首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Schmaier  AH; Smith  PM; Purdon  AD; White  JG; Colman  RW 《Blood》1986,67(1):119-130
High mol wt kininogen (HMWK), the major cofactor-substrate of the contact phase of coagulation, is contained within and secreted by platelets. Studies have been performed to localize platelet HMWK in both the unstimulated and activated platelet and to ascertain the effect of platelet enzymes on HMWK itself. On platelet subcellular fractionation, platelet HMWK was localized to alpha-granules, and platelets from a patient with a deficiency of these granules (gray platelet syndrome) had 28% normal platelet HMWK. Platelet HMWK, in addition to being secreted from the platelet, was also localized to the surface of the platelet when activated. Using a competitive enzyme- linked immunosorbent assay for HMWK as an indirect antibody consumption assay, the external membrane of thrombin-activated platelets as well as the releasate from these stimulated platelets had 17 ng HMWK antigen/10(8) platelets available, whereas unstimulated platelets and their supernatant had only 4.9 and 4.2 ng HMWK/10(8) platelets present, respectively. The anti-HMWK antibody consumption by activated normal platelets was specific for membrane-expressed platelet HMWK, since activated platelets from a patient with total kininogen deficiency did not adsorb the anti-HMWK antibody. Enzymes in the cytosolic fraction of platelets cleaved 125I-HMWK (mol wt 120,000) into a mol wt 100,000 polypeptide as well as smaller products at mol wt 74,000, mol wt 62,000, mol wt 47,000, and a few components below mol wt 45,000. No cleavage products were observed when DFP and leupeptin were present. The cleavage of HMWK was specifically prevented by inhibitors of calcium-activated cysteine proteases (leupeptin, N-ethylmaleimide, iodoacetamide, and EDTA) but not by inhibitors of serine proteases (DFP, benzamidine, soybean trypsin inhibitor, or aprotinin). Platelet cytosol increased the coagulant activity of exogenous purified HMWK with maximum HMWK coagulant activity (35-fold) occurring within ten minutes of exposure to platelet cytosol. Treatment of platelet cytosol with leupeptin prevented the increase in the coagulant activity of exogenous HMWK. These studies indicate that activated platelets express platelet HMWK on their external membrane and platelet enzymes can cleave and increase the coagulant activity of exogenous HMWK.  相似文献   

2.
Platelet lysates were obtained from suspensions of normal washed platelets by freeze-thawing or Triton X-100 lysis. The resultant platelet lysates contained 0.34 +/- 0.15 U/10(9) platelets (n = 8) of von Willebrand factor antigen (vWf:Ag) as determined by radioelectroimmunoassay using a monospecific antibody to vWf:Ag. The vWf:Ag level was higher in platelet lysates prepared from freshly drawn blood than from outdated platelet packs. Platelet lysates from patients with severe von Willebrand's disease type I (n = 2) did not contain detectable vWf:Ag. When normal platelet lysates were analyzed by radiocrossed immunoelectrophoresis in agarose using a monospecific polyclonal antibody to plasma vWf:Ag, two immunochemically identical precipitin peaks were seen. One of the platelet vWf:Ag peaks corresponded in its electrophoretic mobility to plasma vWf:Ag, while the other peak, i.e. platelet vWf:Ag-peak II, migrated to a more anodal position. The presence of the platelet vWf:Ag-peak II suggests structural differences between plasma and platelet vWf:Ag and illustrates previously unrecognized heterogeneity of platelet vWf:Ag.  相似文献   

3.
Platelet membrane changes that accompany in vivo activation may be difficult to detect if only a small fraction of circulating platelets has undergone secretion. This study describes an approach to that problem by using a method to measure the number of molecules of fluorescein-labeled antibody bound to individual platelets by flow cytometry. The platelet response to different concentrations of thrombin was determined by measuring the binding of a monoclonal antibody (S12) to GMP-140, an alpha-granule membrane protein that becomes exposed on the platelet surface during alpha-granule secretion. Unstimulated platelets bound a mean of 1,120 molecules of S12 per cell, and 93% of platelets bound less than 2,000 molecules. Platelet stimulation by 0.25 U/mL thrombin caused maximum S12 binding with a mean of 7,529 molecules per cell. Even at low concentrations of thrombin (0.025 U/mL), 5% of platelets were maximally activated, binding over 7,000 molecules of S12 per cell. Conversely, at 0.25 U/mL thrombin, 13% of platelets continued to bind less than 2,000 molecules of S12 per cell. A mixture of as little as 5% thrombin-activated platelets with unstimulated platelets could be detected by this method. Therefore flow cytometry offers an important tool for investigating patients who may have circulating activated platelets as part of a disorder predisposing to thrombosis or hemorrhage.  相似文献   

