首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The objective of the present study was to formulate a microemulsion system for oral administration to improve the solubility and bioavailability of fenofibrate. Various formulations were prepared using different ratios of oils, surfactants and co-surfactants (S&CoS). Pseudo-ternary phase diagrams were constructed to evaluate the microemulsification existence area. The formulations were characterized by solubility of the drug in the vehicles, mean droplet size, and drug content. The stability was also investigated by store for 3 months under 4 °C, 25 °C and 40 °C and diluted 100 times for 3 days. The optimal formulation consists of 25% Capryol 90, 27.75% Cremophore EL, 9.25% Transcutol P and 38% water (w/w), with a maximum solubility of fenofibrate up to ∼40.96 mg/mL. The microemulsion was physicochemical stable and mean droplet size was about 32.5-41.7 nm. The pharmacokinetic study was performed in dogs and compared with Lipanthy® capsule. The result showed that microemulsion has significantly increased the Cmax and AUC compared to that of Lipanthy® capsule (p < 0.05). The oral bioavailability of fenofibrate microemulsions (FEN-MEs) in ME-3 and ME-4 were 1.63 and 1.30-fold higher than that of the capsule. Our results indicated that the microemulsions could be used as an effective formulation for enhancing the oral bioavailability of fenofibrate.  相似文献   

2.
rhPTH1-34 is clinically used for osteoporosis treatment. However, this peptide drug has no oral bioavailability because of proteolysis and low membrane permeability in gastrointestinal gut. This study explored the possibility of absorption enhancement for rhPTH1-34 through the oral delivery of the microemulsion. The microemulsion (85:15, oil/water) consisting of Labrasol, Crodamol GTCC, Solutol® HS 15, d-α-tocopheryl acetate (6:2:1:1, w/w) and saline water was developed and characterized, including particle size, morphology, drug loading efficiency and permeability, stability and pharmacokinetics. The microemulsion showed high drug loading efficiency (83%) and permeability, and significantly higher resistance to proteolysis in vitro study. The relative oral bioavailability was 5.4% and 12.0% when delivered to gastric and ileum. Besides, osteoporosis rats were induced and treated with oral rhPTH1-34 microemulsion (0.05 mg/kg), injection (0.01 mg/kg) and vehicle, respectively, for 8 weeks. The proximal tibia bone mineral content and density in oral rats (0.188 ± 0.008 g, 0.283 ± 0.014 g/cm2) was significantly increased compared to the control rats (0.169 ± 0.006 g, 0.266 ± 0.011 g/cm2), reaching to the sham rats. And the proximal tibia microstructure of oral rats was improved greatly, approaching sham level too. These findings revealed that oral microemulsion may represent an effective oral delivery system for rhPTH1-34.  相似文献   

3.
The objective of this paper is to prepare vinpocetine (VIN) inclusion complex and evaluate its brain targeting effect after intranasal administration. In the present study, VIN inclusion complex was prepared in order to increase its solubility. Stability constant (Kc) was used for host selection. Factors influencing properties of the inclusion complex was investigated. Formation of the inclusion complex was identified by solubility study and DSC analysis. The brain targeting effect of the complex after intranasal administration was studied in rats. It was demonstrated that properties of the inclusion complex was mainly influenced by cyclodextrin type, organic acids type, system pH and host/guest molar ratio. Multiple component complexes can be formed by the addition of citric acid, with solubility improved for more than 23 times. Furthermore, In vivo study revealed that after intranasal administration, the absolute bioavailability of vinpocetine inclusion complex was 88%. Compared with intravenous injection, significant brain targeting effect was achieved after intranasal delivery, with brain targeting index 1.67. In conclusion, by intranasal administration of VIN inclusion complex, a fast onset of action and good brain targeting effect can be achieved. Intranasal route is a promising approach for the treatment of CNS diseases.  相似文献   

