heart allograft transplantation. Lm infection induced full rejection in 40% of tolerant recipients, with the remaining experiencing a rejection crisis or no palpable change in their allografts. In the surviving allografts on day 8 postinfection, graft‐infiltrating cell numbers increased and exhibited a loss in the tolerance gene signature. By day 30 postinfection, the tolerance signature was broadly restored, but with a discernible reduction in the expression of a subset of 234 genes that marked tolerance and was down‐regulated at day 8 post‐Lm infection. We further demonstrated that the tolerant state after Lm infection was functionally eroded, as rejection of the long‐term surviving graft was induced with anti‐PD‐L1 whereas the same treatment had no effect in noninfected tolerant mice. Collectively, these observations demonstrate that tolerance, even if initially robust, exists as a continuum that can be eroded following bystander immune responses that accompany certain infections.  相似文献   

17.
18.
The goal of the study was to determine how the changed balance of host naïve and regulatory T cells observed after conditioning with total lymphoid irradiation (TLI) and antithymocyte serum (ATS) promotes tolerance to combined organ and bone marrow transplants. Although previous studies showed that tolerance was dependent on host natural killer T (NKT) cells, this study shows that there is an additional dependence on host CD4+CD25+ Treg cells. Depletion of the latter cells before conditioning resulted in rapid rejection of bone marrow and organ allografts. The balance of T‐cell subsets changed after TLI and ATS with TLI favoring mainly NKT cells and ATS favoring mainly Treg cells. Combined modalities reduced the conventional naïve CD4+ T cells 2800‐fold. The host type Treg cells that persisted in the stable chimeras had the capacity to suppress alloreactivity to both donor and third party cells in the mixed leukocyte reaction. In conclusion, tolerance induction after conditioning in this model depends upon the ability of naturally occurring regulatory NKT and Treg cells to suppress the residual alloreactive T cells that are capable of rejecting grafts.  相似文献   

19.
20.
Regulatory T cells (Treg) are critical regulators of immune tolerance. Both IL‐2 and CD28‐CD80/CD86 signaling are critical for CD4+CD25+FOXP3+ Treg survival in mice. Yet, both belatacept (a second‐generation CTLA‐4Ig) and basiliximab (an anti‐CD25 monoclonal antibody) are among the arsenal of current immunotherapies being used in kidney transplant patients. In this study, we explored the direct effect of basiliximab and belatacept on the Tregs in peripheral blood both in the short term and long term and in kidney biopsies of patients with acute rejection. We report that the combined belatacept/basiliximab therapy has no long‐term effect on circulating Tregs when compared to a calcineurin inhibitor (CNI)‐treated group. Moreover, belatacept‐treated patients had a significantly greater number of FOXP3+ T cells in graft biopsies during acute rejection as compared to CNI‐treated patients. Finally, it appears that the basiliximab caused a transient loss of both FOXP3+ and FOXP3? CD25+ T cells in the circulation in both treatment groups raising important questions about the use of this therapy in tolerance promoting therapeutic protocols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号