4.
Radioimmunoassays of human high molecular weight kininogen (HMWK) and low molecular weight kininogen (LMWK) were developed using antibodies directed against the light and the heavy chains of kallikrein-cleaved HMWK. With the anti-light chain antibodies, the radioimmunoassay was specific for HMWK with a detection limit of 0.4 ng. The anti-heavy chain antibodies were used to quantify the concentration of total kininogen antigens. In four different plasmas with a congenital deficiency in HMWK procoagulant activity, there was no detectable antigen in two cases and trace amounts, less than 1 micrograms/ml in the other plasmas (normal concentration: 72 +/- 6 micrograms/ml). In the absence of HMWK, the radioimmunoassay performed with the anti-heavy chain antibodies was specific for LMWK. The amount of LMWK was different in each of these patients' plasmas, ranging from no detectable antigen, i.e. less than 0.15 micrograms/ml, to a normal content. Antigens immunologically indistinguishable from plasma kininogens were detected in lysates of five times washed platelets. HMWK antigen concentration was 3.17 +/- 0.87 micrograms per 10(11) platelets (mean value in 11 donors). LMWK was also present in platelet lysates and the relative concentration versus HMWK was the same as in plasma.  相似文献   

5.
Interaction of platelet plasma membranes with thrombin-activated platelets   总被引:1,自引:0,他引:1  
Prasanna  HR; Edwards  HH; Phillips  DR 《Blood》1981,57(2):305-312
This study described the binding of platelet plasma membranes to either control or thrombin-activated platelets. Glycoproteins in plasma membranes isolated from human platelets were labeled by oxidation with periodate followed by reduction with [3H]NaBH4. Labeled membranes were incubated with either control or thrombin-activated platelets. The amount of membranes bound was measured by separating platelets with bound membranes from solution by rapid centrifugation through 27% sucrose and determining the amount of radioactivity associated with platelets. Five- to sevenfold more membranes bound to thrombin- activated platelets than to control platelets. This enhanced binding of labeled membranes was completely inhibited by an excess of unlabeled platelet membranes. Human erythrocyte membranes had little affinity for either washed or thrombin-activated platelets and therefore did not compete for platelet-membrane binding. Binding of platelet membranes to thrombin-treated platelets was inhibited by prior incubation of the platelets with PGI2 suggesting that the enhanced binding of membranes was to activated platelets. This study demonstrates that the purified platelet membranes have functional sites that can mediate membrane binding to platelets and that quantitation of membrane binding appears to reflect the increased aggregation capability of activated platelets.  相似文献   

6.
P Hourdillé  M Hasitz  F Belloc  A T Nurden 《Blood》1985,65(4):912-920
We have used immunogold staining to locate thrombospondin (TSP) on thrombin-activated human platelets, and have compared its distribution with that of fibrinogen (or fibrin) on thrombin- and ADP-stimulated platelets. To do this, isolated platelets were incubated with monospecific antibodies to TSP or fibrinogen (fib) and the bound IgG located with a second antibody adsorbed to gold particles. Thrombin-induced secretion in Tyrode-Ca2+ was followed by both anti-TSP and anti-fib binding, with large clusters of gold particles observed on the platelet surface. Little or no labeling was observed on unstimulated platelets with either antibody. When secretion was effected in Tyrode-EDTA, anti-TSP IgG still bound to the activated platelets, but the number of particle clusters was significantly reduced. Little binding of anti-fib IgG now occurred. Platelets activated with ADP in the presence of added fib, and subsequently incubated with anti-fib IgG, showed small particle clusters over the whole platelet surface. Thrombin-stimulated platelets from two patients with thrombasthenia bound anti-TSP IgG similarly to normal platelets activated in Tyrode-EDTA. No anti-fib binding occurred. Our results suggest that fib and TSP bind to specific domains on the stimulated platelet membrane. Such sites may be responsible for the mediation of platelet surface contact interactions.  相似文献   

