首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 239 毫秒
1.
The advanced glycation end-product imidazolone is formed by reaction of arginine with 3-deoxyglucosone (3-DG), a reactive intermediate of the Maillard reaction, whose formation is non-oxidative. Using an antibody specific to this 3-DG-derived AGE, we demonstrated the presence of imidazolone-modified proteins in vivo in the urine and dialysate of patients with chronic renal failure, in the synovial fluid of patients with rheumatoid arthritis, as well as in vitro in human serum and human serum albumin incubated with glucose. Furthermore, we could show that in uremic patients the dimeric form of β2-microglobulin is more susceptible to imidazolone modification than the monomeric one. Thus, the immunochemical detection of imidazolone may be a good marker for 3-DG-derived AGE modification in vivo and in vitro permitting a differentiation between the oxidative and the non-oxidative pathway of AGE generation.  相似文献   

2.
Pyrraline is one of the major Maillard compounds resulting from the reaction of glucose with amino compounds at slightly acidic pH. For in vivo studies, monoclonal pyrraline antibodies were raised after immunization of Balb/c mice with keyhole limpet hemocyamin-caproyl pyrraline conjugate. Of 660 hybridoma clones from one donor, 260 produced an antibody to the free hapten, two of which named Pyr-A and Pyr-B also cross-reacted with L-lysyl pyrraline. Using Pyr-B antibody and an ELISA, a gradual increase in pyrraline immunoreactivity was observed in serum albumin incubated with glucose or 3-deoxyglucosone. Plasma pyrraline levels increased fourfold (P less than 0.001) in Sprague-Dawley rats upon induction of diabetes with streptozotocin and were twofold increased in randomly selected plasmas from diabetic humans. Highly specific pyrraline immunoreactivity was detected in sclerosed glomeruli from diabetic and old normal kidneys as well as in renal arteries with arteriolosclerosis and in perivascular and peritubular sclerosed extracellular matrix and basement membranes. The preferential localization of pyrraline immunoreactivity in the extracellular matrix strengthens the notion that the advanced glycosylation reaction may contribute to decreased turnover and thickening of the extracellular matrix in diabetes and aging.  相似文献   

3.
Glycation products and the pathogenesis of diabetic complications.   总被引:25,自引:0,他引:25  
M Brownlee 《Diabetes care》1992,15(12):1835-1843
Glucose irreversibly modifies long-lived macromolecules by forming AGEs as a function of glucose concentration and time. AGEs cause qualitative and quantitative changes in extracellular matrix components such as type IV collagen, laminin, and vitronectin. These AGE-induced changes can affect cell adhesion, growth, and matrix accumulation. AGE-modified proteins also alter cell function by interacting with specific receptors on macrophages and endothelial cells, inducing changes that promote matrix overproduction, focal thrombosis, and vasoconstriction. DNA and nuclear proteins also may be targets for AGE damage. The persistence of accumulated AGEs during periods of normal glucose homeostasis may explain the phenomenon of hyperglycemic memory. Pharmacological inhibition of in vivo AGE formation by aminoguanidine prevents or ameliorates diabetic retinopathy, nephropathy, and neuropathy in animal models. These data suggest that aminoguanidine and other AGE inhibitors have a potential therapeutic role in the treatment of diabetic patients.  相似文献   

4.
Friedman EA 《Diabetes care》1999,22(Z2):B65-B71
Protein alteration resulting from a nonenzymatic reaction between ambient glucose and primary amino groups on proteins to form glycated residues called Amadori products is termed the Maillard reaction. By dehydration and fragmentation reactions, Amadori products are transformed to stable covalent adducts called advanced glycosylation end products (AGEs). In diabetes, accelerated synthesis and tissue deposition of AGEs is proposed as a contributing mechanism in the pathogenesis of clinical complications. Uremia in diabetes is associated with both a high serum level of AGEs and accelerated macro- and microvasculopathy. Diabetic uremic patients accumulate advanced glycosylated end products in "toxic" amounts that are not decreased to normal by hemodialysis or peritoneal dialysis but fall sharply to within the normal range within 8 h of restoration of half-normal glomerular filtration by renal transplantation. It follows that the higher mortality of hemodialysis-treated diabetic patients compared with those given a renal transplant may relate, in part, to persistent AGE toxicity. Pharmacologic prevention of AGE formation is an attractive means of preempting diabetic microvascular complications because it bypasses the necessity of having to attain euglycemia, an often unattainable goal. Pimagidine (aminoguanidine) interferes with nonenzymatic glycosylation and reduces measured AGE levels leading to its investigation as a potential treatment. The mechanism by which pimagidine prevents renal, eye, nerve, and other microvascular complications in animal models of diabetes is under investigation. Separate multicenter clinical trials of pimagidine in type 1 and type 2 diabetes, where proteinuria is attributable to diabetic nephropathy, are in progress. The effect of treatment on the amount of proteinuria, progression of renal insufficiency, and the course of retinopathy will be monitored.  相似文献   

