首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
In addition to cytochrome P450, oxidation of drugs and other xenobiotics can also be mediated by non–P450 enzymes, the most significant of which are flavin monooxygenase, monoamine oxidase, alcohol dehydrogenase, aldehyde dehydrogenase, aldehyde oxidase and xanthine oxidase. This article highlights the importance of these non–P450 enzymes in drug metabolism. A brief introduction to each of the non–P450 oxidizing enzymes is given in this review and the oxidative reactions have been illustrated with clinical examples. Drug oxidation catalyzed by enzymes such as flavin monooxygenase and monoamine oxidase may often produce the same metabolites as those generated by P450 and thus drug interactions may be difficult to predict without a clear knowledge of the underlying enzymology. In contrast, oxidation via aldehyde oxidase and xanthine oxidase gives different metabolites to those resulting from P450 hydroxylation. Although oxidation catalyzed by non-P450 enzymes can lead to drug inactivation, oxidation may be essential for the generation of active metabolite(s). The activation of a number of prodrugs by non–P450 enzymes is thus described. It is concluded that there is still much to learn about factors affecting the non–P450 enzymes in the clinical situation.  相似文献   

2.
Aliphatic aldehydes have a high affinity toward aldehyde dehydrogenase activity but are relatively poor substrates of aldehyde oxidase and xanthine oxidase. In addition, the oxidation of xenobiotic-derived aromatic aldehydes by the latter enzymes has not been studied to any great extent. The present investigation compares the relative contribution of aldehyde dehydrogenase, aldehyde oxidase, and xanthine oxidase activities in the oxidation of substituted benzaldehydes in separate preparations. The incubation of vanillin, isovanillin, and protocatechuic aldehyde with either guinea pig liver aldehyde oxidase, bovine milk xanthine oxidase, or guinea pig liver aldehyde dehydrogenase demonstrated that the three aldehyde oxidizing enzymes had a complementary substrate specificity. Incubations were also performed with specific inhibitors of each enzyme (isovanillin for aldehyde oxidase, allopurinol for xanthine oxidase, and disulfiram for aldehyde dehydrogenase) to determine the relative contribution of each enzyme in the oxidation of these aldehydes. Under these conditions, vanillin was rapidly oxidized by aldehyde oxidase, isovanillin was predominantly metabolized by aldehyde dehydrogenase activity, and protocatechuic aldehyde was slowly oxidized, possibly by all three enzymes. Thus, aldehyde oxidase activity may be a significant factor in the oxidation of aromatic aldehydes generated from amines and alkyl benzenes during drug metabolism. In addition, this enzyme may also have a role in the catabolism of biogenic amines such as dopamine and noradrenaline where 3-methoxyphenylacetic acids are major metabolites.  相似文献   

3.
2-Phenylethylamine is an endogenous constituent of human brain and is implicated in cerebral transmission. It is also found in certain foodstuffs and may cause toxic side-effects in susceptible individuals. Metabolism of 2-phenylethylamine to phenylacetaldehyde is catalyzed by monoamine oxidase and the oxidation of the reactive aldehyde to its acid derivative is catalyzed mainly by aldehyde dehydrogenase and perhaps aldehyde oxidase, with xanthine oxidase having minimal transformation. The present investigation examines the metabolism of 2-phenylethylamine to phenylacetaldehyde in liver slices and compares the relative contribution of aldehyde oxidase, xanthine oxidase and aldehyde dehydrogenase activity in the oxidation of phenylacetaldehyde with precision-cut fresh liver slices in the presence/absence of specific inhibitors of each enzyme. In liver slices, phenylacetaldehyde was rapidly converted to phenylacetic acid. Phenylacetic acid was the main metabolite of 2-phenylethylamine, via the intermediate phenylacetaldehyde. Phenylacetic acid formation was completely inhibited by disulfiram (specific inhibitor of aldehyde dehydrogenase), whereas isovanillin (specific inhibitor of aldehyde oxidase) inhibited acid formation to a lesser extent and allopurinol (specific inhibitor of xanthine oxidase) had little or no effect. Therefore, in liver slices, phenylacetaldehyde is rapidly oxidized by aldehyde dehydrogenase and aldehyde oxidase with little or no contribution from xanthine oxidase.  相似文献   