7.
We have identified and biochemically characterized an antigen, 8A3, which is expressed on activated T lymphoblasts and activated platelets. Monoclonal antibodies to 8A3 were raised against the primitive lymphoid/myeloid cell line KG1a and additionally bound to the erythroleukemia-derived cell line HEL, whilst exhibiting little or no reactivity with a panel of other hematopoietic cell lines. The 8A3 antigen was expressed on poorly differentiated T-cell leukemias and on phytohemagglutinin-activated T-cells maintained in interleukin-2 (7,000 sites/cell). This antigen, though not detected on resting platelets, was expressed on thrombin-activated platelets (2,000 sites/platelet). Antibodies to 8A3 identified polypeptides of Mr 170,000 and 150,000 in lysates of surface-iodinated KG1a cells, T lymphoblasts, and activated platelets under both reducing and nonreducing conditions. However, peptide mapping and susceptibily to glycosidases indicated that the 8A3 antigen was a monomeric glycoprotein of Mr 170,000 which contained two N-linked endoglycosidase H-sensitive glycans, and that the Mr 150,000 structure was derived from it by proteolytic degradation. The 8A3 antigen was not detectably phosphorylated in KG1a cells in vivo, nor did immune complexes containing it exhibit kinase activity in vitro. Structural and serologic characteristics of the 8A3 antigen indicate that it is different from other previously described leukocyte activation antigens including transferrin receptors, interleukin-2 receptors, members of the integrin family of adhesion molecules, or "restricted" members of the leukocyte-common antigen/CD45 cluster. Furthermore, the 8A3 antigen does not appear to be related to the other previously described activation-specific platelet molecule, GMP140/PADGEM. This antibody may be useful in monitoring T-cell activation status in some clinical situations and in characterizing clinically relevant activation-associated platelet membrane alterations.  相似文献   

8.
R J Kelm  K G Mann 《Blood》1990,75(5):1105-1113
Our laboratory has previously shown that osteonectin, an abundant noncollagenous bone protein, is contained in and secreted from human platelets. In this study, the distribution of osteonectin both in the supernatant and on the platelet surface after activation was measured by fluid-phase and solid-phase radioimmunoassay, respectively. Total cellular osteonectin was determined by RIA of guanidinium chloride extracted platelets and ranged from 0.65 to 2.2 micrograms/10(8) platelets or 135,000 to 457,000 molecules/platelet. Platelets treated with varying concentrations of collagen and thrombin released osteonectin in a dose-dependent fashion. Approximately 61% of the total platelet osteonectin was secreted at saturating concentrations of collagen and thrombin. A small fraction of platelet osteonectin is expressed on the surface of platelets in an activation-specific manner as evidenced by the specific and saturable binding of [125I]-anti-osteonectin monoclonal antibody, IIIA3A8, to thrombin-activated platelets. Based on a non-linear least squares regression analysis of the antibody binding, 2,200 IIIA3A8 molecules, or 0.8% of the total platelet osteonectin, is expressed on the platelet surface on activation. Platelet osteonectin was purified from the supernatant of thrombin-activated platelets by immunoaffinity chromatography. Western blotting of proteins secreted by washed, thrombin-stimulated platelets with IIIA3A8 indicated that the osteonectin molecule released from the platelet is a single chain polypeptide. Comparison of immunopurified platelet osteonectin with isolated bovine bone osteonectin and isolated human bone osteonectin by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that platelet osteonectin has a greater apparent molecular weight than bone osteonectin. The NH2-terminal sequence of immunopurified platelet osteonectin was obtained by automated Edman degradation and is identical to the sequence of human bone osteonectin derived from the cDNA of SaOS-2 cells. Collectively, these data suggest that platelet osteonectin is structurally distinct from bone osteonectin in a region of the molecule at a distance from the NH2-terminus.  相似文献   