5.
Diabetes is characterized by accelerated atherosclerosis with widely distributed vascular lesions. An important mechanism by which hyperglycaemia contributes to vascular injury is through the extensive intracellular and extracellular formation of AGEs (advanced glycation end products). AGEs represent a heterogeneous group of proteins, lipids and nucleic acids, irreversibly cross-linked with reducing sugars. AGEs are implicated in the atherosclerotic process, either directly or via receptor-mediated mechanisms, the most extensively studied receptor being RAGE (receptor for AGEs). The AGE-RAGE interaction alters cellular signalling, promotes gene expression and enhances the release of pro-inflammatory molecules. It elicits the generation of oxidative stress in numerous cell types. The importance of the AGE-RAGE interaction and downstream pathways leading to injurious effects as a result of chronic hyperglycaemia in the development, progression and instability of diabetic atherosclerotic lesions has been amply demonstrated in animal studies. Moreover, the deleterious link of AGEs with diabetic vascular complications has been suggested in many human studies. In the present review, our current understanding of their role as an important mediator of vascular injury through the various stages of atherosclerosis in diabetes will be reviewed and critically assessed.  相似文献   

6.
OBJECTIVE: 3-Deoxyglucosone (3-DG), a highly reactive intermediate of the glycation reaction, has been suggested to contribute to the development of diabetes complications. To verify this hypothesis, we assessed the relation between serum 3-DG concentrations and the severity of diabetic microangiopathy in diabetic patients. RESEARCH DESIGN AND METHODS: We conducted a high-performance liquid chromatography assay to determine the serum 3-DG concentrations of 110 diabetic patients with different degrees of severity of diabetic microangiopathy and 57 age-matched control subjects. RESULTS: The fasting serum 3-DG level in diabetic patients was significantly (P < 0.001) higher than that in control subjects (353 +/- 110 vs. 199 +/- 53 nmol/l). The 3-DG levels were significantly (P < 0.001) elevated even in the diabetic patients showing normoalbuminuria (n = 62, 322 +/- 79 nmol/l) compared with control subjects. The 3-DG levels were further elevated in the patients with microalbuminuria (n = 30, 383 +/- 146 nmol/l) and overt proteinuria (n = 18, 410 +/- 100 nmol/l) (P = 0.027 and P < 0.001 vs. normoalbuminuria group, respectively). This phenomenon was basically reproduced in a category of retinopathy. Furthermore, the diabetic patients with low nerve conduction velocity showed a tendency to display higher 3-DG levels. CONCLUSIONS: The present results show that the fasting serum 3-DG level is elevated in diabetic patients and that the patients with relatively higher 3-DG levels were prone to suffer from more severe complications, indicating a possible association of 3-DG with diabetic microangiopathy.  相似文献   

7.
Advanced glycation endproducts (AGEs) are primarily known as a complication in diabetic patients through their mediation of the inflammatory response. However, a variety of studies have demonstrated enhanced formation of AGEs in cardiovascular disorders. Despite the large number of AGEs produced during the Maillard reaction, recent focus is on the major non-crosslinking AGE Nε-carboxymethyllysine. Kneyber and colleagues focused on sepsis-induced cardiac dysfunction and investigated whether myocardial inflammation is associated with enhanced cardiac AGE deposition and whether this is further enhanced by mechanical ventilation. They showed that both conditions are associated with enhanced AGE deposition and myocardial inflammation. Therefore, AGEs may participate in the inflammatory response related to cardiac dysfunction in critically ill patients. Moreover, life-saving ventilation stimulates AGE formation in these patients. This interesting study raises the question of whether AGEs in critically ill patients are a driving force of the disease.  相似文献   