4.
2-phenylethylamine is an endogenous constituent of the human brain and is implicated in cerebral transmission. This bioactive amine is also present in certain foodstuffs such as chocolate, cheese and wine and may cause undesirable side effects in susceptible individuals. Metabolism of 2-phenylethylamine to phenylacetaldehyde is catalysed by monoamine oxidase B but the oxidation to its acid is usually ascribed to aldehyde dehydrogenase and the contribution of aldehyde oxidase and xanthine oxidase, if any, is ignored. The objective of this study was to elucidate the role of the molybdenum hydroxylases, aldehyde oxidase and xanthine oxidase, in the metabolism of phenylacetaldehyde derived from its parent biogenic amine. Treatments of 2-phenylethylamine with monoamine oxidase were carried out for the production of phenylacetaldehyde, as well as treatments of synthetic or enzymatic-generated phenylacetaldehyde with aldehyde oxidase, xanthine oxidase and aldehyde dehydrogenase. The results indicated that phenylacetaldehyde is metabolised mainly to phenylacetic acid with lower concentrations of 2-phenylethanol by all three oxidising enzymes. Aldehyde dehydrogenase was the predominant enzyme involved in phenylacetaldehyde oxidation and thus it has a major role in 2-phenylethylamine metabolism with aldehyde oxidase playing a less prominent role. Xanthine oxidase does not contribute to the oxidation of phenylacetaldehyde due to low amounts being present in guinea pig. Thus aldehyde dehydrogenase is not the only enzyme oxidising xenobiotic and endobiotic aldehydes and the role of aldehyde oxidase in such reactions should not be ignored.  相似文献   

5.
(3-Tert-butyl-7-(5-methylisoxazol-3-yl)-2-(1-methyl-1H-1,2,4-triazol-5-ylmethoxy)pyrazolo[1,5-d] [1,2,4]triazine was recently identified as a functionally selective, inverse agonist at the benzodiazepine site of GABAA α5-containing receptors, which enhances performance in animal models of cognition. The routes of metabolism of this compound in rat, dog, rhesus monkey and human in vitro systems, and in vivo in rat, dog and rhesus monkey have been characterized. The current study demonstrates that both a cytosolic oxidative reaction and cytochrome P450 play important roles in the metabolism of the compound. Chemical inhibition studies showed the oxidation in human cytosol to be catalysed predominantly by aldehyde oxidase rather than the related enzyme, xanthine oxidase. The aldehyde oxidase-mediated metabolites were present in vitro and in vivo in both rat and rhesus monkey, and also in vitro in man. They were absent both in vitro and in vivo in dog.  相似文献   

6.
Aromatic aldehydes are good substrates of aldehyde dehydrogenase activity but are relatively poor substrates of aldehyde oxidase and xanthine oxidase. However, the oxidation of xenobiotic-derived aromatic aldehydes by the latter enzymes has not been studied to any great extent. The present investigation compares the relative contribution of aldehyde dehydrogenase, aldehyde oxidase and xanthine oxidase activities in the oxidation of isovanillin in separate preparations and also in freshly prepared and cryopreserved liver slices. The oxidation of isovanillin was also examined in the presence of specific inhibitors of each oxidizing enzyme. Minimal transformation of isovanillin to isovanillic acid was observed in partially purified aldehyde oxidase, which is thought to be due to residual xanthine oxidase activity. Isovanillin was rapidly metabolized to isovanillic acid by high amounts of purified xanthine oxidase, but only low amounts are present in guinea pig liver fraction. Thus the contribution of xanthine oxidase to isovanillin oxidation in guinea pig is very low. In contrast, isovanillin was rapidly catalyzed to isovanillic acid by guinea pig liver aldehyde dehydrogenase activity. The inhibitor studies revealed that isovanillin was predominantly metabolized by aldehyde dehydrogenase activity. The oxidation of xenobiotic-derived aromatic aldehydes with freshly prepared or cryopreserved liver slices has not been previously reported. In freshly prepared liver slices, isovanillin was rapidly converted to isovanillic acid, whereas the conversion was very slow in cryopreserved liver slices due to low aldehyde dehydrogenase activity. The formation of isovanillic acid was not altered by allopurinol, but considerably inhibited by disulfiram. It is therefore concluded that isovanillin is predominantly metabolized by aldehyde dehydrogenase activity, with minimal contribution from either aldehyde oxidase or xanthine oxidase.  相似文献   