4.
The aim of this study was to investigate the anti-tumor effect of sterols initially separated from Flammulina velutipes and the pharmacokinetics and tissue distribution after oral administration of F. velutipes sterol nanomicelles (FVSNs). F. velutipes sterol (FVS) consisted of mainly ergosterol (54.78%), 22,23-dihydroergosterol (27.94%) and ergost-8(14)-ene-3β-ol (discovered for the first time in F. velutipes). In vitro cytotoxicity assay of FVS against U251 cells and HeLa cells showed that at 72 h treatment, the FVS (IC50 = 23.42 μg/mL) exhibited strong inhibitory effect against U251 cells, even overwhelmed the standard anti-tumor drug (5-fluorouracil) to an extent, while the HeLa cells were not significantly susceptible to the FVS. To improve the solubility and bioavailability of FVS, a model for insoluble anti-tumor drugs, FVSNs were prepared. In vitro characterization of FVSNs revealed satisfactory size distribution, loading capacity and encapsulation efficiency. Pharmacokinetic study in SD rats demonstrated that the mixed micellar nanoformulation significantly enhanced the bioavailability of FVS than free drug. Additionly, tissue distribution in mice manifested that the biodistribution of FVSNs as compared to the free FVS suspension were significantly improved. In conclusion, the nanomicelles developed in our study provided a promising delivery system for enhancing the oral bioavailability and selective biodistribution of FVS, a potential anti-tumor agent.  相似文献   

5.
The aim of the present study was to develop an oral delivery system for the peptide drug leuprolide. Gel formulations based on unmodified chitosan/reduced glutathione (GSH) and chitosan-thioglycolic acid (chitosan-TGA)/GSH were prepared, and their effect on the absorption of leuprolide was evaluated in vitro and in vivo in male Sprague Dawley rats. Transport studies were performed with freshly excised rat intestinal mucosa mounted in Ussing-type chambers. Due to the addition of gel formulations comprising 0.5% (m/v) unmodified chitosan/0.5% (m/v) GSH and 0.5% (m/v) chitosan-TGA/0.5% (m/v) GSH, the transport of leuprolide across excised mucosa was improved up to 2.06-fold and 3.79-fold, respectively, in comparison with leuprolide applied in buffer (Papp = 2.87 ± 0.77 × 10−6 cm/s).In vivo, the addition of oral gel formulation comprising 8 mg of unmodified chitosan, 1 mg of GSH and 1 mg of leuprolide increased the area under the plasma concentration-time curve (AUC0-8) of leuprolide 1.39-fold in comparison with leuprolide having been administered just in saline. Moreover, the administration of oral gel formulation comprising 8 mg of chitosan-TGA, 1 mg of GSH and 1 mg of leuprolide resulted in a further enhanced leuprolide plasma concentration, and the area under the plasma concentration-time curve (AUC0-8) of leuprolide was increased 3.72-fold in comparison with the control. With the oral gel formulation comprising 8 mg of chitosan-TGA, a relative bioavailability (versus s.c. injection) of 4.5% was achieved in contrast to the control displaying a relative bioavailability of 1.2%. Thus, according to the achieved results, it is suggested that chitosan-TGA in combination with GSH is a valuable tool for improving the oral bioavailability of the peptide drug leuprolide.  相似文献   

6.
Intranasal drug administration is receiving increased attention as a delivery method for bypassing the blood–brain barrier and rapidly targeting therapeutics to the CNS. However, rapid mucociliary clearance in the nasal cavity is a major hurdle. The purpose of this study was to evaluate the effect of mucoadhesive polymers in enhancing the delivery of nimodipine microemulsion to the brain via the intranasal route. The optimized mucoadhesive microemulsion was characterized, and the in vitro drug release and in vivo nasal absorption of drug from the new formulation were evaluated in rats. The optimized formulation consisted of Capmul MCM as oil, Labrasol as surfactant, and Transcutol P as co-surfactant, with a particle size of 250 nm and zeta potential value of −15 mV. In vitro and ex vivo permeation studies showed an initial burst of drug release at 30 min and sustained release up to 6 h, attributable to the presence of free drug entrapped in the mucoadhesive layer. In vivo pharmacokinetic studies in rats showed that the use of the mucoadhesive microemulsion enhanced brain and plasma concentrations of nimodipine. These results suggest that incorporation of a mucoadhesive agent in a microemulsion intranasal delivery system can increase the retention time of the formulation and enhance brain delivery of drugs.KEY WORDS: Blood–brain barrier, Entrapment, Permeation, Pharmacokinetics, Nasal mucosa  相似文献   