8.
Advanced glycosylation endproducts (AGEs) are derived from the nonenzymatic addition of glucose to proteins. AGEs have been found to accumulate on tissue proteins in patients with diabetes, and their accumulation is thought to play a role in the development of diabetic complications. The finding that macrophages and endothelial cells contain AGE-specific receptors led us to examine whether mesangial cells (MCs) also possess a mechanism for recognizing and processing AGEs. Membrane extracts isolated from rat and human MCs were found to bind AGE-bovine serum albumin (BSA) in a saturable fashion, with a binding affinity of 2.0 +/- 0.4 x 10(6) M-1 (500 nM). The binding was specific for the AGE adduct, since AGE-modified collagen I and ribonuclease both competitively inhibited 125I-AGE-BSA binding to MC membranes, while the unmodified proteins did not compete. Binding of AGE proteins was followed by slow internalization and degradation of the ligand. Ligand blotting of MC membrane extracts demonstrated three distinct AGE-binding membrane proteins of 50, 40, and 30 kD. Growth of MCs on various AGE-modified matrix proteins resulted in alterations in MC function, as demonstrated by enhanced production of fibronectin and decreased proliferation. These results point to the potential role that the interaction of AGE-modified proteins with MCs may play in vivo in promoting diabetic kidney disease.  相似文献   

9.
OBJECTIVE: Advanced glycation end products (AGEs) are a risk factor for diabetic complications. We have developed an assay method for N-(carboxymethyl)valine (CMV) of the hemoglobin (CMV-Hb), which is an AGE generated from HbA1c. Herein we describe the clinical utility of CMV-Hb measurement for the diagnosis of diabetic nephropathy RESEARCH DESIGN AND METHODS: BALB/c mice were immunized with carboxy-methylated Hb and monoclonal antibody raised against CMV-Hb. This antibody was characterized by a surface plasmon resonance. We developed a latex immunoassay using the antibody and measured CMV-Hb from erythrocytes in type 2 diabetic patients and healthy control subjects (age 64.6 +/- 12.0 vs. 61.1 +/- 13.2 years, NS: HbA1c 69 +/- 1.5 vs. 5.2 +/- 0.4%, P < 0.0001). RESULTS: A monoclonal antibody against CMV-Hb beta-chain NH2-terminal and an assay method for measurement for CNMV-Hb were both developed in our laboratory. CMV-Hb levels were significantly greater in the diabetic patients than in the control subjects (18.2 +/- 6.9 vs. 12.7 +/- 0.9 pmol CMV/mg Hb, P < 0.0001). No correlation was found between CMV-Hb and HbA1c or CMV-Hb and glycated albumin. Levels of CMV-Hb increased as the diabetic nephropathy progressed. CONCLUSIONS: We established an assay method for CMV-Hb and confirmed the presence of CMV-Hb in circulating erythrocytes. CMV-Hb was more prevalent in diabetic patients than in healthy subjects. Furthermore, it was significantly higher in patients with diabetic nephropathy, suggesting that the presence of CMV-Hb may be a valuable marker for the progression of diabetic nephropathy.  相似文献   

10.
beta 2-Microglobulin (beta 2M) is a major constituent of amyloid fibrils in hemodialysis-associated amyloidosis (HAA), a complication of long-term hemodialysis. However, the pathological role of beta 2M in HAA remains to be determined. Recently, we demonstrated that beta 2M in the amyloid deposits of HAA is modified with advanced glycation end products (AGEs) of the Maillard reaction. Since AGEs have been implicated in tissue damage associated with diabetic complications and aging, we investigated the possible involvement of AGE-modified beta 2M (AGE-beta 2M) in the pathogenesis of HAA. AGE- and normal-beta 2M were purified from urine of long-term hemodialysis patients. AGE-beta 2M enhanced directed migration (chemotaxis) and random cell migration (chemokinesis) of human monocytes in a dose-dependent manner. However, normal-beta 2M did not enhance any migratory activity. AGE-beta 2M, but not normal-beta 2M, increased the secretion of TNF-alpha and IL-1 beta from macrophages. Similar effects were also induced by in vitro prepared AGE-beta 2M (normal-beta 2M incubated with glucose in vitro for 30 d). When TNF-alpha or IL-1 beta was added to cultured human synovial cells in an amount equivalent to that secreted from macrophages in the presence of AGE-beta 2M, a significant increase in the synthesis of collagenase and morphological changes in cell shape were observed. These findings suggested that AGE-beta 2M, a major component in amyloid deposits, participates in the pathogenesis of HAA as foci where monocyte/macrophage accumulate and initiate an inflammatory response that leads to bone/joint destruction.  相似文献   