7.
Although the majority of oxidative metabolic reactions are mediated by the CYP superfamily of enzymes, non-CYP-mediated oxidative reactions can play an important role in the metabolism of xenobiotics. Among the major oxidative enzymes, other than CYPs, involved in the oxidative metabolism of drugs and other xenobiotics, the flavin-containing monooxygenases (FMOs), the molybdenum hydroxylases [aldehyde oxidase (AO) and xanthine oxidase (XO)] and the FAD-dependent amine oxidases [monoamine oxidases (MAOs) and polyamine oxidases (PAOs)] are discussed in this minireview. In a similar manner to CYPs, these oxidative enzymes can also produce therapeutically active metabolites and reactive/toxic metabolites, modulate the efficacy of therapeutically active drugs or contribute to detoxification. Many of them have been shown to be important in endobiotic metabolism (e.g. XO, MAOs), and, consequently, interactions between drugs and endogenous compounds might occur when they are involved in drug metabolism. In general, most non-CYP oxidative enzymes (e.g. FMOs, MAOs) appear to be noninducible or much less inducible than the CYP system. Some of these oxidative enzymes exhibit polymorphic expression, as do some CYPs (e.g. FMO3). It is possible that the contribution of non-CYP oxidative enzymes to the overall metabolism of xenobiotics is underestimated, as most investigations of drug metabolism have been performed using experimental conditions optimised for CYP activity, although in some cases the involvement of non-CYP oxidative enzymes in xenobiotic metabolism has been inferred from not sufficient experimental evidence.  相似文献   

8.
To evaluate the metabolic capacity of intact guinea pig liver under normoxic and hypoxic conditions, oxidative and reductive metabolism of diphenyl sulfoxide (DPSO) was studied by the nonrecirculating perfusion method in situ. DPSO was exclusively converted into diphenyl sulfone (DPSO2), an oxidative metabolite, under normoxia. When diphenyl sulfide (DPS) was infused, DPSO was eliminated as a predominant metabolite. Judging from the susceptibility toward selective inhibitors of cytochrome P-450, both oxidative steps appear to be catalyzed by cytochrome P-450-dependent monooxygenase rather than flavin adenine dinucleotide-containing monooxygenase. Under hypoxic conditions, however, DPSO2 formation was decreased in parallel with reduced oxygen concentration in the influent perfusate, whereas only a trace amount of DPS, a reductive metabolite, was detected. On the other hand, coinfusion of an electron donor for aldehyde oxidase such as 2-hydroxypyrimidine and benzaldehyde, but not xanthine, markedly stimulated the formation of DPS during hypoxia. These results indicate that the oxidative pathway catalyzed by cytochrome P-450-dependent monooxygenase is predominant in DPSO metabolism under normoxic conditions, whereas only under hypoxia does the reductive pathway become the major one if an electron donor for aldehyde oxidase exists in intact guinea pig liver.  相似文献   

9.
NAD(P)-linked aldehyde dehydrogenases catalyze the oxidation of a wide variety of aldehydes. Thirteen of these enzymes have been identified in mouse tissues; eleven are found in the liver. Some are substrate-nonspecific; others are relatively substrate-specific. The present investigation sought to determine which of these enzymes are operative in catalyzing the oxidation of retinaldehyde to retinoic acid, a metabolite of vitamin A that promotes the differentiation of epithelial and other cells. Spectrophotometric and HPLC assays were used for this purpose. Enzyme-catalyzed oxidation of retinaldehyde (25 microM) was restricted to the cytosol (105,000 g supernatant fraction) and occurred at a rate of 211 nmol/min/g liver; oxidation of acetaldehyde (4 mM) by this fraction proceeds about ten times faster. At least 90% of this activity was NAD dependent. Of the approximately 10% that was apparently NAD independent, two-thirds was inhibited by 1 mM pyridoxal, a known inhibitor of aldehyde oxidase. Of the six cytosolic aldehyde dehydrogenases, only two, viz. AHD-2 and AHD-7, catalyzed the oxidation of retinaldehyde to retinoic acid. An additional NAD-dependent enzyme, viz. xanthine oxidase (dehydrogenase form), also catalyzed the reaction. Catalysis by AHD-2 accounted for more than 90% of the total NAD-dependent activity. Km values were 0.7, 0.6 and 0.9 microM, respectively, for the AHD-2-, AHD-7- and xanthine oxidase (dehydrogenase form)-catalyzed reaction. AHD-4, an aldehyde dehydrogenase found in the cytosol of mouse stomach epithelium and cornea, did not catalyze the reaction.  相似文献   

10.
1. Clenbuterol (CBL) and bromobuterol (BBL) were both extensively metabolized by hepatic microsomes of swine to only one polar metabolite which was separated by hplc and purified to perform mass analysis. 2. LC-MS analysis by direct infusion into an ion trap system and after reverse-phase chromatograpy into a triple quadrupole system showed that the metabolites were the hydroxylamine-derivatives of CBL and BBL. GC-MS analysis by the CI and EI modes confirmed that the hydroxyl group was bound to the aniline nitrogen. The chemical instability of those metabolites probably as a consequence of spontaneous oxidation and reduction gave rise during the analysis to the corresponding nitroso and nitro derivatives, together with the original compound. 3. Thermal inactivation and CO complex formation were used selectively to inactivate flavin monooxygenase and cytochrome P450, respectively. Both inactivation procedures significantly reduced the formation of the hydroxyl metabolite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号