7.
In order to overcome the problems associated with low water solubility, and consequently low bioavailability of active pharmaceutical ingredients (APIs), herein we explore a modular ionic liquid synthetic strategy for improved APIs. Ionic liquids containing l-ampicillin as active pharmaceutical ingredient anion were prepared using the methodology developed in our previous work, using organic cations selected from substituted ammonium, phosphonium, pyridinium and methylimidazolium salts, with the intent of enhancing the solubility and bioavailability of l-ampicillin forms. In order to evaluate important properties of the synthesized API-ILs, the water solubility at 25 °C and 37 °C (body temperature) as well as octanol–water partition coefficients (Kow's) and HDPC micelles partition at 25 °C were measured. Critical micelle concentrations (CMC's) in water at 25 °C and 37 °C of the pharmaceutical ionic liquids bearing cations with surfactant properties were also determined from ionic conductivity measurements.  相似文献   

8.

Purpose

Presence of tight junctions in blood brain barrier (BBB) pose a major hurdle for delivery of drug and severely affects adequate therapeutic concentration to reach the brain. In present work, we have selected Rivastigmine hydrogen tartrate (RHT), a reversible cholinesterase inhibitor, which exhibits extensive first-pass metabolism, resulting in limited absolute bioavailability (36%). RHT shows extremely low aqueous solubility and poor penetration, resulting in inadequate concentration reaching the brain, thus necessitating frequent oral dosing. To overcome these problems of RHT, microemulsion (ME) and mucoadhesive microemulsion (MME) of RHT were formulated for brain targeting via intranasal delivery route and compared on the basis of in vivo pharmacokinetics.

Methods

ME and MME formulations containing RHT were developed by water titration method. Characterization of ME and MME was done for various physicochemical parameters, nasal spray pattern, and in vivo pharmacokinetics quantitatively and qualitatively (gamma scintigraphy studies).

Results

The developed ME and MME were transparent having globule size approximately in the range of 53–55 nm. Pharmacokinetic studies showed higher values for Cmax and DTP for intranasal RHT: CH-ME over RHT-ME, thus indicating the effect of chitosan in modulating tight junctions, thereby enhanced paracellular transport of RHT.

Conclusion

Gamma scintigraphy and in vivo pharmacokinetic study suggested enhanced RHT concentration, upon intranasal administration of RHT:CH-ME, compare with other groups administered formulations intranasally. These findings suggested the potential of non-invasive intranasal route for brain delivery, especially for therapeutics, facing challenges in oral administration.
  相似文献   

9.

Background and purpose:

Orthostatic hypotension has been observed when PDE 5 (cGMP-specific phosphodiesterase type 5) inhibitors are co-administered with α-adrenoceptor antagonists. Here we assessed the pharmacokinetic and haemodynamic interactions between udenafil and tamsulosin in rats, as both drugs are metabolized via rat hepatic cytochrome P450 3A1/2.

Experimental approach:

Interactions between the two drugs were evaluated in rats after simultaneous 1 or 15 min i.v. infusion or after p.o. administration of udenafil (30 mg·kg−1) and/or tamsulosin (1 mg·kg−1). In vitro metabolism of tamsulosin with udenafil was measured to obtain the inhibition constant (Ki) and [I]/Ki ratio of udenafil.