11.
Endothelial dysfunction, with decreased NO (nitric oxide) biosynthesis, may play a pathophysiological role in diabetic vasculopathy. The aim of the present study was to determine the relative contributions of glucose and AGE (advanced glycation end-product) accumulation in suppressing NOS-3 (the endothelial isoform of NO synthase). Cultured HUVECs (human umbilical vein endothelial cells) were incubated with different concentrations of glucose, unmodified albumin or AGE-modified albumin for different times. NOS activity was measured from the conversion of L-[(3)H]arginine into L-[(3)H]citrulline, and the expression, serine phosphorylation and O-glycosylation of NOS-3 were determined by Western blotting. High (25 mmol/l) glucose, for up to 12 days of incubation, had no effect on the activity or expression of NOS-3, nor on its degree of serine phosphorylation or O-glycosylation, compared with physiological (5 mmol/l) glucose. By contrast, AGE-modified albumin exerted a concentration- and time-dependent suppression of NOS-3 expression in HUVECs at a range of concentrations (0-200 mg/l) found in diabetic plasma; this was evident after 24 h, whereas inhibition of NOS activity was seen after only 3 h incubation with AGE-modified albumin, consistent with our previous observations of rapid suppression of NOS-3 serine phosphorylation and NOS-3 activity by AGE-modified albumin. In conclusion, AGE-modified albumin suppresses NOS-3 activity in HUVECs through two mechanisms: one rapid, involving suppression of its serine phosphorylation, and another slower, involving a decrease in its expression. We also conclude that, in the context of the chronic hyperglycaemia in diabetes, the effects of AGEs on endothelial NO biosynthesis are considerably more important than those of glucose.  相似文献   

12.
OBJECTIVE: To study the presence of 1,2-dicarbonyl compounds in peritoneal dialysis (PD) fluids, their concentration in effluents with increasing dwell time, and their role in the formation of advanced glycation end-products (AGEs). MEASUREMENTS: Dicarbonyl compounds in heat- and filter-sterilized PD fluids were quantified by reverse-phase high performance liquid chromatography (HPLC) after derivatization to dimethoxyquinoxaline derivatives. Kinetics of the in vitro formation of AGEs upon incubation of 1,2-dicarbonyl compounds or PD fluids with albumin, with or without aminoguanidine, were measured by AGE fluorescence (excitation/emission wavelengths of 350 nm/430 nm). PATIENTS: AGEs and dicarbonyl compounds were measured in effluents collected from standardized 4-hour dwells from 8 continuous cycling peritoneal dialysis patients. RESULTS: In PD fluids, 3-deoxyglucosone (3-DG) has been identified as the major dicarbonyl compound formed during the process of heat sterilization. The process also formed glyoxal (GO) and methylglyoxal (MGO), with the amount of 3-DG being approximately 25-60 times higher than GO and MGO. When incubated with albumin, the identified 1,2-dicarbonyl compounds rapidly formed AGEs. The formation of AGEs was more pronounced in conventional heat-sterilized PD fluids compared with filter-sterilized PD fluids, and was completely inhibited by aminoguanidine. In effluents, the concentration of MGO, GO, and 3-DG decreased with increasing dwell time, with a concomitant increase in AGE fluorescence. CONCLUSIONS: The dicarbonyl compounds 3-DG, MGO, and GO are potent promoters of AGE formation. The presence of these and possibly other dicarbonyl compounds formed during heat sterilization of glucose-based PD fluids is, to a large extent, responsible for the in vitroAGE formation by these fluids, as evidenced by the speed of AGE formation in PD fluids and the complete inhibition by aminoguanidine. Because 3-DG, MGO, and GO are rapidly cleared from PD fluids during dialysis, these compounds may contribute to the in vivo AGE formation in PD patients.  相似文献   

13.
The hallmark of diabetes mellitus, whether type I or type II, is hyperglycemia. Clinical complications associated with diabetes are most likely the consequence of hyperglycemia via both altered metabolic pathways and nonenzymatic glycation of proteins. The nonenzymatic glycation of proteins is accelerated in diabetes due to elevated blood glucose concentration. The Amadori product of nonenzymatic glycation will further crosslink with other proteins to form advanced glycosylation end products (AGEs). The reaction of AGEs with long-lived proteins, such as collagen, and the uptake of AGEs by the receptors on macrophages, endothelial cells, and platelets are major reasons for the development of various clinical complications in diabetes. Several markers have been identified for the screening, diagnosis, and monitoring of the disease. Autoantibodies against beta cells are the best markers for mass screening and for early detection of type I diabetes. In addition to glycated hemoglobin, AGEs and blood glycated proteins of various half-lives could be used for monitoring glycemic control. Several abnormal metabolites have been identified as potential markers for monitoring the severity of various clinical complications. The most interesting findings in diabetic markers could be AGEs. The amount of AGEs found in the tissues could be related to the extent of micro- and macrovascular damage and might prove useful for monitoring the treatment of patients at early stages of either nephropathy, atherosclerosis, retinopathy, or neuropathy. © 1993 Wiley-Liss, Inc.  相似文献   