9.
E I Peerschke 《Blood》1991,77(3):508-514
Previous studies indicated a correlation between the formation of EDTA-resistant (irreversible) platelet-fibrinogen interactions and platelet cytoskeleton formation. The present study explored the direct association of membrane-bound fibrinogen with the Triton X-100 (Sigma Chemical Co, St Louis, MO) insoluble cytoskeleton of aspirin-treated, gel-filtered platelets, activated but not aggregated with 20 mumol/L adenosine diphosphate (ADP) or 150 mU/mL human thrombin (THR) when bound fibrinogen had become resistant to dissociation by EDTA. Conversion of exogenous 125I-fibrinogen to fibrin was prevented by adding Gly-Pro-Arg and neutralizing THR with hirudin before initiating binding studies. After 60 minutes at 22 degrees C, the cytoskeleton of ADP-treated platelets contained 20% +/- 12% (mean +/- SD, n = 14) of membrane-bound 125I-fibrinogen, representing 10% to 50% of EDTA-resistant fibrinogen binding. The THR-activated cytoskeleton contained 45% +/- 15% of platelet bound fibrinogen, comprising 80% to 100% of EDTA-resistant fibrinogen binding. 125I-fibrinogen was not recovered with platelet cytoskeletons if binding was inhibited by the RGDS peptide, excess unlabeled fibrinogen, or disruption of the glycoprotein (GP) IIb-IIIa complex by EDTA-treatment. Both development of EDTA-resistant fibrinogen binding and fibrinogen association with the cytoskeleton were time dependent and reached maxima 45 to 60 minutes after fibrinogen binding to stimulated platelets. Although a larger cytoskeleton formed after platelet stimulation with thrombin as compared with ADP, no change in cytoskeleton composition was noted with development of EDTA-resistant fibrinogen binding. Examination of platelet cytoskeletons using monoclonal antibodies, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and Western blotting showed the presence of only traces of GP IIb-IIIa in the cytoskeletons of resting platelets, with no detectable increases after platelet activation or development of EDTA-resistant fibrinogen binding. These data suggest that GP IIb-IIIa-mediated fibrinogen binding to activated platelets is accompanied by time-dependent alterations in platelet-fibrinogen interactions leading to the GP IIb-IIIa independent association between bound fibrinogen and the platelet cytoskeleton.  相似文献   

10.
Peerschke  EI 《Blood》1993,82(11):3358-3363
The platelet-membrane glycoprotein IIb-IIIa (GPIIb-IIIa) complex is essential for platelet aggregation and is involved in the attachment of platelets to thrombogenic surfaces. This study shows the retention of GPIIb and GPIIIa on immobilized fibrinogen after Triton X-100 (Sigma Chemical Co, St Louis, MO) lysis of adherent platelets. Glycoproteins were detected using subunit specific monoclonal antibodies in a modified enzyme-linked immunosorbent assay procedure. GPIIb-IIIa retention was judged to be specific relative to GPIb recovery, and was modulated by platelet activation. Platelet exposure to adenosine diphosphate or thrombin, but not A23187 or chymotrypsin, markedly enhanced GPIIb and GPIIIa recovery relative to that observed with unstimulated platelets, or prostaglandin E1-treated platelets. Moreover, lysis of adherent platelets in the presence of 10 mmol/L EDTA, under conditions promoting GPIIb-IIIa complex dissociation (pH 8.1, 60 minutes, 37 degrees C), had no effect on GPIIb or GPIIIa subunit recovery. Platelet activation with Zn+2 also enhanced GPIIb and GPIIIa recovery on fibrinogen-coated surfaces over that observed with unstimulated platelets, but GPIIb and IIIa retention was EDTA sensitive. This correlated with the EDTA-reversible nature of Zn+2- activated platelet adhesion to fibrinogen-coated surfaces. The data (1) show that platelet adhesion to fibrinogen is accompanied by the induction of high-affinity interactions between GPIIb-IIIa and immobilized fibrinogen that are EDTA-resistant and enhanced by platelet activation with some but not all agonists, and (2) implicate these interactions in stabilizing platelet contacts with fibrinogen-coated surfaces.  相似文献   