Key results:

The total area under the plasma concentration–time curve from time zero to time infinity (AUC)s (or AUC0–4h) of tamsulosin were significantly greater after 15 min of i.v. infusion or after oral administration with udenafil, compared with tamsulosin alone. The hepatic first-pass metabolism of tamsulosin was inhibited by udenafil, and the inhibition in vitro was in a non-competitive mode. The arterial systolic blood pressure was significantly lower at 5, 10 and 60 min after oral co-administration of the drugs.

Conclusions and implications:

The significantly greater AUC of tamsulosin after i.v. and p.o. administration of both drugs may be attributable to non-competitive inhibition of cytochrome P450 3A1/2-mediated hepatic tamsulosin metabolism by udenafil. The inhibition was also observed in human liver S9 fractions, suggesting that a reassessment of the oral dosage of tamsulosin is necessary when udenafil and tamsulosin are co-administered to patients with benign prostatic hyperplasia.  相似文献   

10.
An oleic acid-based microemulsion system with a member of the Tween series or Cremophor EL as the surfactant and a short-chain alcohol as the cosolvent was developed for rapid-onset intranasal delivery of sildenafil. The phase behaviour and solubilization capacity of the microemulsion system were characterized, and nasal absorption of sildenafil from the microemulsion formulations was investigated in rabbits. Sildenafil displayed a high solubility of 124?mg/mL in the microemulsion consisting of 40% oleic acid, 10% H(2)O, and 50% Tween 80:ethanol (EA) (at a 1:4 weight ratio). Nasal absorption of sildenafil from this microemulsion was found to be fairly rapid. With a 10-mg dose, the onset of action was arrived instantly following intranasal administration and the duration was over 3?h using an in vivo rabbit studies. In addition, nasal ciliotoxicity studies were carried out using in vivo rat nasal mucosa model and showed no ciliotoxicity. Therefore, the prepared systems are no serious nasal ciliotoxicity for intranasal administration. The microemulsion system composed of oleic acid, Tween 80, EA, and water may be a practical approach for the rapid-onset delivery of sildenafil for the treatment of erectile dysfunction.  相似文献   

11.
In this article, we present a parallel experimentation approach to rapidly identify a solubility-enhancing formulation that improved the bioavailability of a poorly water-soluble compound using milligrams of material. The lead compound and a panel of excipients were dissolved in n-propanol and dispensed into the wells of a 96-well microtiter plate by a TECAN robot. Following solvent evaporation, the neat formulations were diluted with an aqueous buffer, and incubated for 24 h. The solubilization capacity of the excipients for the compound at 24 h (SC24 h), was determined by HPLC, and compared with its solubility in the corresponding neat formulations determined by a bench-scale method. The ranking order of solubilization capacity of the five tested formulations for this compound by this microscreening assay is same as the ranking order of the compound solubility in the neat formulations. Several formulations that achieved the target aqueous solubility were identified using the screening method. One of the top formulations, an aqueous solution of the compound containing 20% Tween® 80 by weight, increased the compound solubility from less than 2 μg/mL to at least 10 mg/mL. In a rat pharmacokinetic (PK) study, the Tween® 80 formulation achieved 26.6% of bioavailability, a significant improvement over 3.4% of bioavailability for the aqueous Methocel® formulation (p < 0.01). The results in the study suggest that this parallel screening assay can be potentially used to rapidly identify solubility-enhancing formulations for an improved bioavailability of poorly water-soluble compounds using milligram quantities of material.  相似文献   

12.
In current study, a self-nanoemulsifying drug delivery system (SNEDDS) of persimmon (Diospyros kaki) leaf extract (PLE) was developed and characterized to compare its in vitro dissolution and relative bioavailability with commercially available tablets (Naoxinqing tablets). Pseudo-ternary phase diagrams were constructed by phase diagram by micro plate dilution (PDMPD) method, of which the evaluation method was improved to use Multiskan Ascent for identifying turbidity. The formulation of PLE-loaded SNEDDS was optimized by an extreme vertices experimental design. The optimized nanoemulsion formulation, loading with 44.48 mg/g PLE total flavonoids, consisted of Cremophor EL, Transcutol P, Labrafil M 1944 CS (56:34:10, w/w), and it remained stable after storing at 40 °C, 25 °C, 4 °C for at least 6 months. When diluted with water, the SNEDDS droplet size was 34.85 nm and the zeta potential was −6.18 mV. Compared with the commercial tablets, the AUC of both quercetin and kaempferol, which are representative active flavonoids of PLE, was increased by 1.5-fold and 1.6-fold respectively following oral administration of PLE-loaded SNEDDS in fasting beagle dogs. These results indicate that SNEDDS is a promising drug delivery system for increasing the oral bioavailability of PLE.  相似文献   