14.
Although the accumulation of advanced glycation end-products (AGEs) of the Maillard reaction in our body is reported to increase with aging and is enhanced by the pathogenesis of lifestyle-related diseases such as diabetes, routine measurement of AGEs is not applied to regular clinical diagnoses due to the lack of conventional and reliable techniques for AGEs analyses. In the present study, a non-invasive AGEs measuring device was developed and the association between skin AGEs and diabetic complications was evaluated. To clarify the association between the duration of hyperglycemia and accumulation of skin fluorophores, diabetes was induced in mice by streptozotocin. As a result, the fluorophore in the auricle of live mice was increased by the induction of diabetes. Subsequent studies revealed that the fingertip of the middle finger in the non-dominant hand is suitable for the measurement of the fluorescence intensity by the standard deviation value. Furthermore, the fluorescence intensity was increased by the presence of diabetic microvascular complications. This study provides the first evidence that the accumulation of fluorophore in the fingertip increases with an increasing number of microvascular complications, demonstrating that the presence of diabetic microvascular complications may be predicted by measuring the fluorophore concentration in the fingertip.  相似文献   

15.
16.
Advanced glycation end products (AGEs) include a variety of protein adducts whose accumulation alters the structure and function of tissue proteins and stimulates cellular responses. They have been implicated in tissue damage associated with diabetic complications. To assess the possible link between AGE accumulation and the development of diabetic nephropathy (DN), we have examined the immunohistochemical localization of various AGE structures postulated to date, i.e., pentosidine, Nepsilon-(carboxymethyl)lysine (CML), and pyrraline, in diabetic and control kidneys. CML and pentosidine accumulate in the expanded mesangial matrix and thickened glomerular capillary walls of early DN and in nodular lesions and arterial walls of advanced DN, but were absent in control kidneys. By contrast, pyrraline was not found within diabetic glomeruli but was detected in the interstitial connective tissue of both normal and diabetic kidneys. Although the distribution of pyrraline was topographically identical to type III collagen, distribution of pentosidine and CML was not specific for collagen type, suggesting that difference in matrix protein composition per se could not explain heterogeneous AGE localization. Since oxidation is linked closely to the formation of pentosidine and CML, we also immunostained malondialdehyde (MDA), a lipid peroxidation product whose formation is accelerated by oxidative stress, assuming that local oxidative stress may serve as a mechanism of pentosidine and CML accumulation. Consistent with our assumption, diabetic nodular lesions were stained positive for MDA. These findings show that AGE localization in DN varies according to AGE structure, and suggest that the colocalization of markers of glycoxidation (pentosidine and CML) with a marker of lipid peroxidation reflects a local oxidative stress in association with the pathogenesis of diabetic glomerular lesions. Thus, glycoxidation markers may serve as useful biomarkers of oxidative damage in DN.  相似文献   

17.
OBJECTIVE: Chronic hyperglycemia is known to increase tissue glycation and diabetic complications, but controversy exists regarding the independent role of increased postprandial glucose excursions. To address this question, we have studied the effect of postprandial glycemic excursions (PPGEs) on levels of methylglyoxal (MG) and 3-deoxyglucosone (3-DG), two highly reactive precursors of advanced glycation end products (AGEs). RESEARCH DESIGN AND METHODS: We performed 4-month crossover studies on 21 subjects with type 1 diabetes and compared the effect of premeal insulin lispro or regular insulin on PPGEs and MG/3-DG excursions. PPGE was determined after standard test meal (STMs) and by frequent postprandial glucose monitoring. HbA1c and postprandial MG and D-lactate were measured by HPLC, whereas 3-DG was determined by gas chromatography/mass spectroscopy. RESULTS: Treatment with insulin lispro resulted in a highly significant reduction in PPGEs relative to the regular insulin-treated group (P = 0.0005). However, HbA1c levels were similar in the two groups, and no relationship was observed between HbA1c and PPGE (P = 0.93). Significant postprandial increases in MG, 3-DG, and D-lactate occurred after the STM. Excursions of MG and 3-DG were highly correlated with levels of PPGE (R = 0.55, P = 0.0002 and R = 0.61, P = 0.0004; respectively), whereas a significant inverse relationship was seen between PPGE and D-lactate excursions (R = 0.40, P = 0.01). Conversely, no correlation was observed between HbAlc and postprandial MG, 3-DG, or D-lactate levels. CONCLUSIONS: Increased production of MG and 3-DG occur with greater PPGE, whereas HbA1c does not reflect these differences. Reduced PPGE also leads to increased production of D-lactate, indicating a role for increased detoxification in reducing MG levels. The higher postprandial levels of MG and 3-DG observed with greater PPGE may provide a partial explanation for the adverse effects of glycemic lability and support the value of agents that reduce glucose excursions.  相似文献   