11.
Rao  AK; Willis  J; Kowalska  MA; Wachtfogel  YT; Colman  RW 《Blood》1988,71(2):494-501
We describe a family whose members have impaired platelet aggregation and secretion responses to epinephrine with normal responses to adenosine diphosphate and collagen. Platelet alpha 2-adrenergic receptors (measured using 3H methyl-yohimbine) were diminished in the propositus (78 sites per platelet), his two sisters (70 and 27 sites per platelet), and parents (37 and 63 sites per platelet), but not in two maternal aunts (12 normal subjects, 214 +/- 18 sites per platelet; mean +/- SE). However, the inhibition of cyclic adenosine monophosphate (cAMP) levels by epinephrine in platelets exposed to 400 nmol/L PGI2 was similar in the patients and five normal subjects (epinephrine concentration for 50% inhibition, 0.04 +/- 0.01 mumol/L v 0.03 +/- 0.01 mumol/L; P greater than .05). In normal platelets, the concentration of yohimbine (0.18 mumol/L) required for half maximal inhibition of aggregation induced by 2 mumol/L epinephrine was lower than that for inhibition of its effect on adenylate cyclase (1.6 mumol/L). In quin2 loaded platelets, thrombin (0.1 U/mL) stimulated rise in cytoplasmic Ca2+ concentration, [Ca2+]i, was normal in the two patients studied. The PGI2 analog ZK 36,374 completely inhibited thrombin-induced rise in [Ca2+]i; the reversal of this inhibition by epinephrine was normal in the two patients. Thus, despite the impaired aggregation response to epinephrine, platelets from these patients have normal ability to inhibit PGI2-stimulated cAMP levels. These patients with an inherited receptor defect provide evidence that fewer platelet alpha 2-adrenergic receptors are required for epinephrine-induced inhibition of adenylate cyclase than for aggregation.  相似文献   

12.
The activated platelet is a potential target for the localization of thrombi in vivo since, after stimulation and secretion of granule contents, activated platelets are concentrated at sites of blood clot formation. In this study, we used antibodies specific for a membrane protein of activated platelets to detect experimental thrombi in an animal model. PADGEM (platelet activation-dependent granule-external membrane protein), a platelet alpha-granule membrane protein, is translocated to the plasma membrane during platelet activation and granule secretion. Since PADGEM is internal in unstimulated platelets, polyclonal anti-PADGEM and monoclonal KC4 antibodies do not bind to circulating resting platelets but do interact with activated platelets. Dacron graft material incubated with radiolabeled KC4 or anti-PADGEM antibodies in the presence of thrombin-activated platelet-rich plasma bound most of the antibody. Imaging experiments with 123I-labeled anti-PADGEM in baboons with an external arterial-venous Dacron shunt revealed rapid uptake in the thrombus induced by the Dacron graft; control experiments with 123I-labeled nonimmune IgG exhibited minimal uptake. Deep venous thrombi, formed by using percutaneous balloon catheters to stop blood flow in the femoral vein of baboons, were visualized with 123I-labeled anti-PADGEM. Thrombi were discernible against blood pool background activity without subtraction techniques within 1 hr. No target enhancement was seen with 123I-labeled nonimmune IgG. 123I-labeled anti-PADGEM cleared the blood pool with an initial half-disappearance time of 6 min and did not interfere with hemostasis. These results indicate that radioimmunoscintigraphy with anti-PADGEM antibodies can visualize thrombi in baboon models and is a promising technique for clinical thrombus detection in humans.  相似文献   