13.
A sensitive and specific LC-MS assay for DT-13 in rat plasma was developed. DT-13 is an active steroidal saponin present in Liriopes Radix and is developed as an anti-tumor drug candidate. The samples were extracted by acetonitrile-mediated plasma protein precipitation. The chromatographic separation was carried out using a Ultimate C18 column (250 mm × 4.6 mm, i.d., 5 μm) with a mobile phase composed of acetonitrile: 5 mmol/L aqueous ammonium acetate (60:40, v:v). The method was validated and the specificity, linearity (r2 = 0.9980 within 10-1000 ng/mL), lower limit of quantitation (LLOQ, 10 ng/mL), precision (intra- and inter-day <12.3%), accuracy (93.4-106.3%), recovery (91.0 ± 4.7%) and stability were determined. The method was applied to the pharmacokinetic study of DT-13 in rat plasma after intravenous and intragastric administration. The results showed DT-13 underwent a prolonged absorption and slow elimination with a low oral bioavailability (5.51%) in rats.  相似文献   

14.
Curcumin a poly-phenolic compound possesses diverse pharmacologic activities; however, its development as a drug has been severely impeded by extremely poor oral bioavailability. Poor aqueous solubility and extensive metabolism have been implicated for this but the role of membrane permeability has not been investigated. In the present study, permeability of curcumin was assessed using the Caco-2 cell line. Curcumin was poorly permeable with a Papp (A → B) value of 2.93 ± 0.94 × 10−6 cm/s. Papp value in (B → A) study was found out to be 2.55 ± 0.02 × 10−6 cm/s, thus ruling out the role of efflux pathways in poor oral bioavailability of curcumin. Studies using verapamil, a P-gp inhibitor, further confirmed this finding. Detailed mass balance studies showed loss of curcumin during transport. Further experiments using lysed cells revealed that 11.78% of curcumin was metabolized during transport. Studies using itraconazole, a CYP3A4 inhibitor, established its role in curcumin metabolism. Curcumin was also found to accumulate in cells as revealed by CLSM studies. Sorption and desorption kinetic studies further confirmed accumulation of curcumin inside the cells. Amount accumulated was quantitated by HPLC and found to be >20%. Thus, intestinal first-pass metabolism and intracellular accumulation played a role in poor permeability of curcumin. Based on its poor aqueous solubility and intestinal permeability, curcumin can be classified as a BCS Class IV molecule. This information can facilitate designing of drug delivery systems for enhancement of oral bioavailability of curcumin.  相似文献   

15.
To enhance permeation and solubility of an intranasal delivery system of fexofenadine hydrochloride (FXD HCl), a new formulation using poloxamer 407 (P407)/hydroxypropyl-β-cyclodextrin (HP-β-CD)-based thermoreversible gels with chitosan, was developed. Prepared gels were characterized by gelation temperature, viscosity, viscoelasticity, and drug release profile. The in vitro permeation study was performed in primary human nasal epithelial cell monolayers cultured by air–liquid interface method. The addition of chitosan caused the slight elevation of gelation temperature and viscosity-enhancing effect. Viscosity enhancement by the incorporation of chitosan caused the retardation of drug release from P407 gels in in vitro release test. The in vitro permeation profile showed that the increase in chitosan content (0.1% and 0.3%, w/v) significantly enhanced the permeation of FXD HCl. After intranasal administration of P407/HP-β-CD–based thermoreversible gels containing 0.1% and 0.3% of chitosan in rabbits at 0.5 mg/kg dose, plasma concentrations of FXD HCl were significantly higher than those of nasal solutions (p < 0.05). In particular, the bioavailability of the optimized thermoreversible gel containing 0.3% chitosan was about 18-fold higher than that of the solution type. These results suggested the feasibility that thermosensitive gels could be used as an effective dosage form to enhance the nasal absorption of FXD HCl.  相似文献   