18.
Enhanced formation and accumulation of advanced glycation end products (AGEs) have been proposed to play a major role in the pathogenesis of diabetic complications, and atherosclerosis, leading to the development of a range of diabetic complications including nephropathy, retinopathy and neuropathy. Several potential drug candidates as AGE inhibitors have been reported recently. Aminoguanidine is the first drug extensively studied. However, there are no currently available medications known to block AGE formation. We have previously reported a number of novel and structurally diverse compounds as potent inhibitors of glycation and AGE formation. We have now studied several of the existing drugs, which are in therapeutic practice for lowering blood sugar or the treatment of peripheral vascular disease in diabetic patients, for possible inhibitory effects on glycation. We show that that three compounds; pioglitazone, metformin and pentoxifylline are also inhibitors of glycation.  相似文献   

19.
Diabetic uremic sera contain excessive amounts of reactive advanced glycation endproducts (AGEs), which accelerate the vasculopathy of diabetes and end-stage renal disease. To capture in vivo-derived toxic AGEs, high affinity AGE-binding protein lysozyme (LZ) was linked to a Sepharose 4B matrix. Initial studies showed that > 80% of 125I-AGE-BSA was retained by the LZ matrix, compared with < 10% retained by a control matrix. More than 60% of AGE-lysine was captured by the LZ matrix, and the LZ-bound fraction retained immunoreactivity and cross-linking activity, but had little intrinsic fluorescence (370/440 nm). After passage through the LZ matrix, AGE levels in diabetic sera (0.37+/-0.04 U/mg) were significantly reduced to a level (0.09+/-0.01 U/mg; n = 10; P < 0. 0001) comparable with the level of normal human serum, whereas total protein absorption was < 3%. The AGE-enriched serum fraction exhibited cross-linking activity, which was completely prevented by aminoguanidine. Among numerous LZ-bound proteins in diabetic uremic sera, three major proteins "susceptible" to AGE modification were identified: the immunoglobulin G light chain, apolipoprotein J (clusterin/SP-40,40), and the complement 3b beta chain. These findings indicate that the LZ-linked AGE affinity column may serve as an efficient method for the depletion of toxic AGEs from sera, including specific AGE-modified proteins that may be linked to altered immunity, lipoprotein metabolism, and accelerated vasculopathy in renal failure patients with or without diabetes.  相似文献   

20.
beta 2-Microglobulin (beta 2M) is a major constituent of amyloid fibrils in hemodialysis-associated amyloidosis, a complication of long-term hemodialysis patients. Amyloid fibril proteins were isolated from connective tissues forming carpal tunnels in hemodialysis patients with carpal tunnel syndrome. Two-dimensional polyacrylamide gel electrophoresis and Western blotting demonstrated that most of the beta 2M forming amyloid fibrils exhibited a more acidic pI value than normal beta 2M. This acidic beta 2M was also found in a small fraction of beta 2M in sera and urine from these patients, whereas heterogeneity was not observed in healthy individuals. We purified acidic and normal beta 2M from the urine of long-term hemodialysis patients and compared their physicochemical and immunochemical properties. Acidic beta 2M, but not normal beta 2M, was brown in color and fluoresced, both of which are characteristics of advanced glycation end products (AGEs) of the Maillard reaction. Immunochemical studies showed that acidic beta 2M reacted with anti-AGE antibody and also with an antibody against an Amadori product, an early product of the Maillard reaction, but normal beta 2M did not react with either antibody. Incubating normal beta 2M with glucose in vitro resulted in a shift to a more acidic pI, generation of fluorescence, and immunoreactivity to the anti-AGE antibody. The beta 2M forming amyloid fibrils also reacted with anti-AGE antibody. These data provided evidence that AGE-modified beta 2M is a dominant constituent of the amyloid deposits in hemodialysis-associated amyloidosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号