13.
Fox  JE; Reynolds  CC; Morrow  JS; Phillips  DR 《Blood》1987,69(2):537-545
We recently showed that platelets contain submembranous actin filaments that are linked to glycoprotein (GP) Ib on the plasma membrane. In the present study, experiments were performed to determine whether spectrin was associated with these filaments. The membrane-bound filaments were isolated from Triton X-100 (Sigma, St Louis) lysates of unstimulated platelets by differential centrifugation. Platelet spectrin was detected immunologically by using antibodies against human brain and RBC spectrin. Immunoblots showed that platelet spectrin consisted of two polypeptides (mol wt 240,000 and 235,000) that were similar in apparent mol wt to those of the alpha and beta chains of brain spectrin but differed slightly from those of RBC spectrin (mol wt 240,000 and 220,000). Immunoprecipitation experiments identified platelet spectrin as two minor polypeptides migrating on sodium dodecyl sulfate (SDS)- polyacrylamide gels between actin-binding protein (mol wt 250,000) and the platelet polypeptide P235 (mol wt 235,000). Immunoblots of fractions isolated from Triton X-100-lysed platelets revealed that the alpha and beta chains of platelet spectrin were associated almost entirely with the actin filaments that were linked to the plasma membrane. Little spectrin was recovered in the Triton X-100-soluble fraction or with the actin filaments that were not membrane bound. During activation of platelets with thrombin or ionophore A23187, the alpha and beta chains of spectrin were hydrolyzed, generating a major degradation product of mol wt 160,000 and a minor one of mol wt 170,000. These two hydrolytic products were also generated in Triton X- 100 lysates incubated in the presence of Ca2+ but were not produced when lysates were treated with leupeptin, ethylene glycol bis(beta- aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA), or N- ethylmaleimide, known inhibitors of the Ca2+-dependent protease. These experiments show that spectrin is a previously unidentified component of the membrane-bound actin filament network and that hydrolysis of spectrin by the Ca2+-dependent protease may regulate the interactions of the filaments during platelet activation.  相似文献   

14.
Rao  AK; Kowalska  MA; Disa  J 《Blood》1989,74(2):664-672
Defects in platelet cytoplasmic Ca++ mobilization have been postulated but not well demonstrated in patients with inherited platelet secretion defects. We describe studies in a 42-year-old white woman, referred for evaluation of easy bruising, and her 23-year-old son. In both subjects, aggregation and 14C-serotonin secretion responses in platelet-rich plasma (PRP) to adenosine diphosphate (ADP), epinephrine, platelet activating factor (PAF), arachidonic acid (AA), U46619, and ionophore A23187 were markedly impaired. Platelet ADP and adenosine triphosphate (ATP), contents and thromboxane synthesis induced by thrombin and AA were normal. In quin2-loaded platelets, the basal intracellular Ca++ concentration, [Ca++]i, was normal; however, peak [Ca++]i measured in the presence of 1 mmol/L external Ca++ was consistently diminished following activation with ADP (25 mumol/L), PAF (20 mumol/L), collagen (5 micrograms/mL), U46619 (1 mumol/L), and thrombin (0.05 to 0.5 U/mL). In aequorin-loaded platelets, the peak [Ca++]i studied following thrombin (0.05 and 0.5 U/mL) stimulation was diminished. Myosin light chain phosphorylation following thrombin (0.05 to 0.5 U/mL) stimulation was comparable with that in the normal controls, while with ADP (25 mumol/L) it was more strikingly impaired in the propositus. We provide direct evidence that at least in some patients with inherited platelet secretion defects, agonist-induced Ca++ mobilization is impaired. This may be related to defects in phospholipase C activation. These patients provide a unique opportunity to obtain new insights into Ca++ mobilization in platelets.  相似文献   

15.
Platelets from patients with Montreal platelet syndrome (MPS) consistently display a defect in the mechanisms that regulate platelet size during shape change and undergo spontaneous aggregation and stir- induced microaggregate formation. We now provide data that the surface glycoprotein composition of MPS platelets is indistinguishable from that of normal platelets. However, a defect in calcium-activated neutral proteinase (calpain) was detected in MPS platelets. The specific activity of calpain in the cytosolic fraction of platelets from four MPS patients was found to be only 30% of that in platelets from normal control donors (n = 18, P less than .001). Additionally, platelets from MPS patients (n = 3) contained only 50% (P less than .001) of the calpain I catalytic subunit antigen found in platelets from normal control donors (n = 9). Platelets from the asymptomatic father/grandfather of the MPS patients had normal amounts of both total calpain proteolytic activity and calpain I catalytic subunit antigen. This represents the first report of a defect in calpain in human cells. The abnormally low calpain activity in MPS platelets may account for the platelet defects characteristic of this disorder.  相似文献   