16.
The purpose of this study was to compare the pharmacokinetic profiles of tetramethylpyrazine phosphate (TMPP) in plasma and extracellular fluid of the cerebral cortex of rats via three delivery routes: intranasal (i.n.), intragastric (i.g.) and intravenous (i.v.) administration. After i.n., i.g. and i.v. administration of a single-dose at 10 mg/kg, cerebral cortex dialysates and plasma samples drawn from the carotid artery were collected at timed intervals. The concentration of TMPP in the samples was analyzed by HPLC. The area under the concentration–time curve (AUC) and the ratio of the AUCbrain to the AUCplasma (drug targeting efficiency, DTE) was calculated to evaluate the brain targeting efficiency of the drug via these different routes of administration. After i.n. administration, TMPP was rapidly absorbed to reach its peak plasma concentration within 5 min and showed a delayed uptake into cerebral cortex (tmax=15 min). The ratio of the AUCbrain dialysates value between i.n. route and i.v. injection was 0.68, which was greater than that obtained after i.g. administration (0.43). The systemic bioavailability obtained with i.n. administration was greater than that obtained by the i.g. route (86.33% vs. 50.39%), whereas the DTE of the nasal route was 78.89%, close to that of oral administration (85.69%). These results indicate that TMPP is rapidly absorbed from the nasal mucosa into the systemic circulation, and then crosses the blood–brain barrier (BBB) to reach the cerebral cortex. Intranasal administration of TMPP could be a promising alternative to intravenous and oral approaches.Key words: Tetramethylpyrazine phosphate, Intranasal delivery, Pharmacokinetics, Microdialysis, Rat  相似文献   

17.
In this open, single-dose study, we compared the lung deposition and bioavailability of two newly developed insulin formulations for pulmonary delivery. Twelve type 1 diabetic patients were administered the two insulin products (2 U/kg b.w.), which had been radiolabelled with 99mTc. The formulations were either microparticles of insulin without excipients (F1) or lipid-coated insulin microparticles (F2). Lung deposition was assessed by γ-scintigraphy imaging performed immediately after administration. Bioavailability was evaluated by quantifying serum insulin levels over a period of 6 h.Lung deposition was found to be 50 ± 9% and 24 ± 8% for the F1 and F2 formulations, respectively. The insulin AUC0-360 ratio of F1/F2 was 188%, which was consistent with scintigraphic imaging. The concordance between imaging and biological results suggests that the lower bioavailability of F2 is due to its lower lung deposition and not to a reduced absorption into the blood stream. Additional in vitro experiments indicated that the lower performance of F2 was most probably related to a lower disaggregation efficiency of the powder when administered at a sub-optimal flow rate.The two formulations showed interesting pharmacokinetic profiles (Tmax of 26 and 16 min for F1 and F2, respectively) that mimic the physiological insulin secretion pattern. The bioavailability of the developed formulations was within the range of other DPI insulin formulations that have reached the final stages of clinical development.  相似文献   

18.
In this study, we developed a novel drug delivery system, curcumin-phytosome-loaded chitosan microspheres (Cur-PS-CMs) by combining polymer- and lipid-based delivery systems. Curcumin exhibits poor water-solubility and is rapidly eliminated from the body. We aimed to use our novel delivery system to improve the bioavailability and prolong the retention time of curcumin in the body. The Cur-PS-CMs were produced by encapsulating curcumin-phytosomes (Cur-PSs) in chitosan microspheres using ionotropic gelation. The final microsphere was spherical, with a mean particle size of 23.21 ± 6.72 μm and drug loading efficiency of 2.67 ± 0.23%. Differential scanning calorimetry and Fourier transform infrared spectroscopy demonstrated that the integrity of the phytosomes was preserved within the polymeric matrix of the microspheres. The in vitro release rate of curcumin from the Cur-PS-CMs was slower than that from curcumin-loaded chitosan microspheres (Cur-CMs) in pH 1.0, 4.0, 6.8, and 7.4. Pharmacokinetic studies in rats dosed with Cur-PS-CMs showed a 1.67- and a 1.07-fold increase in absorption of curcumin compared with Cur-PSs and Cur-CMs, respectively. The half-life of curcumin orally administration of Cur-PS-CMs (3.16 h) was longer than those of Cur-PSs (1.73 h) and Cur-CMs (2.34 h). These results indicated that the new Cur-PS-CMs system combined the advantages of chitosan microspheres and phytosomes, which had better effects of promoting oral absorption and prolonging retention time of curcumin than single Cur-PSs or Cur-CMs. Therefore, the PS-CMs may be used as a sustained delivery system for lipophilic compounds with poor water-solubility and low oral bioavailability.  相似文献   

19.
A simple HPLC method had been developed and validated to quantify Z-3,5,4′-trimethoxystilbene (Z-TMS), a phyto-stilbene with potent anti-cancer activities in rat plasma. Chromatographic separation was achieved on a reversed phase-HPLC column, which was protected by a guard column through a 13.5-min gradient delivery of a mixture of acetonitrile and water at a flow rate of 1.5 ml/min at 50 °C. The UV absorbance at 300 nm was recorded. Z-TMS and E-stilbene (internal standard) eluted at 8.8 and 9.3 min, respectively. The calibration curve was linear within the range of 33–2500 ng/ml (R2 > 0.9995) and 10 ng/ml was the lower limit of detection. The intra- and inter-day precisions were good and the relative standard deviation was all lower than 10%. The analytical recovery of Z-TMS in plasma ranged from 94.6 ± 9.1% to 97.0 ± 2.1%. This HPLC method was successfully applied to assess the pharmacokinetic profile of Z-TMS in Sprague–Dawley rats using hydroxypropyl-β-cyclodextrin (HP-β-CyD) as a dosing vehicle. Although Z-TMS displayed negligible oral bioavailability, it had a fairly long terminal elimination half-life, abundant plasma drug exposure and limited clearance following intravenous administration. As Z-TMS had favorable intravenous pharmacokinetic profile, further investigation on its potential as a cancer chemotherapeutic agent is warranted.  相似文献   

20.
Poorly water soluble basic drugs are very sensitive to pH changes and following dissolution in the acidic stomach environment tend to precipitate upon gastric emptying, which leads to compromised or erratic oral bioavailability. In this work, we show that the oral bioavailability of a model poorly soluble basic drug (cinnarizine) can be improved by drug encapsulation within highly pH-responsive microparticles (Eudragit L). The latter was prepared by emulsion solvent evaporation which yielded discrete spherical microparticles (diameter of 56.4 ± 6.8 μm and a span of 1.2 ± 0.3). These Eudragit L (dissolution threshold pH 6.0) microparticles are expected to dissolve and release their drug load at intestinal conditions. Thus, the enteric microparticles inhibited the in vitro release of drug under gastric conditions, despite high cinnarizine solubility in the acidic medium. At intestinal conditions, the particles dissolved rapidly and released the drug which precipitated out in the dissolution vessel. In contrast, cinnarizine powder showed rapid drug dissolution at low pH, followed by precipitation upon pH change. Oral dosing in rats resulted in a greater than double bioavailability of Eudragit L microparticles compared to the drug powder suspension, although Cmax and Tmax were similar. The higher bioavailability with microparticles contradicts the in vitro results. Such an example highlights that although in vitro results are an indispensable tool for formulation development, an early in vivo assessment of formulation behaviour can provide better prediction for oral bioavailability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号