16.
We prepared a heterohybrid cell line that secretes a human IgM monoclonal autoantibody that recognizes an antigen found on thrombin-activated or stored platelets. The surface expression of the epitope recognized by this autoantibody, 5E5, increases with time as platelets age in vitro, suggesting that it may represent a senescence or activation-specific antigen. 5E5 binds to the purified platelet membrane glycoprotein (GP) IIb-IIIa complex in an enzyme-linked immunosorbent assay (ELISA). In an immunoblot technique, 5E5 binds to a protein with an apparent mol wt of 95,000, which is identical to that of GPIIIa under nonreduced conditions. In crossed immunoelectrophoresis (CIE), the predominant antigen recognized by 5E5 is contained in the GPIIb-IIIa precipitin arc. An additional precipitin arc recognized by 5E5 is often observed only on gels derived from lysates of platelets stored under blood bank conditions for greater than 3 days. These findings illustrate the usefulness of human monoclonal antibodies for the identification of membrane neoantigens expressed as a result of platelet activation or revealed as platelets age in vitro.  相似文献   

17.
Growing evidence supports the substantial pathophysiological impact of platelets on the development of acute lung injury. Methods for studying these cellular mechanisms in vivo are not present yet. The aim of this study was to develop a model enabling the quantitative analysis of platelet kinetics and platelet-endothelium interaction within consecutive segments of the pulmonary microcirculation in vivo. New Zealand White rabbits were anesthetized and ventilated. Autologous platelets were separated from blood and labeled ex vivo with rhodamine 6G. After implantation of a thoracic window, microhemodynamics and kinetics of platelets were investigated by intravital microscopy. Velocities of red blood cells (RBCs) and platelets were measured in arterioles, capillaries and venules, and the number of platelets adhering to the microvascular endothelium was counted. Kinetics of unstimulated platelets was compared with kinetics of thrombin-activated platelets. Velocity of unstimulated platelets was comparable to RBC velocity in all vessel segments. Unstimulated platelets passed the pulmonary microcirculation without substantial platelet-endothelial interaction. In contrast, velocity of activated platelets was decreased in all vascular segments indicating platelet margination and temporal platelet-endothelium interaction. Thrombin-activated platelets adhered to arteriolar endothelium; in capillaries and venules adherence of platelets was increased 8-fold and 13-fold, respectively. In conclusion, using intravital microscopy platelet kinetics were directly analyzed in the pulmonary microcirculation in vivo for the first time. In contrast to leukocytes, no substantial platelet-endothelium interaction occurs in the pulmonary microcirculation without any further stimulus. In response to platelet activation, molecular mechanisms enable adhesion of platelets in arterioles and venules as well as retention of platelets within capillaries.  相似文献   

18.
E G Puszkin  E A Mauss  M B Zucker 《Blood》1990,76(8):1572-1579
The association between occupancy of the von Willebrand factor (vWf) receptor glycoprotein (GP) Ib, agglutination, and the assembly and composition of the cytoskeletal core was studied in 125I-surface-labeled aspirin-treated washed platelets. Binding of ligands to GPIIb-IIIa and platelet aggregation were abolished by addition of EDTA. Platelet agglutination induced by bovine vWf generated a complete cytoskeletal core (Triton-insoluble residue), shown by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) to be composed of actin-binding protein (ABP) (260 Kd), 235-Kd protein, myosin heavy chain (200 Kd), alpha-actinin (100 Kd), and actin (43 Kd). In addition, autoradiography of the gels showed a 125I 105-Kd GP, identified by immunoblot as GPIIIa, as well as GPIb, GPIIb, and another band at 87 Kd, probably GPIV. Neither cytoskeletal assembly nor GPIIa incorporation was altered if calpain was inhibited with leupeptin. Platelet suspensions exposed to bovine vWf without stirring (ie, nonagglutinated) or platelets in which agglutination was inhibited with ADP showed smaller cytoskeletons with little ABP, 235 Kd protein, and alpha-actinin. Autoradiographs showed mainly GPIb. Cytochalasin D (CD) and monobromobimane (MB) enhanced agglutination and prevented the inhibitory action of ADP on bovine vWf-induced platelet agglutination. CD markedly inhibited the assembly of the cytoskeletal core as well as GPIIIa retention, whereas MB resulted in a large Triton-insoluble residue which contained GPIIIa. Thus, development of a platelet cytoskeletal core is apparently not required for agglutination, but when a cytoskeletal core is assembled in agglutinated platelets, GPIIIa is retained.  相似文献   

19.
C Legrand  V Thibert  V Dubernard  B Bégault  J Lawler 《Blood》1992,79(8):1995-2003
We have investigated the molecular requirements for thrombospondin (TSP) to bind to the platelet surface and to support the subsequent secretion-dependent platelet aggregation. For this, we used two distinct murine monoclonal antibodies (MoAbs), designated MAI and MAII, raised against human platelet TSP, and three polyclonal antibodies, designated R3, R6, and R5, directed against fusion proteins containing the type 1 (Gly 385-Ile 522), type 2 (Pro 559-Ile 669), and type 3 (Asp 784-Val 932) repeating sequences, respectively. Among them, R5 and R6, but not R3, inhibited thrombin-induced aggregation of washed platelets and the concomitant secretion of serotonin. These antibodies, however, did not inhibit the expression of TSP on thrombin-activated platelets, as measured by the binding of a radiolabeled MoAb to TSP, suggesting that they may inhibit platelet aggregation by interfering with a physiologic event subsequent to TSP binding. In contrast, MoAb MAII, which reacts with an epitope located within the heparin-binding domain of TSP, inhibited both TSP surface expression and platelet aggregation/secretion induced by thrombin. In addition, this MoAb inhibited in a dose-dependent manner (IC50 approximately 0.5 mumol/L) the interaction of 125I-TSP with immobilized fibrinogen and platelet glycoprotein IV, both potential physiologic receptors for TSP on thrombin-activated platelets. These results indicate that the interaction of TSP with the surface of activated platelets can be modulated at the level of a specific epitope located within the amino terminal heparin-binding domain of the molecule. Thus, selective inhibition of the platelet/TSP interaction may represent an alternative approach to the inhibition of platelet aggregation.  相似文献   

20.
Human neutrophil degranulation during extracorporeal circulation   总被引:8,自引:0,他引:8  
Cardiopulmonary bypass, especially when prolonged, may result in hemostatic failure and pulmonary dysfunction, which has been attributed to changes in platelets and leukocytes, respectively. It has been well documented that contact of blood with synthetic surfaces causes platelet activation. In this report, we explore mechanisms of the activation of neutrophils during simulated in vitro extracorporeal circulation and document the release of neutrophil lactoferrin and elastase during clinical cardiopulmonary bypass (CCB). Inhibition in the simulated circuit by prostaglandin E1 (PGE1) and lidocaine suggests different mechanisms for release of neutrophil-specific proteins. During CCB with a bubble oxygenator it was observed that platelet counts fell to 42% +/- 2% of baseline. In addition, beta- thromboglobulin antigen (beta TG), a platelet-specific, alpha-granule protein marker reflecting the release reaction, increased from 0.15 +/- 0.05 to 0.84 +/- 0.11 microgram/mL. Neutrophil counts decreased to 67% +/- 7% of prebypass levels but then gradually rose as bypass continued. Both lactoferrin, a neutrophil-specific granule marker, and neutrophil elastase, an azurophilic granule marker, increased in plasma threefold to 1.66 +/- 0.33 micrograms/mL and 1.65 +/- 0.68 microgram/mL, respectively, just before bypass was stopped. When fresh heparinized human blood was recirculated within an extracorporeal membrane oxygenator bypass circuit for 120 minutes, plasma beta-TG rose to 5.13 micrograms/mL, lactoferrin increased from 0.13 +/- 0.04 to 1.62 +/- 0.22 micrograms/mL, and neutrophil elastase rose from 0.05 +/- 0.02 to 1.86 +/- 0.41 micrograms/mL. At 120 minutes, lidocaine (100 mumol/L), which inhibits neutrophil activation, delayed release of lactoferrin (1.33 +/- 0.26 micrograms/mL) and markedly inhibited release of elastase (0.24 +/- 0.05 microgram/mL) but did not inhibit release of beta-TG antigen (5.66 micrograms/mL at 120 minutes). PGE1 (0.3 mumol/L) inhibited significantly the release of beta-TG (0.31 microgram/mL) and elastase (0.52 +/- 0.11 microgram/mL) and attenuated the release of lactoferrin (1.57 +/- 0.45 micrograms/mL).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号